- Various DM persistent-data library improvements and fixes that

benefit both the DM thinp and cache targets.
 
 - A few small DM kcopyd efficiency improvements.
 
 - Significant zoned related block core, DM core and DM zoned target
   changes that culminate with adding zoned append emulation (which is
   required to properly fix DM crypt's zoned support).
 
 - Various DM writecache target changes that improve efficiency. Adds
   an optional "metadata_only" feature that only promotes bios flagged
   with REQ_META. But the most significant improvement is writecache's
   ability to pause writeback, for a confiurable time, if/when the
   working set is larger than the cache (and the cache is full) -- this
   ensures performance is no worse than the slower origin device.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEJfWUX4UqZ4x1O2wixSPxCi2dA1oFAmDcpWgACgkQxSPxCi2d
 A1pD0AgAmySdpJxQBzBMOqnKaClErfxiWXDtvzBxFupG/jmqaN/k/kCFdKyDk89M
 9r2rlv4+teZReEGjqjJ0umQgbX62x5y6f7vy4CeoE/+EQAUiZYXNARW8Uubu/Sgy
 mmvsgAdiuJqfJCX5TiQDwZIdll/QV8isteddMpOdrdM0fpCNlTvRao4S9UE2Rfni
 fPoPu7KNGDhKORvy/NloYFSHuxTaOSv6A44z15T2SoXPw9hLloFoXegE9Vrcfr/j
 gwLX3ponp4+K91BzPWz0QIQ7Wh+7O4xrmcXtBIvuIGNcfV+oGMZMtq/zEX8T6sDh
 GDlclxh/76iGgvINAQ437mXBINbPYQ==
 =8dUv
 -----END PGP SIGNATURE-----

Merge tag 'for-5.14/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm

Pull device mapper updates from Mike Snitzer:

 - Various DM persistent-data library improvements and fixes that
   benefit both the DM thinp and cache targets.

 - A few small DM kcopyd efficiency improvements.

 - Significant zoned related block core, DM core and DM zoned target
   changes that culminate with adding zoned append emulation (which is
   required to properly fix DM crypt's zoned support).

 - Various DM writecache target changes that improve efficiency. Adds an
   optional "metadata_only" feature that only promotes bios flagged with
   REQ_META. But the most significant improvement is writecache's
   ability to pause writeback, for a confiurable time, if/when the
   working set is larger than the cache (and the cache is full) -- this
   ensures performance is no worse than the slower origin device.

* tag 'for-5.14/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: (35 commits)
  dm writecache: make writeback pause configurable
  dm writecache: pause writeback if cache full and origin being written directly
  dm io tracker: factor out IO tracker
  dm btree remove: assign new_root only when removal succeeds
  dm zone: fix dm_revalidate_zones() memory allocation
  dm ps io affinity: remove redundant continue statement
  dm writecache: add optional "metadata_only" parameter
  dm writecache: add "cleaner" and "max_age" to Documentation
  dm writecache: write at least 4k when committing
  dm writecache: flush origin device when writing and cache is full
  dm writecache: have ssd writeback wait if the kcopyd workqueue is busy
  dm writecache: use list_move instead of list_del/list_add in writecache_writeback()
  dm writecache: commit just one block, not a full page
  dm writecache: remove unused gfp_t argument from wc_add_block()
  dm crypt: Fix zoned block device support
  dm: introduce zone append emulation
  dm: rearrange core declarations for extended use from dm-zone.c
  block: introduce BIO_ZONE_WRITE_LOCKED bio flag
  block: introduce bio zone helpers
  block: improve handling of all zones reset operation
  ...
This commit is contained in:
Linus Torvalds 2021-06-30 18:19:39 -07:00
commit 2cfa582be8
38 changed files with 2552 additions and 626 deletions

View File

@ -12,7 +12,6 @@ first sector should contain valid superblock from previous invocation.
Constructor parameters:
1. type of the cache device - "p" or "s"
- p - persistent memory
- s - SSD
2. the underlying device that will be cached
@ -21,7 +20,6 @@ Constructor parameters:
size)
5. the number of optional parameters (the parameters with an argument
count as two)
start_sector n (default: 0)
offset from the start of cache device in 512-byte sectors
high_watermark n (default: 50)
@ -53,6 +51,27 @@ Constructor parameters:
- some underlying devices perform better with fua, some
with nofua. The user should test it
cleaner
when this option is activated (either in the constructor
arguments or by a message), the cache will not promote
new writes (however, writes to already cached blocks are
promoted, to avoid data corruption due to misordered
writes) and it will gradually writeback any cached
data. The userspace can then monitor the cleaning
process with "dmsetup status". When the number of cached
blocks drops to zero, userspace can unload the
dm-writecache target and replace it with dm-linear or
other targets.
max_age n
specifies the maximum age of a block in milliseconds. If
a block is stored in the cache for too long, it will be
written to the underlying device and cleaned up.
metadata_only
only metadata is promoted to the cache. This option
improves performance for heavier REQ_META workloads.
pause_writeback n (default: 3000)
pause writeback if there was some write I/O redirected to
the origin volume in the last n milliseconds
Status:
1. error indicator - 0 if there was no error, otherwise error number
@ -77,3 +96,5 @@ Messages:
5. resume the device, so that it will use the linear
target
6. the cache device is now inactive and it can be deleted
cleaner
See above "cleaner" constructor documentation.

View File

@ -161,18 +161,89 @@ int blkdev_report_zones(struct block_device *bdev, sector_t sector,
}
EXPORT_SYMBOL_GPL(blkdev_report_zones);
static inline bool blkdev_allow_reset_all_zones(struct block_device *bdev,
sector_t sector,
sector_t nr_sectors)
static inline unsigned long *blk_alloc_zone_bitmap(int node,
unsigned int nr_zones)
{
if (!blk_queue_zone_resetall(bdev_get_queue(bdev)))
return false;
return kcalloc_node(BITS_TO_LONGS(nr_zones), sizeof(unsigned long),
GFP_NOIO, node);
}
static int blk_zone_need_reset_cb(struct blk_zone *zone, unsigned int idx,
void *data)
{
/*
* REQ_OP_ZONE_RESET_ALL can be executed only if the number of sectors
* of the applicable zone range is the entire disk.
* For an all-zones reset, ignore conventional, empty, read-only
* and offline zones.
*/
return !sector && nr_sectors == get_capacity(bdev->bd_disk);
switch (zone->cond) {
case BLK_ZONE_COND_NOT_WP:
case BLK_ZONE_COND_EMPTY:
case BLK_ZONE_COND_READONLY:
case BLK_ZONE_COND_OFFLINE:
return 0;
default:
set_bit(idx, (unsigned long *)data);
return 0;
}
}
static int blkdev_zone_reset_all_emulated(struct block_device *bdev,
gfp_t gfp_mask)
{
struct request_queue *q = bdev_get_queue(bdev);
sector_t capacity = get_capacity(bdev->bd_disk);
sector_t zone_sectors = blk_queue_zone_sectors(q);
unsigned long *need_reset;
struct bio *bio = NULL;
sector_t sector = 0;
int ret;
need_reset = blk_alloc_zone_bitmap(q->node, q->nr_zones);
if (!need_reset)
return -ENOMEM;
ret = bdev->bd_disk->fops->report_zones(bdev->bd_disk, 0,
q->nr_zones, blk_zone_need_reset_cb,
need_reset);
if (ret < 0)
goto out_free_need_reset;
ret = 0;
while (sector < capacity) {
if (!test_bit(blk_queue_zone_no(q, sector), need_reset)) {
sector += zone_sectors;
continue;
}
bio = blk_next_bio(bio, 0, gfp_mask);
bio_set_dev(bio, bdev);
bio->bi_opf = REQ_OP_ZONE_RESET | REQ_SYNC;
bio->bi_iter.bi_sector = sector;
sector += zone_sectors;
/* This may take a while, so be nice to others */
cond_resched();
}
if (bio) {
ret = submit_bio_wait(bio);
bio_put(bio);
}
out_free_need_reset:
kfree(need_reset);
return ret;
}
static int blkdev_zone_reset_all(struct block_device *bdev, gfp_t gfp_mask)
{
struct bio bio;
bio_init(&bio, NULL, 0);
bio_set_dev(&bio, bdev);
bio.bi_opf = REQ_OP_ZONE_RESET_ALL | REQ_SYNC;
return submit_bio_wait(&bio);
}
/**
@ -200,7 +271,7 @@ int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
sector_t capacity = get_capacity(bdev->bd_disk);
sector_t end_sector = sector + nr_sectors;
struct bio *bio = NULL;
int ret;
int ret = 0;
if (!blk_queue_is_zoned(q))
return -EOPNOTSUPP;
@ -222,20 +293,21 @@ int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
if ((nr_sectors & (zone_sectors - 1)) && end_sector != capacity)
return -EINVAL;
/*
* In the case of a zone reset operation over all zones,
* REQ_OP_ZONE_RESET_ALL can be used with devices supporting this
* command. For other devices, we emulate this command behavior by
* identifying the zones needing a reset.
*/
if (op == REQ_OP_ZONE_RESET && sector == 0 && nr_sectors == capacity) {
if (!blk_queue_zone_resetall(q))
return blkdev_zone_reset_all_emulated(bdev, gfp_mask);
return blkdev_zone_reset_all(bdev, gfp_mask);
}
while (sector < end_sector) {
bio = blk_next_bio(bio, 0, gfp_mask);
bio_set_dev(bio, bdev);
/*
* Special case for the zone reset operation that reset all
* zones, this is useful for applications like mkfs.
*/
if (op == REQ_OP_ZONE_RESET &&
blkdev_allow_reset_all_zones(bdev, sector, nr_sectors)) {
bio->bi_opf = REQ_OP_ZONE_RESET_ALL | REQ_SYNC;
break;
}
bio->bi_opf = op | REQ_SYNC;
bio->bi_iter.bi_sector = sector;
sector += zone_sectors;
@ -396,13 +468,6 @@ int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
return ret;
}
static inline unsigned long *blk_alloc_zone_bitmap(int node,
unsigned int nr_zones)
{
return kcalloc_node(BITS_TO_LONGS(nr_zones), sizeof(unsigned long),
GFP_NOIO, node);
}
void blk_queue_free_zone_bitmaps(struct request_queue *q)
{
kfree(q->conv_zones_bitmap);

View File

@ -92,6 +92,10 @@ ifeq ($(CONFIG_DM_UEVENT),y)
dm-mod-objs += dm-uevent.o
endif
ifeq ($(CONFIG_BLK_DEV_ZONED),y)
dm-mod-objs += dm-zone.o
endif
ifeq ($(CONFIG_DM_VERITY_FEC),y)
dm-verity-objs += dm-verity-fec.o
endif

View File

@ -8,6 +8,7 @@
#include "dm-bio-prison-v2.h"
#include "dm-bio-record.h"
#include "dm-cache-metadata.h"
#include "dm-io-tracker.h"
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
@ -39,77 +40,6 @@ DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
/*----------------------------------------------------------------*/
struct io_tracker {
spinlock_t lock;
/*
* Sectors of in-flight IO.
*/
sector_t in_flight;
/*
* The time, in jiffies, when this device became idle (if it is
* indeed idle).
*/
unsigned long idle_time;
unsigned long last_update_time;
};
static void iot_init(struct io_tracker *iot)
{
spin_lock_init(&iot->lock);
iot->in_flight = 0ul;
iot->idle_time = 0ul;
iot->last_update_time = jiffies;
}
static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
{
if (iot->in_flight)
return false;
return time_after(jiffies, iot->idle_time + jifs);
}
static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
{
bool r;
spin_lock_irq(&iot->lock);
r = __iot_idle_for(iot, jifs);
spin_unlock_irq(&iot->lock);
return r;
}
static void iot_io_begin(struct io_tracker *iot, sector_t len)
{
spin_lock_irq(&iot->lock);
iot->in_flight += len;
spin_unlock_irq(&iot->lock);
}
static void __iot_io_end(struct io_tracker *iot, sector_t len)
{
if (!len)
return;
iot->in_flight -= len;
if (!iot->in_flight)
iot->idle_time = jiffies;
}
static void iot_io_end(struct io_tracker *iot, sector_t len)
{
unsigned long flags;
spin_lock_irqsave(&iot->lock, flags);
__iot_io_end(iot, len);
spin_unlock_irqrestore(&iot->lock, flags);
}
/*----------------------------------------------------------------*/
/*
* Represents a chunk of future work. 'input' allows continuations to pass
* values between themselves, typically error values.
@ -470,7 +400,7 @@ struct cache {
struct batcher committer;
struct work_struct commit_ws;
struct io_tracker tracker;
struct dm_io_tracker tracker;
mempool_t migration_pool;
@ -866,7 +796,7 @@ static void accounted_begin(struct cache *cache, struct bio *bio)
if (accountable_bio(cache, bio)) {
pb = get_per_bio_data(bio);
pb->len = bio_sectors(bio);
iot_io_begin(&cache->tracker, pb->len);
dm_iot_io_begin(&cache->tracker, pb->len);
}
}
@ -874,7 +804,7 @@ static void accounted_complete(struct cache *cache, struct bio *bio)
{
struct per_bio_data *pb = get_per_bio_data(bio);
iot_io_end(&cache->tracker, pb->len);
dm_iot_io_end(&cache->tracker, pb->len);
}
static void accounted_request(struct cache *cache, struct bio *bio)
@ -1642,7 +1572,7 @@ enum busy {
static enum busy spare_migration_bandwidth(struct cache *cache)
{
bool idle = iot_idle_for(&cache->tracker, HZ);
bool idle = dm_iot_idle_for(&cache->tracker, HZ);
sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
cache->sectors_per_block;
@ -2603,7 +2533,7 @@ static int cache_create(struct cache_args *ca, struct cache **result)
batcher_init(&cache->committer, commit_op, cache,
issue_op, cache, cache->wq);
iot_init(&cache->tracker);
dm_iot_init(&cache->tracker);
init_rwsem(&cache->background_work_lock);
prevent_background_work(cache);

View File

@ -114,8 +114,27 @@ struct mapped_device {
bool init_tio_pdu:1;
struct srcu_struct io_barrier;
#ifdef CONFIG_BLK_DEV_ZONED
unsigned int nr_zones;
unsigned int *zwp_offset;
#endif
};
/*
* Bits for the flags field of struct mapped_device.
*/
#define DMF_BLOCK_IO_FOR_SUSPEND 0
#define DMF_SUSPENDED 1
#define DMF_FROZEN 2
#define DMF_FREEING 3
#define DMF_DELETING 4
#define DMF_NOFLUSH_SUSPENDING 5
#define DMF_DEFERRED_REMOVE 6
#define DMF_SUSPENDED_INTERNALLY 7
#define DMF_POST_SUSPENDING 8
#define DMF_EMULATE_ZONE_APPEND 9
void disable_discard(struct mapped_device *md);
void disable_write_same(struct mapped_device *md);
void disable_write_zeroes(struct mapped_device *md);
@ -130,6 +149,13 @@ static inline struct dm_stats *dm_get_stats(struct mapped_device *md)
return &md->stats;
}
static inline bool dm_emulate_zone_append(struct mapped_device *md)
{
if (blk_queue_is_zoned(md->queue))
return test_bit(DMF_EMULATE_ZONE_APPEND, &md->flags);
return false;
}
#define DM_TABLE_MAX_DEPTH 16
struct dm_table {
@ -173,6 +199,45 @@ struct dm_table {
#endif
};
/*
* One of these is allocated per clone bio.
*/
#define DM_TIO_MAGIC 7282014
struct dm_target_io {
unsigned int magic;
struct dm_io *io;
struct dm_target *ti;
unsigned int target_bio_nr;
unsigned int *len_ptr;
bool inside_dm_io;
struct bio clone;
};
/*
* One of these is allocated per original bio.
* It contains the first clone used for that original.
*/
#define DM_IO_MAGIC 5191977
struct dm_io {
unsigned int magic;
struct mapped_device *md;
blk_status_t status;
atomic_t io_count;
struct bio *orig_bio;
unsigned long start_time;
spinlock_t endio_lock;
struct dm_stats_aux stats_aux;
/* last member of dm_target_io is 'struct bio' */
struct dm_target_io tio;
};
static inline void dm_io_inc_pending(struct dm_io *io)
{
atomic_inc(&io->io_count);
}
void dm_io_dec_pending(struct dm_io *io, blk_status_t error);
static inline struct completion *dm_get_completion_from_kobject(struct kobject *kobj)
{
return &container_of(kobj, struct dm_kobject_holder, kobj)->completion;

View File

@ -3138,11 +3138,10 @@ static int crypt_report_zones(struct dm_target *ti,
struct dm_report_zones_args *args, unsigned int nr_zones)
{
struct crypt_config *cc = ti->private;
sector_t sector = cc->start + dm_target_offset(ti, args->next_sector);
args->start = cc->start;
return blkdev_report_zones(cc->dev->bdev, sector, nr_zones,
dm_report_zones_cb, args);
return dm_report_zones(cc->dev->bdev, cc->start,
cc->start + dm_target_offset(ti, args->next_sector),
args, nr_zones);
}
#else
#define crypt_report_zones NULL
@ -3281,14 +3280,28 @@ static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
}
cc->start = tmpll;
/*
* For zoned block devices, we need to preserve the issuer write
* ordering. To do so, disable write workqueues and force inline
* encryption completion.
*/
if (bdev_is_zoned(cc->dev->bdev)) {
/*
* For zoned block devices, we need to preserve the issuer write
* ordering. To do so, disable write workqueues and force inline
* encryption completion.
*/
set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
/*
* All zone append writes to a zone of a zoned block device will
* have the same BIO sector, the start of the zone. When the
* cypher IV mode uses sector values, all data targeting a
* zone will be encrypted using the first sector numbers of the
* zone. This will not result in write errors but will
* cause most reads to fail as reads will use the sector values
* for the actual data locations, resulting in IV mismatch.
* To avoid this problem, ask DM core to emulate zone append
* operations with regular writes.
*/
DMDEBUG("Zone append operations will be emulated");
ti->emulate_zone_append = true;
}
if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {

View File

@ -363,28 +363,32 @@ static void ws_unpack(const struct writeset_disk *disk, struct writeset_metadata
core->root = le64_to_cpu(disk->root);
}
static void ws_inc(void *context, const void *value)
static void ws_inc(void *context, const void *value, unsigned count)
{
struct era_metadata *md = context;
struct writeset_disk ws_d;
dm_block_t b;
unsigned i;
memcpy(&ws_d, value, sizeof(ws_d));
b = le64_to_cpu(ws_d.root);
dm_tm_inc(md->tm, b);
for (i = 0; i < count; i++) {
memcpy(&ws_d, value + (i * sizeof(ws_d)), sizeof(ws_d));
b = le64_to_cpu(ws_d.root);
dm_tm_inc(md->tm, b);
}
}
static void ws_dec(void *context, const void *value)
static void ws_dec(void *context, const void *value, unsigned count)
{
struct era_metadata *md = context;
struct writeset_disk ws_d;
dm_block_t b;
unsigned i;
memcpy(&ws_d, value, sizeof(ws_d));
b = le64_to_cpu(ws_d.root);
dm_bitset_del(&md->bitset_info, b);
for (i = 0; i < count; i++) {
memcpy(&ws_d, value + (i * sizeof(ws_d)), sizeof(ws_d));
b = le64_to_cpu(ws_d.root);
dm_bitset_del(&md->bitset_info, b);
}
}
static int ws_eq(void *context, const void *value1, const void *value2)

View File

@ -463,11 +463,10 @@ static int flakey_report_zones(struct dm_target *ti,
struct dm_report_zones_args *args, unsigned int nr_zones)
{
struct flakey_c *fc = ti->private;
sector_t sector = flakey_map_sector(ti, args->next_sector);
args->start = fc->start;
return blkdev_report_zones(fc->dev->bdev, sector, nr_zones,
dm_report_zones_cb, args);
return dm_report_zones(fc->dev->bdev, fc->start,
flakey_map_sector(ti, args->next_sector),
args, nr_zones);
}
#else
#define flakey_report_zones NULL

View File

@ -0,0 +1,81 @@
/*
* Copyright (C) 2021 Red Hat, Inc. All rights reserved.
*
* This file is released under the GPL.
*/
#ifndef DM_IO_TRACKER_H
#define DM_IO_TRACKER_H
#include <linux/jiffies.h>
struct dm_io_tracker {
spinlock_t lock;
/*
* Sectors of in-flight IO.
*/
sector_t in_flight;
/*
* The time, in jiffies, when this device became idle
* (if it is indeed idle).
*/
unsigned long idle_time;
unsigned long last_update_time;
};
static inline void dm_iot_init(struct dm_io_tracker *iot)
{
spin_lock_init(&iot->lock);
iot->in_flight = 0ul;
iot->idle_time = 0ul;
iot->last_update_time = jiffies;
}
static inline bool dm_iot_idle_for(struct dm_io_tracker *iot, unsigned long j)
{
bool r = false;
spin_lock_irq(&iot->lock);
if (!iot->in_flight)
r = time_after(jiffies, iot->idle_time + j);
spin_unlock_irq(&iot->lock);
return r;
}
static inline unsigned long dm_iot_idle_time(struct dm_io_tracker *iot)
{
unsigned long r = 0;
spin_lock_irq(&iot->lock);
if (!iot->in_flight)
r = jiffies - iot->idle_time;
spin_unlock_irq(&iot->lock);
return r;
}
static inline void dm_iot_io_begin(struct dm_io_tracker *iot, sector_t len)
{
spin_lock_irq(&iot->lock);
iot->in_flight += len;
spin_unlock_irq(&iot->lock);
}
static inline void dm_iot_io_end(struct dm_io_tracker *iot, sector_t len)
{
unsigned long flags;
if (!len)
return;
spin_lock_irqsave(&iot->lock, flags);
iot->in_flight -= len;
if (!iot->in_flight)
iot->idle_time = jiffies;
spin_unlock_irqrestore(&iot->lock, flags);
}
#endif

View File

@ -341,7 +341,7 @@ static void client_free_pages(struct dm_kcopyd_client *kc)
struct kcopyd_job {
struct dm_kcopyd_client *kc;
struct list_head list;
unsigned long flags;
unsigned flags;
/*
* Error state of the job.
@ -418,7 +418,7 @@ static struct kcopyd_job *pop_io_job(struct list_head *jobs,
* constraint and sequential writes that are at the right position.
*/
list_for_each_entry(job, jobs, list) {
if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
if (job->rw == READ || !(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
list_del(&job->list);
return job;
}
@ -437,9 +437,8 @@ static struct kcopyd_job *pop(struct list_head *jobs,
struct dm_kcopyd_client *kc)
{
struct kcopyd_job *job = NULL;
unsigned long flags;
spin_lock_irqsave(&kc->job_lock, flags);
spin_lock_irq(&kc->job_lock);
if (!list_empty(jobs)) {
if (jobs == &kc->io_jobs)
@ -449,7 +448,7 @@ static struct kcopyd_job *pop(struct list_head *jobs,
list_del(&job->list);
}
}
spin_unlock_irqrestore(&kc->job_lock, flags);
spin_unlock_irq(&kc->job_lock);
return job;
}
@ -467,12 +466,11 @@ static void push(struct list_head *jobs, struct kcopyd_job *job)
static void push_head(struct list_head *jobs, struct kcopyd_job *job)
{
unsigned long flags;
struct dm_kcopyd_client *kc = job->kc;
spin_lock_irqsave(&kc->job_lock, flags);
spin_lock_irq(&kc->job_lock);
list_add(&job->list, jobs);
spin_unlock_irqrestore(&kc->job_lock, flags);
spin_unlock_irq(&kc->job_lock);
}
/*
@ -525,7 +523,7 @@ static void complete_io(unsigned long error, void *context)
else
job->read_err = 1;
if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
if (!(job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))) {
push(&kc->complete_jobs, job);
wake(kc);
return;
@ -565,7 +563,7 @@ static int run_io_job(struct kcopyd_job *job)
* If we need to write sequentially and some reads or writes failed,
* no point in continuing.
*/
if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
job->master_job->write_err) {
job->write_err = job->master_job->write_err;
return -EIO;
@ -648,7 +646,6 @@ static void do_work(struct work_struct *work)
struct dm_kcopyd_client *kc = container_of(work,
struct dm_kcopyd_client, kcopyd_work);
struct blk_plug plug;
unsigned long flags;
/*
* The order that these are called is *very* important.
@ -657,9 +654,9 @@ static void do_work(struct work_struct *work)
* list. io jobs call wake when they complete and it all
* starts again.
*/
spin_lock_irqsave(&kc->job_lock, flags);
spin_lock_irq(&kc->job_lock);
list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
spin_unlock_irqrestore(&kc->job_lock, flags);
spin_unlock_irq(&kc->job_lock);
blk_start_plug(&plug);
process_jobs(&kc->complete_jobs, kc, run_complete_job);
@ -709,7 +706,7 @@ static void segment_complete(int read_err, unsigned long write_err,
* Only dispatch more work if there hasn't been an error.
*/
if ((!job->read_err && !job->write_err) ||
test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
job->flags & BIT(DM_KCOPYD_IGNORE_ERROR)) {
/* get the next chunk of work */
progress = job->progress;
count = job->source.count - progress;
@ -801,10 +798,10 @@ void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
* we need to write sequentially. If one of the destination is a
* host-aware device, then leave it to the caller to choose what to do.
*/
if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
if (!(job->flags & BIT(DM_KCOPYD_WRITE_SEQ))) {
for (i = 0; i < job->num_dests; i++) {
if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
job->flags |= BIT(DM_KCOPYD_WRITE_SEQ);
break;
}
}
@ -813,9 +810,9 @@ void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
/*
* If we need to write sequentially, errors cannot be ignored.
*/
if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
if (job->flags & BIT(DM_KCOPYD_WRITE_SEQ) &&
job->flags & BIT(DM_KCOPYD_IGNORE_ERROR))
job->flags &= ~BIT(DM_KCOPYD_IGNORE_ERROR);
if (from) {
job->source = *from;
@ -983,3 +980,9 @@ void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
kfree(kc);
}
EXPORT_SYMBOL(dm_kcopyd_client_destroy);
void dm_kcopyd_client_flush(struct dm_kcopyd_client *kc)
{
flush_workqueue(kc->kcopyd_wq);
}
EXPORT_SYMBOL(dm_kcopyd_client_flush);

View File

@ -140,11 +140,10 @@ static int linear_report_zones(struct dm_target *ti,
struct dm_report_zones_args *args, unsigned int nr_zones)
{
struct linear_c *lc = ti->private;
sector_t sector = linear_map_sector(ti, args->next_sector);
args->start = lc->start;
return blkdev_report_zones(lc->dev->bdev, sector, nr_zones,
dm_report_zones_cb, args);
return dm_report_zones(lc->dev->bdev, lc->start,
linear_map_sector(ti, args->next_sector),
args, nr_zones);
}
#else
#define linear_report_zones NULL

View File

@ -91,7 +91,6 @@ static int ioa_add_path(struct path_selector *ps, struct dm_path *path,
cpumask_set_cpu(cpu, s->path_mask);
s->path_map[cpu] = pi;
refcount_inc(&pi->refcount);
continue;
}
if (refcount_dec_and_test(&pi->refcount)) {

View File

@ -364,7 +364,7 @@ static void recover(struct mirror_set *ms, struct dm_region *reg)
/* hand to kcopyd */
if (!errors_handled(ms))
set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
flags |= BIT(DM_KCOPYD_IGNORE_ERROR);
dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
flags, recovery_complete, reg);

View File

@ -249,7 +249,7 @@ static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
* If the target is mapped to zoned block device(s), check
* that the zones are not partially mapped.
*/
if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
if (bdev_is_zoned(bdev)) {
unsigned int zone_sectors = bdev_zone_sectors(bdev);
if (start & (zone_sectors - 1)) {
@ -1244,7 +1244,7 @@ static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
return args.err;
}
static struct blk_ksm_ll_ops dm_ksm_ll_ops = {
static const struct blk_ksm_ll_ops dm_ksm_ll_ops = {
.keyslot_evict = dm_keyslot_evict,
};
@ -1981,11 +1981,12 @@ static int device_requires_stable_pages(struct dm_target *ti,
return blk_queue_stable_writes(q);
}
void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
struct queue_limits *limits)
int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
struct queue_limits *limits)
{
bool wc = false, fua = false;
int page_size = PAGE_SIZE;
int r;
/*
* Copy table's limits to the DM device's request_queue
@ -2065,19 +2066,19 @@ void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
/*
* For a zoned target, the number of zones should be updated for the
* correct value to be exposed in sysfs queue/nr_zones. For a BIO based
* target, this is all that is needed.
* For a zoned target, setup the zones related queue attributes
* and resources necessary for zone append emulation if necessary.
*/
#ifdef CONFIG_BLK_DEV_ZONED
if (blk_queue_is_zoned(q)) {
WARN_ON_ONCE(queue_is_mq(q));
q->nr_zones = blkdev_nr_zones(t->md->disk);
r = dm_set_zones_restrictions(t, q);
if (r)
return r;
}
#endif
dm_update_keyslot_manager(q, t);
blk_queue_update_readahead(q);
return 0;
}
unsigned int dm_table_get_num_targets(struct dm_table *t)

View File

@ -311,28 +311,53 @@ static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
*t = v & ((1 << 24) - 1);
}
static void data_block_inc(void *context, const void *value_le)
{
struct dm_space_map *sm = context;
__le64 v_le;
uint64_t b;
uint32_t t;
/*
* It's more efficient to call dm_sm_{inc,dec}_blocks as few times as
* possible. 'with_runs' reads contiguous runs of blocks, and calls the
* given sm function.
*/
typedef int (*run_fn)(struct dm_space_map *, dm_block_t, dm_block_t);
memcpy(&v_le, value_le, sizeof(v_le));
unpack_block_time(le64_to_cpu(v_le), &b, &t);
dm_sm_inc_block(sm, b);
static void with_runs(struct dm_space_map *sm, const __le64 *value_le, unsigned count, run_fn fn)
{
uint64_t b, begin, end;
uint32_t t;
bool in_run = false;
unsigned i;
for (i = 0; i < count; i++, value_le++) {
/* We know value_le is 8 byte aligned */
unpack_block_time(le64_to_cpu(*value_le), &b, &t);
if (in_run) {
if (b == end) {
end++;
} else {
fn(sm, begin, end);
begin = b;
end = b + 1;
}
} else {
in_run = true;
begin = b;
end = b + 1;
}
}
if (in_run)
fn(sm, begin, end);
}
static void data_block_dec(void *context, const void *value_le)
static void data_block_inc(void *context, const void *value_le, unsigned count)
{
struct dm_space_map *sm = context;
__le64 v_le;
uint64_t b;
uint32_t t;
with_runs((struct dm_space_map *) context,
(const __le64 *) value_le, count, dm_sm_inc_blocks);
}
memcpy(&v_le, value_le, sizeof(v_le));
unpack_block_time(le64_to_cpu(v_le), &b, &t);
dm_sm_dec_block(sm, b);
static void data_block_dec(void *context, const void *value_le, unsigned count)
{
with_runs((struct dm_space_map *) context,
(const __le64 *) value_le, count, dm_sm_dec_blocks);
}
static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
@ -349,27 +374,25 @@ static int data_block_equal(void *context, const void *value1_le, const void *va
return b1 == b2;
}
static void subtree_inc(void *context, const void *value)
static void subtree_inc(void *context, const void *value, unsigned count)
{
struct dm_btree_info *info = context;
__le64 root_le;
uint64_t root;
const __le64 *root_le = value;
unsigned i;
memcpy(&root_le, value, sizeof(root_le));
root = le64_to_cpu(root_le);
dm_tm_inc(info->tm, root);
for (i = 0; i < count; i++, root_le++)
dm_tm_inc(info->tm, le64_to_cpu(*root_le));
}
static void subtree_dec(void *context, const void *value)
static void subtree_dec(void *context, const void *value, unsigned count)
{
struct dm_btree_info *info = context;
__le64 root_le;
uint64_t root;
const __le64 *root_le = value;
unsigned i;
memcpy(&root_le, value, sizeof(root_le));
root = le64_to_cpu(root_le);
if (dm_btree_del(info, root))
DMERR("btree delete failed");
for (i = 0; i < count; i++, root_le++)
if (dm_btree_del(info, le64_to_cpu(*root_le)))
DMERR("btree delete failed");
}
static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
@ -1761,11 +1784,7 @@ int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_
int r = 0;
pmd_write_lock(pmd);
for (; b != e; b++) {
r = dm_sm_inc_block(pmd->data_sm, b);
if (r)
break;
}
r = dm_sm_inc_blocks(pmd->data_sm, b, e);
pmd_write_unlock(pmd);
return r;
@ -1776,11 +1795,7 @@ int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_
int r = 0;
pmd_write_lock(pmd);
for (; b != e; b++) {
r = dm_sm_dec_block(pmd->data_sm, b);
if (r)
break;
}
r = dm_sm_dec_blocks(pmd->data_sm, b, e);
pmd_write_unlock(pmd);
return r;

View File

@ -15,6 +15,8 @@
#include <linux/dax.h>
#include <linux/pfn_t.h>
#include <linux/libnvdimm.h>
#include <linux/delay.h>
#include "dm-io-tracker.h"
#define DM_MSG_PREFIX "writecache"
@ -28,6 +30,7 @@
#define AUTOCOMMIT_MSEC 1000
#define MAX_AGE_DIV 16
#define MAX_AGE_UNSPECIFIED -1UL
#define PAUSE_WRITEBACK (HZ * 3)
#define BITMAP_GRANULARITY 65536
#if BITMAP_GRANULARITY < PAGE_SIZE
@ -123,6 +126,7 @@ struct dm_writecache {
size_t freelist_high_watermark;
size_t freelist_low_watermark;
unsigned long max_age;
unsigned long pause;
unsigned uncommitted_blocks;
unsigned autocommit_blocks;
@ -171,17 +175,22 @@ struct dm_writecache {
bool flush_on_suspend:1;
bool cleaner:1;
bool cleaner_set:1;
bool metadata_only:1;
bool pause_set:1;
unsigned high_wm_percent_value;
unsigned low_wm_percent_value;
unsigned autocommit_time_value;
unsigned max_age_value;
unsigned pause_value;
unsigned writeback_all;
struct workqueue_struct *writeback_wq;
struct work_struct writeback_work;
struct work_struct flush_work;
struct dm_io_tracker iot;
struct dm_io_client *dm_io;
raw_spinlock_t endio_list_lock;
@ -532,7 +541,7 @@ static void ssd_commit_superblock(struct dm_writecache *wc)
region.bdev = wc->ssd_dev->bdev;
region.sector = 0;
region.count = PAGE_SIZE >> SECTOR_SHIFT;
region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
if (unlikely(region.sector + region.count > wc->metadata_sectors))
region.count = wc->metadata_sectors - region.sector;
@ -1301,8 +1310,12 @@ static int writecache_map(struct dm_target *ti, struct bio *bio)
writecache_flush(wc);
if (writecache_has_error(wc))
goto unlock_error;
if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
goto unlock_remap_origin;
goto unlock_submit;
} else {
if (dm_bio_get_target_bio_nr(bio))
goto unlock_remap_origin;
writecache_offload_bio(wc, bio);
goto unlock_return;
}
@ -1360,24 +1373,29 @@ read_next_block:
} else {
do {
bool found_entry = false;
bool search_used = false;
if (writecache_has_error(wc))
goto unlock_error;
e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
if (e) {
if (!writecache_entry_is_committed(wc, e))
if (!writecache_entry_is_committed(wc, e)) {
search_used = true;
goto bio_copy;
}
if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
wc->overwrote_committed = true;
search_used = true;
goto bio_copy;
}
found_entry = true;
} else {
if (unlikely(wc->cleaner))
if (unlikely(wc->cleaner) ||
(wc->metadata_only && !(bio->bi_opf & REQ_META)))
goto direct_write;
}
e = writecache_pop_from_freelist(wc, (sector_t)-1);
if (unlikely(!e)) {
if (!found_entry) {
if (!WC_MODE_PMEM(wc) && !found_entry) {
direct_write:
e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
if (e) {
@ -1404,13 +1422,31 @@ bio_copy:
sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
while (bio_size < bio->bi_iter.bi_size) {
struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
if (!f)
break;
write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
(bio_size >> SECTOR_SHIFT), wc->seq_count);
writecache_insert_entry(wc, f);
wc->uncommitted_blocks++;
if (!search_used) {
struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
if (!f)
break;
write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
(bio_size >> SECTOR_SHIFT), wc->seq_count);
writecache_insert_entry(wc, f);
wc->uncommitted_blocks++;
} else {
struct wc_entry *f;
struct rb_node *next = rb_next(&e->rb_node);
if (!next)
break;
f = container_of(next, struct wc_entry, rb_node);
if (f != e + 1)
break;
if (read_original_sector(wc, f) !=
read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
break;
if (unlikely(f->write_in_progress))
break;
if (writecache_entry_is_committed(wc, f))
wc->overwrote_committed = true;
e = f;
}
bio_size += wc->block_size;
current_cache_sec += wc->block_size >> SECTOR_SHIFT;
}
@ -1438,6 +1474,12 @@ bio_copy:
}
unlock_remap_origin:
if (likely(wc->pause != 0)) {
if (bio_op(bio) == REQ_OP_WRITE) {
dm_iot_io_begin(&wc->iot, 1);
bio->bi_private = (void *)2;
}
}
bio_set_dev(bio, wc->dev->bdev);
wc_unlock(wc);
return DM_MAPIO_REMAPPED;
@ -1468,11 +1510,13 @@ static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t
{
struct dm_writecache *wc = ti->private;
if (bio->bi_private != NULL) {
if (bio->bi_private == (void *)1) {
int dir = bio_data_dir(bio);
if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
wake_up(&wc->bio_in_progress_wait[dir]);
} else if (bio->bi_private == (void *)2) {
dm_iot_io_end(&wc->iot, 1);
}
return 0;
}
@ -1642,7 +1686,7 @@ pop_from_list:
return 0;
}
static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
{
struct dm_writecache *wc = wb->wc;
unsigned block_size = wc->block_size;
@ -1703,7 +1747,7 @@ static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeba
max_pages = WB_LIST_INLINE;
}
BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
BUG_ON(!wc_add_block(wb, e));
wb->wc_list[0] = e;
wb->wc_list_n = 1;
@ -1713,7 +1757,7 @@ static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeba
if (read_original_sector(wc, f) !=
read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
break;
if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
if (!wc_add_block(wb, f))
break;
wbl->size--;
list_del(&f->lru);
@ -1794,6 +1838,27 @@ static void writecache_writeback(struct work_struct *work)
struct writeback_list wbl;
unsigned long n_walked;
if (!WC_MODE_PMEM(wc)) {
/* Wait for any active kcopyd work on behalf of ssd writeback */
dm_kcopyd_client_flush(wc->dm_kcopyd);
}
if (likely(wc->pause != 0)) {
while (1) {
unsigned long idle;
if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
unlikely(dm_suspended(wc->ti)))
break;
idle = dm_iot_idle_time(&wc->iot);
if (idle >= wc->pause)
break;
idle = wc->pause - idle;
if (idle > HZ)
idle = HZ;
schedule_timeout_idle(idle);
}
}
wc_lock(wc);
restart:
if (writecache_has_error(wc)) {
@ -1822,8 +1887,9 @@ restart:
n_walked++;
if (unlikely(n_walked > WRITEBACK_LATENCY) &&
likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
queue_work(wc->writeback_wq, &wc->writeback_work);
likely(!wc->writeback_all)) {
if (likely(!dm_suspended(wc->ti)))
queue_work(wc->writeback_wq, &wc->writeback_work);
break;
}
@ -1845,15 +1911,13 @@ restart:
if (unlikely(read_original_sector(wc, f) ==
read_original_sector(wc, e))) {
BUG_ON(!f->write_in_progress);
list_del(&e->lru);
list_add(&e->lru, &skipped);
list_move(&e->lru, &skipped);
cond_resched();
continue;
}
}
wc->writeback_size++;
list_del(&e->lru);
list_add(&e->lru, &wbl.list);
list_move(&e->lru, &wbl.list);
wbl.size++;
e->write_in_progress = true;
e->wc_list_contiguous = 1;
@ -1888,8 +1952,7 @@ restart:
// break;
wc->writeback_size++;
list_del(&g->lru);
list_add(&g->lru, &wbl.list);
list_move(&g->lru, &wbl.list);
wbl.size++;
g->write_in_progress = true;
g->wc_list_contiguous = BIO_MAX_VECS;
@ -2065,7 +2128,7 @@ static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
struct wc_memory_superblock s;
static struct dm_arg _args[] = {
{0, 16, "Invalid number of feature args"},
{0, 18, "Invalid number of feature args"},
};
as.argc = argc;
@ -2109,6 +2172,8 @@ static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
INIT_WORK(&wc->writeback_work, writecache_writeback);
INIT_WORK(&wc->flush_work, writecache_flush_work);
dm_iot_init(&wc->iot);
raw_spin_lock_init(&wc->endio_list_lock);
INIT_LIST_HEAD(&wc->endio_list);
wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
@ -2156,6 +2221,7 @@ static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
goto bad;
}
} else {
wc->pause = PAUSE_WRITEBACK;
r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
if (r) {
ti->error = "Could not allocate mempool";
@ -2292,6 +2358,20 @@ static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
wc->writeback_fua = false;
wc->writeback_fua_set = true;
} else goto invalid_optional;
} else if (!strcasecmp(string, "metadata_only")) {
wc->metadata_only = true;
} else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
unsigned pause_msecs;
if (WC_MODE_PMEM(wc))
goto invalid_optional;
string = dm_shift_arg(&as), opt_params--;
if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
goto invalid_optional;
if (pause_msecs > 60000)
goto invalid_optional;
wc->pause = msecs_to_jiffies(pause_msecs);
wc->pause_set = true;
wc->pause_value = pause_msecs;
} else {
invalid_optional:
r = -EINVAL;
@ -2463,7 +2543,7 @@ overflow:
goto bad;
}
ti->num_flush_bios = 1;
ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
ti->flush_supported = true;
ti->num_discard_bios = 1;
@ -2515,6 +2595,10 @@ static void writecache_status(struct dm_target *ti, status_type_t type,
extra_args++;
if (wc->writeback_fua_set)
extra_args++;
if (wc->metadata_only)
extra_args++;
if (wc->pause_set)
extra_args += 2;
DMEMIT("%u", extra_args);
if (wc->start_sector_set)
@ -2535,13 +2619,17 @@ static void writecache_status(struct dm_target *ti, status_type_t type,
DMEMIT(" cleaner");
if (wc->writeback_fua_set)
DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
if (wc->metadata_only)
DMEMIT(" metadata_only");
if (wc->pause_set)
DMEMIT(" pause_writeback %u", wc->pause_value);
break;
}
}
static struct target_type writecache_target = {
.name = "writecache",
.version = {1, 4, 0},
.version = {1, 5, 0},
.module = THIS_MODULE,
.ctr = writecache_ctr,
.dtr = writecache_dtr,

660
drivers/md/dm-zone.c Normal file
View File

@ -0,0 +1,660 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
*/
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/slab.h>
#include "dm-core.h"
#define DM_MSG_PREFIX "zone"
#define DM_ZONE_INVALID_WP_OFST UINT_MAX
/*
* For internal zone reports bypassing the top BIO submission path.
*/
static int dm_blk_do_report_zones(struct mapped_device *md, struct dm_table *t,
sector_t sector, unsigned int nr_zones,
report_zones_cb cb, void *data)
{
struct gendisk *disk = md->disk;
int ret;
struct dm_report_zones_args args = {
.next_sector = sector,
.orig_data = data,
.orig_cb = cb,
};
do {
struct dm_target *tgt;
tgt = dm_table_find_target(t, args.next_sector);
if (WARN_ON_ONCE(!tgt->type->report_zones))
return -EIO;
args.tgt = tgt;
ret = tgt->type->report_zones(tgt, &args,
nr_zones - args.zone_idx);
if (ret < 0)
return ret;
} while (args.zone_idx < nr_zones &&
args.next_sector < get_capacity(disk));
return args.zone_idx;
}
/*
* User facing dm device block device report zone operation. This calls the
* report_zones operation for each target of a device table. This operation is
* generally implemented by targets using dm_report_zones().
*/
int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data)
{
struct mapped_device *md = disk->private_data;
struct dm_table *map;
int srcu_idx, ret;
if (dm_suspended_md(md))
return -EAGAIN;
map = dm_get_live_table(md, &srcu_idx);
if (!map)
return -EIO;
ret = dm_blk_do_report_zones(md, map, sector, nr_zones, cb, data);
dm_put_live_table(md, srcu_idx);
return ret;
}
static int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx,
void *data)
{
struct dm_report_zones_args *args = data;
sector_t sector_diff = args->tgt->begin - args->start;
/*
* Ignore zones beyond the target range.
*/
if (zone->start >= args->start + args->tgt->len)
return 0;
/*
* Remap the start sector and write pointer position of the zone
* to match its position in the target range.
*/
zone->start += sector_diff;
if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
if (zone->cond == BLK_ZONE_COND_FULL)
zone->wp = zone->start + zone->len;
else if (zone->cond == BLK_ZONE_COND_EMPTY)
zone->wp = zone->start;
else
zone->wp += sector_diff;
}
args->next_sector = zone->start + zone->len;
return args->orig_cb(zone, args->zone_idx++, args->orig_data);
}
/*
* Helper for drivers of zoned targets to implement struct target_type
* report_zones operation.
*/
int dm_report_zones(struct block_device *bdev, sector_t start, sector_t sector,
struct dm_report_zones_args *args, unsigned int nr_zones)
{
/*
* Set the target mapping start sector first so that
* dm_report_zones_cb() can correctly remap zone information.
*/
args->start = start;
return blkdev_report_zones(bdev, sector, nr_zones,
dm_report_zones_cb, args);
}
EXPORT_SYMBOL_GPL(dm_report_zones);
bool dm_is_zone_write(struct mapped_device *md, struct bio *bio)
{
struct request_queue *q = md->queue;
if (!blk_queue_is_zoned(q))
return false;
switch (bio_op(bio)) {
case REQ_OP_WRITE_ZEROES:
case REQ_OP_WRITE_SAME:
case REQ_OP_WRITE:
return !op_is_flush(bio->bi_opf) && bio_sectors(bio);
default:
return false;
}
}
void dm_cleanup_zoned_dev(struct mapped_device *md)
{
struct request_queue *q = md->queue;
if (q) {
kfree(q->conv_zones_bitmap);
q->conv_zones_bitmap = NULL;
kfree(q->seq_zones_wlock);
q->seq_zones_wlock = NULL;
}
kvfree(md->zwp_offset);
md->zwp_offset = NULL;
md->nr_zones = 0;
}
static unsigned int dm_get_zone_wp_offset(struct blk_zone *zone)
{
switch (zone->cond) {
case BLK_ZONE_COND_IMP_OPEN:
case BLK_ZONE_COND_EXP_OPEN:
case BLK_ZONE_COND_CLOSED:
return zone->wp - zone->start;
case BLK_ZONE_COND_FULL:
return zone->len;
case BLK_ZONE_COND_EMPTY:
case BLK_ZONE_COND_NOT_WP:
case BLK_ZONE_COND_OFFLINE:
case BLK_ZONE_COND_READONLY:
default:
/*
* Conventional, offline and read-only zones do not have a valid
* write pointer. Use 0 as for an empty zone.
*/
return 0;
}
}
static int dm_zone_revalidate_cb(struct blk_zone *zone, unsigned int idx,
void *data)
{
struct mapped_device *md = data;
struct request_queue *q = md->queue;
switch (zone->type) {
case BLK_ZONE_TYPE_CONVENTIONAL:
if (!q->conv_zones_bitmap) {
q->conv_zones_bitmap =
kcalloc(BITS_TO_LONGS(q->nr_zones),
sizeof(unsigned long), GFP_NOIO);
if (!q->conv_zones_bitmap)
return -ENOMEM;
}
set_bit(idx, q->conv_zones_bitmap);
break;
case BLK_ZONE_TYPE_SEQWRITE_REQ:
case BLK_ZONE_TYPE_SEQWRITE_PREF:
if (!q->seq_zones_wlock) {
q->seq_zones_wlock =
kcalloc(BITS_TO_LONGS(q->nr_zones),
sizeof(unsigned long), GFP_NOIO);
if (!q->seq_zones_wlock)
return -ENOMEM;
}
if (!md->zwp_offset) {
md->zwp_offset =
kvcalloc(q->nr_zones, sizeof(unsigned int),
GFP_KERNEL);
if (!md->zwp_offset)
return -ENOMEM;
}
md->zwp_offset[idx] = dm_get_zone_wp_offset(zone);
break;
default:
DMERR("Invalid zone type 0x%x at sectors %llu",
(int)zone->type, zone->start);
return -ENODEV;
}
return 0;
}
/*
* Revalidate the zones of a mapped device to initialize resource necessary
* for zone append emulation. Note that we cannot simply use the block layer
* blk_revalidate_disk_zones() function here as the mapped device is suspended
* (this is called from __bind() context).
*/
static int dm_revalidate_zones(struct mapped_device *md, struct dm_table *t)
{
struct request_queue *q = md->queue;
unsigned int noio_flag;
int ret;
/*
* Check if something changed. If yes, cleanup the current resources
* and reallocate everything.
*/
if (!q->nr_zones || q->nr_zones != md->nr_zones)
dm_cleanup_zoned_dev(md);
if (md->nr_zones)
return 0;
/*
* Scan all zones to initialize everything. Ensure that all vmalloc
* operations in this context are done as if GFP_NOIO was specified.
*/
noio_flag = memalloc_noio_save();
ret = dm_blk_do_report_zones(md, t, 0, q->nr_zones,
dm_zone_revalidate_cb, md);
memalloc_noio_restore(noio_flag);
if (ret < 0)
goto err;
if (ret != q->nr_zones) {
ret = -EIO;
goto err;
}
md->nr_zones = q->nr_zones;
return 0;
err:
DMERR("Revalidate zones failed %d", ret);
dm_cleanup_zoned_dev(md);
return ret;
}
static int device_not_zone_append_capable(struct dm_target *ti,
struct dm_dev *dev, sector_t start,
sector_t len, void *data)
{
return !blk_queue_is_zoned(bdev_get_queue(dev->bdev));
}
static bool dm_table_supports_zone_append(struct dm_table *t)
{
struct dm_target *ti;
unsigned int i;
for (i = 0; i < dm_table_get_num_targets(t); i++) {
ti = dm_table_get_target(t, i);
if (ti->emulate_zone_append)
return false;
if (!ti->type->iterate_devices ||
ti->type->iterate_devices(ti, device_not_zone_append_capable, NULL))
return false;
}
return true;
}
int dm_set_zones_restrictions(struct dm_table *t, struct request_queue *q)
{
struct mapped_device *md = t->md;
/*
* For a zoned target, the number of zones should be updated for the
* correct value to be exposed in sysfs queue/nr_zones.
*/
WARN_ON_ONCE(queue_is_mq(q));
q->nr_zones = blkdev_nr_zones(md->disk);
/* Check if zone append is natively supported */
if (dm_table_supports_zone_append(t)) {
clear_bit(DMF_EMULATE_ZONE_APPEND, &md->flags);
dm_cleanup_zoned_dev(md);
return 0;
}
/*
* Mark the mapped device as needing zone append emulation and
* initialize the emulation resources once the capacity is set.
*/
set_bit(DMF_EMULATE_ZONE_APPEND, &md->flags);
if (!get_capacity(md->disk))
return 0;
return dm_revalidate_zones(md, t);
}
static int dm_update_zone_wp_offset_cb(struct blk_zone *zone, unsigned int idx,
void *data)
{
unsigned int *wp_offset = data;
*wp_offset = dm_get_zone_wp_offset(zone);
return 0;
}
static int dm_update_zone_wp_offset(struct mapped_device *md, unsigned int zno,
unsigned int *wp_ofst)
{
sector_t sector = zno * blk_queue_zone_sectors(md->queue);
unsigned int noio_flag;
struct dm_table *t;
int srcu_idx, ret;
t = dm_get_live_table(md, &srcu_idx);
if (!t)
return -EIO;
/*
* Ensure that all memory allocations in this context are done as if
* GFP_NOIO was specified.
*/
noio_flag = memalloc_noio_save();
ret = dm_blk_do_report_zones(md, t, sector, 1,
dm_update_zone_wp_offset_cb, wp_ofst);
memalloc_noio_restore(noio_flag);
dm_put_live_table(md, srcu_idx);
if (ret != 1)
return -EIO;
return 0;
}
/*
* First phase of BIO mapping for targets with zone append emulation:
* check all BIO that change a zone writer pointer and change zone
* append operations into regular write operations.
*/
static bool dm_zone_map_bio_begin(struct mapped_device *md,
struct bio *orig_bio, struct bio *clone)
{
sector_t zsectors = blk_queue_zone_sectors(md->queue);
unsigned int zno = bio_zone_no(orig_bio);
unsigned int zwp_offset = READ_ONCE(md->zwp_offset[zno]);
/*
* If the target zone is in an error state, recover by inspecting the
* zone to get its current write pointer position. Note that since the
* target zone is already locked, a BIO issuing context should never
* see the zone write in the DM_ZONE_UPDATING_WP_OFST state.
*/
if (zwp_offset == DM_ZONE_INVALID_WP_OFST) {
if (dm_update_zone_wp_offset(md, zno, &zwp_offset))
return false;
WRITE_ONCE(md->zwp_offset[zno], zwp_offset);
}
switch (bio_op(orig_bio)) {
case REQ_OP_ZONE_RESET:
case REQ_OP_ZONE_FINISH:
return true;
case REQ_OP_WRITE_ZEROES:
case REQ_OP_WRITE_SAME:
case REQ_OP_WRITE:
/* Writes must be aligned to the zone write pointer */
if ((clone->bi_iter.bi_sector & (zsectors - 1)) != zwp_offset)
return false;
break;
case REQ_OP_ZONE_APPEND:
/*
* Change zone append operations into a non-mergeable regular
* writes directed at the current write pointer position of the
* target zone.
*/
clone->bi_opf = REQ_OP_WRITE | REQ_NOMERGE |
(orig_bio->bi_opf & (~REQ_OP_MASK));
clone->bi_iter.bi_sector =
orig_bio->bi_iter.bi_sector + zwp_offset;
break;
default:
DMWARN_LIMIT("Invalid BIO operation");
return false;
}
/* Cannot write to a full zone */
if (zwp_offset >= zsectors)
return false;
return true;
}
/*
* Second phase of BIO mapping for targets with zone append emulation:
* update the zone write pointer offset array to account for the additional
* data written to a zone. Note that at this point, the remapped clone BIO
* may already have completed, so we do not touch it.
*/
static blk_status_t dm_zone_map_bio_end(struct mapped_device *md,
struct bio *orig_bio,
unsigned int nr_sectors)
{
unsigned int zno = bio_zone_no(orig_bio);
unsigned int zwp_offset = READ_ONCE(md->zwp_offset[zno]);
/* The clone BIO may already have been completed and failed */
if (zwp_offset == DM_ZONE_INVALID_WP_OFST)
return BLK_STS_IOERR;
/* Update the zone wp offset */
switch (bio_op(orig_bio)) {
case REQ_OP_ZONE_RESET:
WRITE_ONCE(md->zwp_offset[zno], 0);
return BLK_STS_OK;
case REQ_OP_ZONE_FINISH:
WRITE_ONCE(md->zwp_offset[zno],
blk_queue_zone_sectors(md->queue));
return BLK_STS_OK;
case REQ_OP_WRITE_ZEROES:
case REQ_OP_WRITE_SAME:
case REQ_OP_WRITE:
WRITE_ONCE(md->zwp_offset[zno], zwp_offset + nr_sectors);
return BLK_STS_OK;
case REQ_OP_ZONE_APPEND:
/*
* Check that the target did not truncate the write operation
* emulating a zone append.
*/
if (nr_sectors != bio_sectors(orig_bio)) {
DMWARN_LIMIT("Truncated write for zone append");
return BLK_STS_IOERR;
}
WRITE_ONCE(md->zwp_offset[zno], zwp_offset + nr_sectors);
return BLK_STS_OK;
default:
DMWARN_LIMIT("Invalid BIO operation");
return BLK_STS_IOERR;
}
}
static inline void dm_zone_lock(struct request_queue *q,
unsigned int zno, struct bio *clone)
{
if (WARN_ON_ONCE(bio_flagged(clone, BIO_ZONE_WRITE_LOCKED)))
return;
wait_on_bit_lock_io(q->seq_zones_wlock, zno, TASK_UNINTERRUPTIBLE);
bio_set_flag(clone, BIO_ZONE_WRITE_LOCKED);
}
static inline void dm_zone_unlock(struct request_queue *q,
unsigned int zno, struct bio *clone)
{
if (!bio_flagged(clone, BIO_ZONE_WRITE_LOCKED))
return;
WARN_ON_ONCE(!test_bit(zno, q->seq_zones_wlock));
clear_bit_unlock(zno, q->seq_zones_wlock);
smp_mb__after_atomic();
wake_up_bit(q->seq_zones_wlock, zno);
bio_clear_flag(clone, BIO_ZONE_WRITE_LOCKED);
}
static bool dm_need_zone_wp_tracking(struct bio *orig_bio)
{
/*
* Special processing is not needed for operations that do not need the
* zone write lock, that is, all operations that target conventional
* zones and all operations that do not modify directly a sequential
* zone write pointer.
*/
if (op_is_flush(orig_bio->bi_opf) && !bio_sectors(orig_bio))
return false;
switch (bio_op(orig_bio)) {
case REQ_OP_WRITE_ZEROES:
case REQ_OP_WRITE_SAME:
case REQ_OP_WRITE:
case REQ_OP_ZONE_RESET:
case REQ_OP_ZONE_FINISH:
case REQ_OP_ZONE_APPEND:
return bio_zone_is_seq(orig_bio);
default:
return false;
}
}
/*
* Special IO mapping for targets needing zone append emulation.
*/
int dm_zone_map_bio(struct dm_target_io *tio)
{
struct dm_io *io = tio->io;
struct dm_target *ti = tio->ti;
struct mapped_device *md = io->md;
struct request_queue *q = md->queue;
struct bio *orig_bio = io->orig_bio;
struct bio *clone = &tio->clone;
unsigned int zno;
blk_status_t sts;
int r;
/*
* IOs that do not change a zone write pointer do not need
* any additional special processing.
*/
if (!dm_need_zone_wp_tracking(orig_bio))
return ti->type->map(ti, clone);
/* Lock the target zone */
zno = bio_zone_no(orig_bio);
dm_zone_lock(q, zno, clone);
/*
* Check that the bio and the target zone write pointer offset are
* both valid, and if the bio is a zone append, remap it to a write.
*/
if (!dm_zone_map_bio_begin(md, orig_bio, clone)) {
dm_zone_unlock(q, zno, clone);
return DM_MAPIO_KILL;
}
/*
* The target map function may issue and complete the IO quickly.
* Take an extra reference on the IO to make sure it does disappear
* until we run dm_zone_map_bio_end().
*/
dm_io_inc_pending(io);
/* Let the target do its work */
r = ti->type->map(ti, clone);
switch (r) {
case DM_MAPIO_SUBMITTED:
/*
* The target submitted the clone BIO. The target zone will
* be unlocked on completion of the clone.
*/
sts = dm_zone_map_bio_end(md, orig_bio, *tio->len_ptr);
break;
case DM_MAPIO_REMAPPED:
/*
* The target only remapped the clone BIO. In case of error,
* unlock the target zone here as the clone will not be
* submitted.
*/
sts = dm_zone_map_bio_end(md, orig_bio, *tio->len_ptr);
if (sts != BLK_STS_OK)
dm_zone_unlock(q, zno, clone);
break;
case DM_MAPIO_REQUEUE:
case DM_MAPIO_KILL:
default:
dm_zone_unlock(q, zno, clone);
sts = BLK_STS_IOERR;
break;
}
/* Drop the extra reference on the IO */
dm_io_dec_pending(io, sts);
if (sts != BLK_STS_OK)
return DM_MAPIO_KILL;
return r;
}
/*
* IO completion callback called from clone_endio().
*/
void dm_zone_endio(struct dm_io *io, struct bio *clone)
{
struct mapped_device *md = io->md;
struct request_queue *q = md->queue;
struct bio *orig_bio = io->orig_bio;
unsigned int zwp_offset;
unsigned int zno;
/*
* For targets that do not emulate zone append, we only need to
* handle native zone-append bios.
*/
if (!dm_emulate_zone_append(md)) {
/*
* Get the offset within the zone of the written sector
* and add that to the original bio sector position.
*/
if (clone->bi_status == BLK_STS_OK &&
bio_op(clone) == REQ_OP_ZONE_APPEND) {
sector_t mask = (sector_t)blk_queue_zone_sectors(q) - 1;
orig_bio->bi_iter.bi_sector +=
clone->bi_iter.bi_sector & mask;
}
return;
}
/*
* For targets that do emulate zone append, if the clone BIO does not
* own the target zone write lock, we have nothing to do.
*/
if (!bio_flagged(clone, BIO_ZONE_WRITE_LOCKED))
return;
zno = bio_zone_no(orig_bio);
if (clone->bi_status != BLK_STS_OK) {
/*
* BIOs that modify a zone write pointer may leave the zone
* in an unknown state in case of failure (e.g. the write
* pointer was only partially advanced). In this case, set
* the target zone write pointer as invalid unless it is
* already being updated.
*/
WRITE_ONCE(md->zwp_offset[zno], DM_ZONE_INVALID_WP_OFST);
} else if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
/*
* Get the written sector for zone append operation that were
* emulated using regular write operations.
*/
zwp_offset = READ_ONCE(md->zwp_offset[zno]);
if (WARN_ON_ONCE(zwp_offset < bio_sectors(orig_bio)))
WRITE_ONCE(md->zwp_offset[zno],
DM_ZONE_INVALID_WP_OFST);
else
orig_bio->bi_iter.bi_sector +=
zwp_offset - bio_sectors(orig_bio);
}
dm_zone_unlock(q, zno, clone);
}

View File

@ -1390,6 +1390,13 @@ static int dmz_init_zone(struct blk_zone *blkz, unsigned int num, void *data)
return -ENXIO;
}
/*
* Devices that have zones with a capacity smaller than the zone size
* (e.g. NVMe zoned namespaces) are not supported.
*/
if (blkz->capacity != blkz->len)
return -ENXIO;
switch (blkz->type) {
case BLK_ZONE_TYPE_CONVENTIONAL:
set_bit(DMZ_RND, &zone->flags);

View File

@ -134,7 +134,7 @@ static int dmz_reclaim_copy(struct dmz_reclaim *zrc,
dst_zone_block = dmz_start_block(zmd, dst_zone);
if (dmz_is_seq(dst_zone))
set_bit(DM_KCOPYD_WRITE_SEQ, &flags);
flags |= BIT(DM_KCOPYD_WRITE_SEQ);
while (block < end_block) {
if (src_zone->dev->flags & DMZ_BDEV_DYING)

View File

@ -74,38 +74,6 @@ struct clone_info {
unsigned sector_count;
};
/*
* One of these is allocated per clone bio.
*/
#define DM_TIO_MAGIC 7282014
struct dm_target_io {
unsigned magic;
struct dm_io *io;
struct dm_target *ti;
unsigned target_bio_nr;
unsigned *len_ptr;
bool inside_dm_io;
struct bio clone;
};
/*
* One of these is allocated per original bio.
* It contains the first clone used for that original.
*/
#define DM_IO_MAGIC 5191977
struct dm_io {
unsigned magic;
struct mapped_device *md;
blk_status_t status;
atomic_t io_count;
struct bio *orig_bio;
unsigned long start_time;
spinlock_t endio_lock;
struct dm_stats_aux stats_aux;
/* last member of dm_target_io is 'struct bio' */
struct dm_target_io tio;
};
#define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
#define DM_IO_BIO_OFFSET \
(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
@ -137,19 +105,6 @@ EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
#define MINOR_ALLOCED ((void *)-1)
/*
* Bits for the md->flags field.
*/
#define DMF_BLOCK_IO_FOR_SUSPEND 0
#define DMF_SUSPENDED 1
#define DMF_FROZEN 2
#define DMF_FREEING 3
#define DMF_DELETING 4
#define DMF_NOFLUSH_SUSPENDING 5
#define DMF_DEFERRED_REMOVE 6
#define DMF_SUSPENDED_INTERNALLY 7
#define DMF_POST_SUSPENDING 8
#define DM_NUMA_NODE NUMA_NO_NODE
static int dm_numa_node = DM_NUMA_NODE;
@ -444,84 +399,6 @@ static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
return dm_get_geometry(md, geo);
}
#ifdef CONFIG_BLK_DEV_ZONED
int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
{
struct dm_report_zones_args *args = data;
sector_t sector_diff = args->tgt->begin - args->start;
/*
* Ignore zones beyond the target range.
*/
if (zone->start >= args->start + args->tgt->len)
return 0;
/*
* Remap the start sector and write pointer position of the zone
* to match its position in the target range.
*/
zone->start += sector_diff;
if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
if (zone->cond == BLK_ZONE_COND_FULL)
zone->wp = zone->start + zone->len;
else if (zone->cond == BLK_ZONE_COND_EMPTY)
zone->wp = zone->start;
else
zone->wp += sector_diff;
}
args->next_sector = zone->start + zone->len;
return args->orig_cb(zone, args->zone_idx++, args->orig_data);
}
EXPORT_SYMBOL_GPL(dm_report_zones_cb);
static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data)
{
struct mapped_device *md = disk->private_data;
struct dm_table *map;
int srcu_idx, ret;
struct dm_report_zones_args args = {
.next_sector = sector,
.orig_data = data,
.orig_cb = cb,
};
if (dm_suspended_md(md))
return -EAGAIN;
map = dm_get_live_table(md, &srcu_idx);
if (!map) {
ret = -EIO;
goto out;
}
do {
struct dm_target *tgt;
tgt = dm_table_find_target(map, args.next_sector);
if (WARN_ON_ONCE(!tgt->type->report_zones)) {
ret = -EIO;
goto out;
}
args.tgt = tgt;
ret = tgt->type->report_zones(tgt, &args,
nr_zones - args.zone_idx);
if (ret < 0)
goto out;
} while (args.zone_idx < nr_zones &&
args.next_sector < get_capacity(disk));
ret = args.zone_idx;
out:
dm_put_live_table(md, srcu_idx);
return ret;
}
#else
#define dm_blk_report_zones NULL
#endif /* CONFIG_BLK_DEV_ZONED */
static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
struct block_device **bdev)
{
@ -903,7 +780,7 @@ static int __noflush_suspending(struct mapped_device *md)
* Decrements the number of outstanding ios that a bio has been
* cloned into, completing the original io if necc.
*/
static void dec_pending(struct dm_io *io, blk_status_t error)
void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
{
unsigned long flags;
blk_status_t io_error;
@ -919,22 +796,27 @@ static void dec_pending(struct dm_io *io, blk_status_t error)
}
if (atomic_dec_and_test(&io->io_count)) {
bio = io->orig_bio;
if (io->status == BLK_STS_DM_REQUEUE) {
/*
* Target requested pushing back the I/O.
*/
spin_lock_irqsave(&md->deferred_lock, flags);
if (__noflush_suspending(md))
if (__noflush_suspending(md) &&
!WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
/* NOTE early return due to BLK_STS_DM_REQUEUE below */
bio_list_add_head(&md->deferred, io->orig_bio);
else
/* noflush suspend was interrupted. */
bio_list_add_head(&md->deferred, bio);
} else {
/*
* noflush suspend was interrupted or this is
* a write to a zoned target.
*/
io->status = BLK_STS_IOERR;
}
spin_unlock_irqrestore(&md->deferred_lock, flags);
}
io_error = io->status;
bio = io->orig_bio;
end_io_acct(io);
free_io(md, io);
@ -994,7 +876,6 @@ static void clone_endio(struct bio *bio)
struct dm_io *io = tio->io;
struct mapped_device *md = tio->io->md;
dm_endio_fn endio = tio->ti->type->end_io;
struct bio *orig_bio = io->orig_bio;
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
if (unlikely(error == BLK_STS_TARGET)) {
@ -1009,23 +890,22 @@ static void clone_endio(struct bio *bio)
disable_write_zeroes(md);
}
/*
* For zone-append bios get offset in zone of the written
* sector and add that to the original bio sector pos.
*/
if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
sector_t written_sector = bio->bi_iter.bi_sector;
struct request_queue *q = orig_bio->bi_bdev->bd_disk->queue;
u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
orig_bio->bi_iter.bi_sector += written_sector & mask;
}
if (blk_queue_is_zoned(q))
dm_zone_endio(io, bio);
if (endio) {
int r = endio(tio->ti, bio, &error);
switch (r) {
case DM_ENDIO_REQUEUE:
error = BLK_STS_DM_REQUEUE;
/*
* Requeuing writes to a sequential zone of a zoned
* target will break the sequential write pattern:
* fail such IO.
*/
if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
error = BLK_STS_IOERR;
else
error = BLK_STS_DM_REQUEUE;
fallthrough;
case DM_ENDIO_DONE:
break;
@ -1044,7 +924,7 @@ static void clone_endio(struct bio *bio)
}
free_tio(tio);
dec_pending(io, error);
dm_io_dec_pending(io, error);
}
/*
@ -1237,8 +1117,8 @@ static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
/*
* A target may call dm_accept_partial_bio only from the map routine. It is
* allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
* REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
* allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
* operations and REQ_OP_ZONE_APPEND (zone append writes).
*
* dm_accept_partial_bio informs the dm that the target only wants to process
* additional n_sectors sectors of the bio and the rest of the data should be
@ -1268,9 +1148,13 @@ void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
{
struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
BUG_ON(bio->bi_opf & REQ_PREFLUSH);
BUG_ON(op_is_zone_mgmt(bio_op(bio)));
BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
BUG_ON(bi_size > *tio->len_ptr);
BUG_ON(n_sectors > bi_size);
*tio->len_ptr -= bi_size - n_sectors;
bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
}
@ -1308,7 +1192,7 @@ static blk_qc_t __map_bio(struct dm_target_io *tio)
* anything, the target has assumed ownership of
* this io.
*/
atomic_inc(&io->io_count);
dm_io_inc_pending(io);
sector = clone->bi_iter.bi_sector;
if (unlikely(swap_bios_limit(ti, clone))) {
@ -1319,7 +1203,16 @@ static blk_qc_t __map_bio(struct dm_target_io *tio)
down(&md->swap_bios_semaphore);
}
r = ti->type->map(ti, clone);
/*
* Check if the IO needs a special mapping due to zone append emulation
* on zoned target. In this case, dm_zone_map_bio() calls the target
* map operation.
*/
if (dm_emulate_zone_append(io->md))
r = dm_zone_map_bio(tio);
else
r = ti->type->map(ti, clone);
switch (r) {
case DM_MAPIO_SUBMITTED:
break;
@ -1334,7 +1227,7 @@ static blk_qc_t __map_bio(struct dm_target_io *tio)
up(&md->swap_bios_semaphore);
}
free_tio(tio);
dec_pending(io, BLK_STS_IOERR);
dm_io_dec_pending(io, BLK_STS_IOERR);
break;
case DM_MAPIO_REQUEUE:
if (unlikely(swap_bios_limit(ti, clone))) {
@ -1342,7 +1235,7 @@ static blk_qc_t __map_bio(struct dm_target_io *tio)
up(&md->swap_bios_semaphore);
}
free_tio(tio);
dec_pending(io, BLK_STS_DM_REQUEUE);
dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
break;
default:
DMWARN("unimplemented target map return value: %d", r);
@ -1631,7 +1524,7 @@ static blk_qc_t __split_and_process_bio(struct mapped_device *md,
if (bio->bi_opf & REQ_PREFLUSH) {
error = __send_empty_flush(&ci);
/* dec_pending submits any data associated with flush */
/* dm_io_dec_pending submits any data associated with flush */
} else if (op_is_zone_mgmt(bio_op(bio))) {
ci.bio = bio;
ci.sector_count = 0;
@ -1672,7 +1565,7 @@ static blk_qc_t __split_and_process_bio(struct mapped_device *md,
}
/* drop the extra reference count */
dec_pending(ci.io, errno_to_blk_status(error));
dm_io_dec_pending(ci.io, errno_to_blk_status(error));
return ret;
}
@ -1817,6 +1710,7 @@ static void cleanup_mapped_device(struct mapped_device *md)
mutex_destroy(&md->swap_bios_lock);
dm_mq_cleanup_mapped_device(md);
dm_cleanup_zoned_dev(md);
}
/*
@ -2060,11 +1954,16 @@ static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
goto out;
}
ret = dm_table_set_restrictions(t, q, limits);
if (ret) {
old_map = ERR_PTR(ret);
goto out;
}
old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
rcu_assign_pointer(md->map, (void *)t);
md->immutable_target_type = dm_table_get_immutable_target_type(t);
dm_table_set_restrictions(t, q, limits);
if (old_map)
dm_sync_table(md);
@ -2183,7 +2082,10 @@ int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
DMERR("Cannot calculate initial queue limits");
return r;
}
dm_table_set_restrictions(t, md->queue, &limits);
r = dm_table_set_restrictions(t, md->queue, &limits);
if (r)
return r;
blk_register_queue(md->disk);
return 0;

View File

@ -45,6 +45,8 @@ struct dm_dev_internal {
struct dm_table;
struct dm_md_mempools;
struct dm_target_io;
struct dm_io;
/*-----------------------------------------------------------------
* Internal table functions.
@ -56,8 +58,8 @@ struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector);
bool dm_table_has_no_data_devices(struct dm_table *table);
int dm_calculate_queue_limits(struct dm_table *table,
struct queue_limits *limits);
void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
struct queue_limits *limits);
int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
struct queue_limits *limits);
struct list_head *dm_table_get_devices(struct dm_table *t);
void dm_table_presuspend_targets(struct dm_table *t);
void dm_table_presuspend_undo_targets(struct dm_table *t);
@ -100,6 +102,30 @@ int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t);
*/
#define dm_target_hybrid(t) (dm_target_bio_based(t) && dm_target_request_based(t))
/*
* Zoned targets related functions.
*/
int dm_set_zones_restrictions(struct dm_table *t, struct request_queue *q);
void dm_zone_endio(struct dm_io *io, struct bio *clone);
#ifdef CONFIG_BLK_DEV_ZONED
void dm_cleanup_zoned_dev(struct mapped_device *md);
int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data);
bool dm_is_zone_write(struct mapped_device *md, struct bio *bio);
int dm_zone_map_bio(struct dm_target_io *io);
#else
static inline void dm_cleanup_zoned_dev(struct mapped_device *md) {}
#define dm_blk_report_zones NULL
static inline bool dm_is_zone_write(struct mapped_device *md, struct bio *bio)
{
return false;
}
static inline int dm_zone_map_bio(struct dm_target_io *tio)
{
return DM_MAPIO_KILL;
}
#endif
/*-----------------------------------------------------------------
* A registry of target types.
*---------------------------------------------------------------*/

View File

@ -108,12 +108,10 @@ static void *element_at(struct dm_array_info *info, struct array_block *ab,
* in an array block.
*/
static void on_entries(struct dm_array_info *info, struct array_block *ab,
void (*fn)(void *, const void *))
void (*fn)(void *, const void *, unsigned))
{
unsigned i, nr_entries = le32_to_cpu(ab->nr_entries);
for (i = 0; i < nr_entries; i++)
fn(info->value_type.context, element_at(info, ab, i));
unsigned nr_entries = le32_to_cpu(ab->nr_entries);
fn(info->value_type.context, element_at(info, ab, 0), nr_entries);
}
/*
@ -175,19 +173,18 @@ static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
const void *value, unsigned new_nr)
{
unsigned i;
uint32_t nr_entries;
uint32_t nr_entries, delta, i;
struct dm_btree_value_type *vt = &info->value_type;
BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
nr_entries = le32_to_cpu(ab->nr_entries);
for (i = nr_entries; i < new_nr; i++) {
if (vt->inc)
vt->inc(vt->context, value);
delta = new_nr - nr_entries;
if (vt->inc)
vt->inc(vt->context, value, delta);
for (i = nr_entries; i < new_nr; i++)
memcpy(element_at(info, ab, i), value, vt->size);
}
ab->nr_entries = cpu_to_le32(new_nr);
}
@ -199,17 +196,16 @@ static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
unsigned new_nr)
{
unsigned i;
uint32_t nr_entries;
uint32_t nr_entries, delta;
struct dm_btree_value_type *vt = &info->value_type;
BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
nr_entries = le32_to_cpu(ab->nr_entries);
for (i = nr_entries; i > new_nr; i--)
if (vt->dec)
vt->dec(vt->context, element_at(info, ab, i - 1));
delta = nr_entries - new_nr;
if (vt->dec)
vt->dec(vt->context, element_at(info, ab, new_nr - 1), delta);
ab->nr_entries = cpu_to_le32(new_nr);
}
@ -573,16 +569,17 @@ static int grow(struct resize *resize)
* These are the value_type functions for the btree elements, which point
* to array blocks.
*/
static void block_inc(void *context, const void *value)
static void block_inc(void *context, const void *value, unsigned count)
{
__le64 block_le;
const __le64 *block_le = value;
struct dm_array_info *info = context;
unsigned i;
memcpy(&block_le, value, sizeof(block_le));
dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le));
for (i = 0; i < count; i++, block_le++)
dm_tm_inc(info->btree_info.tm, le64_to_cpu(*block_le));
}
static void block_dec(void *context, const void *value)
static void __block_dec(void *context, const void *value)
{
int r;
uint64_t b;
@ -621,6 +618,13 @@ static void block_dec(void *context, const void *value)
dm_tm_dec(info->btree_info.tm, b);
}
static void block_dec(void *context, const void *value, unsigned count)
{
unsigned i;
for (i = 0; i < count; i++, value += sizeof(__le64))
__block_dec(context, value);
}
static int block_equal(void *context, const void *value1, const void *value2)
{
return !memcmp(value1, value2, sizeof(__le64));
@ -711,7 +715,7 @@ static int populate_ablock_with_values(struct dm_array_info *info, struct array_
return r;
if (vt->inc)
vt->inc(vt->context, element_at(info, ab, i));
vt->inc(vt->context, element_at(info, ab, i), 1);
}
ab->nr_entries = cpu_to_le32(new_nr);
@ -822,9 +826,9 @@ static int array_set_value(struct dm_array_info *info, dm_block_t root,
old_value = element_at(info, ab, entry);
if (vt->dec &&
(!vt->equal || !vt->equal(vt->context, old_value, value))) {
vt->dec(vt->context, old_value);
vt->dec(vt->context, old_value, 1);
if (vt->inc)
vt->inc(vt->context, value);
vt->inc(vt->context, value, 1);
}
memcpy(old_value, value, info->value_type.size);

View File

@ -144,4 +144,17 @@ extern struct dm_block_validator btree_node_validator;
extern void init_le64_type(struct dm_transaction_manager *tm,
struct dm_btree_value_type *vt);
/*
* This returns a shadowed btree leaf that you may modify. In practise
* this means overwrites only, since an insert could cause a node to
* be split. Useful if you need access to the old value to calculate the
* new one.
*
* This only works with single level btrees. The given key must be present in
* the tree, otherwise -EINVAL will be returned.
*/
int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
uint64_t key, int *index,
dm_block_t *new_root, struct dm_block **leaf);
#endif /* DM_BTREE_INTERNAL_H */

View File

@ -544,12 +544,13 @@ int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
if (info->value_type.dec)
info->value_type.dec(info->value_type.context,
value_ptr(n, index));
value_ptr(n, index), 1);
delete_at(n, index);
}
*new_root = shadow_root(&spine);
if (!r)
*new_root = shadow_root(&spine);
exit_shadow_spine(&spine);
return r;
@ -653,7 +654,7 @@ static int remove_one(struct dm_btree_info *info, dm_block_t root,
if (k >= keys[last_level] && k < end_key) {
if (info->value_type.dec)
info->value_type.dec(info->value_type.context,
value_ptr(n, index));
value_ptr(n, index), 1);
delete_at(n, index);
keys[last_level] = k + 1ull;

View File

@ -236,22 +236,14 @@ dm_block_t shadow_root(struct shadow_spine *s)
return s->root;
}
static void le64_inc(void *context, const void *value_le)
static void le64_inc(void *context, const void *value_le, unsigned count)
{
struct dm_transaction_manager *tm = context;
__le64 v_le;
memcpy(&v_le, value_le, sizeof(v_le));
dm_tm_inc(tm, le64_to_cpu(v_le));
dm_tm_with_runs(context, value_le, count, dm_tm_inc_range);
}
static void le64_dec(void *context, const void *value_le)
static void le64_dec(void *context, const void *value_le, unsigned count)
{
struct dm_transaction_manager *tm = context;
__le64 v_le;
memcpy(&v_le, value_le, sizeof(v_le));
dm_tm_dec(tm, le64_to_cpu(v_le));
dm_tm_with_runs(context, value_le, count, dm_tm_dec_range);
}
static int le64_equal(void *context, const void *value1_le, const void *value2_le)

View File

@ -71,15 +71,13 @@ static int upper_bound(struct btree_node *n, uint64_t key)
void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
struct dm_btree_value_type *vt)
{
unsigned i;
uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
for (i = 0; i < nr_entries; i++)
dm_tm_inc(tm, value64(n, i));
dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
else if (vt->inc)
for (i = 0; i < nr_entries; i++)
vt->inc(vt->context, value_ptr(n, i));
vt->inc(vt->context, value_ptr(n, 0), nr_entries);
}
static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
@ -318,13 +316,9 @@ int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
goto out;
} else {
if (info->value_type.dec) {
unsigned i;
for (i = 0; i < f->nr_children; i++)
info->value_type.dec(info->value_type.context,
value_ptr(f->n, i));
}
if (info->value_type.dec)
info->value_type.dec(info->value_type.context,
value_ptr(f->n, 0), f->nr_children);
pop_frame(s);
}
}
@ -500,6 +494,122 @@ out:
EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
/*----------------------------------------------------------------*/
/*
* Copies entries from one region of a btree node to another. The regions
* must not overlap.
*/
static void copy_entries(struct btree_node *dest, unsigned dest_offset,
struct btree_node *src, unsigned src_offset,
unsigned count)
{
size_t value_size = le32_to_cpu(dest->header.value_size);
memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
}
/*
* Moves entries from one region fo a btree node to another. The regions
* may overlap.
*/
static void move_entries(struct btree_node *dest, unsigned dest_offset,
struct btree_node *src, unsigned src_offset,
unsigned count)
{
size_t value_size = le32_to_cpu(dest->header.value_size);
memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
}
/*
* Erases the first 'count' entries of a btree node, shifting following
* entries down into their place.
*/
static void shift_down(struct btree_node *n, unsigned count)
{
move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
}
/*
* Moves entries in a btree node up 'count' places, making space for
* new entries at the start of the node.
*/
static void shift_up(struct btree_node *n, unsigned count)
{
move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
}
/*
* Redistributes entries between two btree nodes to make them
* have similar numbers of entries.
*/
static void redistribute2(struct btree_node *left, struct btree_node *right)
{
unsigned nr_left = le32_to_cpu(left->header.nr_entries);
unsigned nr_right = le32_to_cpu(right->header.nr_entries);
unsigned total = nr_left + nr_right;
unsigned target_left = total / 2;
unsigned target_right = total - target_left;
if (nr_left < target_left) {
unsigned delta = target_left - nr_left;
copy_entries(left, nr_left, right, 0, delta);
shift_down(right, delta);
} else if (nr_left > target_left) {
unsigned delta = nr_left - target_left;
if (nr_right)
shift_up(right, delta);
copy_entries(right, 0, left, target_left, delta);
}
left->header.nr_entries = cpu_to_le32(target_left);
right->header.nr_entries = cpu_to_le32(target_right);
}
/*
* Redistribute entries between three nodes. Assumes the central
* node is empty.
*/
static void redistribute3(struct btree_node *left, struct btree_node *center,
struct btree_node *right)
{
unsigned nr_left = le32_to_cpu(left->header.nr_entries);
unsigned nr_center = le32_to_cpu(center->header.nr_entries);
unsigned nr_right = le32_to_cpu(right->header.nr_entries);
unsigned total, target_left, target_center, target_right;
BUG_ON(nr_center);
total = nr_left + nr_right;
target_left = total / 3;
target_center = (total - target_left) / 2;
target_right = (total - target_left - target_center);
if (nr_left < target_left) {
unsigned left_short = target_left - nr_left;
copy_entries(left, nr_left, right, 0, left_short);
copy_entries(center, 0, right, left_short, target_center);
shift_down(right, nr_right - target_right);
} else if (nr_left < (target_left + target_center)) {
unsigned left_to_center = nr_left - target_left;
copy_entries(center, 0, left, target_left, left_to_center);
copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
shift_down(right, nr_right - target_right);
} else {
unsigned right_short = target_right - nr_right;
shift_up(right, right_short);
copy_entries(right, 0, left, nr_left - right_short, right_short);
copy_entries(center, 0, left, target_left, nr_left - target_left);
}
left->header.nr_entries = cpu_to_le32(target_left);
center->header.nr_entries = cpu_to_le32(target_center);
right->header.nr_entries = cpu_to_le32(target_right);
}
/*
* Splits a node by creating a sibling node and shifting half the nodes
* contents across. Assumes there is a parent node, and it has room for
@ -530,12 +640,10 @@ EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
*
* Where A* is a shadow of A.
*/
static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
uint64_t key)
static int split_one_into_two(struct shadow_spine *s, unsigned parent_index,
struct dm_btree_value_type *vt, uint64_t key)
{
int r;
size_t size;
unsigned nr_left, nr_right;
struct dm_block *left, *right, *parent;
struct btree_node *ln, *rn, *pn;
__le64 location;
@ -549,36 +657,18 @@ static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
ln = dm_block_data(left);
rn = dm_block_data(right);
nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
ln->header.nr_entries = cpu_to_le32(nr_left);
rn->header.flags = ln->header.flags;
rn->header.nr_entries = cpu_to_le32(nr_right);
rn->header.nr_entries = cpu_to_le32(0);
rn->header.max_entries = ln->header.max_entries;
rn->header.value_size = ln->header.value_size;
memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
redistribute2(ln, rn);
size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
sizeof(uint64_t) : s->info->value_type.size;
memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
size * nr_right);
/*
* Patch up the parent
*/
/* patch up the parent */
parent = shadow_parent(s);
pn = dm_block_data(parent);
location = cpu_to_le64(dm_block_location(left));
__dm_bless_for_disk(&location);
memcpy_disk(value_ptr(pn, parent_index),
&location, sizeof(__le64));
location = cpu_to_le64(dm_block_location(right));
__dm_bless_for_disk(&location);
r = insert_at(sizeof(__le64), pn, parent_index + 1,
le64_to_cpu(rn->keys[0]), &location);
if (r) {
@ -586,6 +676,7 @@ static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
return r;
}
/* patch up the spine */
if (key < le64_to_cpu(rn->keys[0])) {
unlock_block(s->info, right);
s->nodes[1] = left;
@ -597,6 +688,121 @@ static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
return 0;
}
/*
* We often need to modify a sibling node. This function shadows a particular
* child of the given parent node. Making sure to update the parent to point
* to the new shadow.
*/
static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
struct btree_node *parent, unsigned index,
struct dm_block **result)
{
int r, inc;
dm_block_t root;
struct btree_node *node;
root = value64(parent, index);
r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
result, &inc);
if (r)
return r;
node = dm_block_data(*result);
if (inc)
inc_children(info->tm, node, vt);
*((__le64 *) value_ptr(parent, index)) =
cpu_to_le64(dm_block_location(*result));
return 0;
}
/*
* Splits two nodes into three. This is more work, but results in fuller
* nodes, so saves metadata space.
*/
static int split_two_into_three(struct shadow_spine *s, unsigned parent_index,
struct dm_btree_value_type *vt, uint64_t key)
{
int r;
unsigned middle_index;
struct dm_block *left, *middle, *right, *parent;
struct btree_node *ln, *rn, *mn, *pn;
__le64 location;
parent = shadow_parent(s);
pn = dm_block_data(parent);
if (parent_index == 0) {
middle_index = 1;
left = shadow_current(s);
r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
if (r)
return r;
} else {
middle_index = parent_index;
right = shadow_current(s);
r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
if (r)
return r;
}
r = new_block(s->info, &middle);
if (r < 0)
return r;
ln = dm_block_data(left);
mn = dm_block_data(middle);
rn = dm_block_data(right);
mn->header.nr_entries = cpu_to_le32(0);
mn->header.flags = ln->header.flags;
mn->header.max_entries = ln->header.max_entries;
mn->header.value_size = ln->header.value_size;
redistribute3(ln, mn, rn);
/* patch up the parent */
pn->keys[middle_index] = rn->keys[0];
location = cpu_to_le64(dm_block_location(middle));
__dm_bless_for_disk(&location);
r = insert_at(sizeof(__le64), pn, middle_index,
le64_to_cpu(mn->keys[0]), &location);
if (r) {
if (shadow_current(s) != left)
unlock_block(s->info, left);
unlock_block(s->info, middle);
if (shadow_current(s) != right)
unlock_block(s->info, right);
return r;
}
/* patch up the spine */
if (key < le64_to_cpu(mn->keys[0])) {
unlock_block(s->info, middle);
unlock_block(s->info, right);
s->nodes[1] = left;
} else if (key < le64_to_cpu(rn->keys[0])) {
unlock_block(s->info, left);
unlock_block(s->info, right);
s->nodes[1] = middle;
} else {
unlock_block(s->info, left);
unlock_block(s->info, middle);
s->nodes[1] = right;
}
return 0;
}
/*----------------------------------------------------------------*/
/*
* Splits a node by creating two new children beneath the given node.
*
@ -690,6 +896,186 @@ static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
return 0;
}
/*----------------------------------------------------------------*/
/*
* Redistributes a node's entries with its left sibling.
*/
static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
unsigned parent_index, uint64_t key)
{
int r;
struct dm_block *sib;
struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
if (r)
return r;
left = dm_block_data(sib);
right = dm_block_data(shadow_current(s));
redistribute2(left, right);
*key_ptr(parent, parent_index) = right->keys[0];
if (key < le64_to_cpu(right->keys[0])) {
unlock_block(s->info, s->nodes[1]);
s->nodes[1] = sib;
} else {
unlock_block(s->info, sib);
}
return 0;
}
/*
* Redistributes a nodes entries with its right sibling.
*/
static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
unsigned parent_index, uint64_t key)
{
int r;
struct dm_block *sib;
struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
if (r)
return r;
left = dm_block_data(shadow_current(s));
right = dm_block_data(sib);
redistribute2(left, right);
*key_ptr(parent, parent_index + 1) = right->keys[0];
if (key < le64_to_cpu(right->keys[0])) {
unlock_block(s->info, sib);
} else {
unlock_block(s->info, s->nodes[1]);
s->nodes[1] = sib;
}
return 0;
}
/*
* Returns the number of spare entries in a node.
*/
static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned *space)
{
int r;
unsigned nr_entries;
struct dm_block *block;
struct btree_node *node;
r = bn_read_lock(info, b, &block);
if (r)
return r;
node = dm_block_data(block);
nr_entries = le32_to_cpu(node->header.nr_entries);
*space = le32_to_cpu(node->header.max_entries) - nr_entries;
unlock_block(info, block);
return 0;
}
/*
* Make space in a node, either by moving some entries to a sibling,
* or creating a new sibling node. SPACE_THRESHOLD defines the minimum
* number of free entries that must be in the sibling to make the move
* worth while. If the siblings are shared (eg, part of a snapshot),
* then they are not touched, since this break sharing and so consume
* more space than we save.
*/
#define SPACE_THRESHOLD 8
static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
unsigned parent_index, uint64_t key)
{
int r;
struct btree_node *parent = dm_block_data(shadow_parent(s));
unsigned nr_parent = le32_to_cpu(parent->header.nr_entries);
unsigned free_space;
int left_shared = 0, right_shared = 0;
/* Should we move entries to the left sibling? */
if (parent_index > 0) {
dm_block_t left_b = value64(parent, parent_index - 1);
r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
if (r)
return r;
if (!left_shared) {
r = get_node_free_space(s->info, left_b, &free_space);
if (r)
return r;
if (free_space >= SPACE_THRESHOLD)
return rebalance_left(s, vt, parent_index, key);
}
}
/* Should we move entries to the right sibling? */
if (parent_index < (nr_parent - 1)) {
dm_block_t right_b = value64(parent, parent_index + 1);
r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
if (r)
return r;
if (!right_shared) {
r = get_node_free_space(s->info, right_b, &free_space);
if (r)
return r;
if (free_space >= SPACE_THRESHOLD)
return rebalance_right(s, vt, parent_index, key);
}
}
/*
* We need to split the node, normally we split two nodes
* into three. But when inserting a sequence that is either
* monotonically increasing or decreasing it's better to split
* a single node into two.
*/
if (left_shared || right_shared || (nr_parent <= 2) ||
(parent_index == 0) || (parent_index + 1 == nr_parent)) {
return split_one_into_two(s, parent_index, vt, key);
} else {
return split_two_into_three(s, parent_index, vt, key);
}
}
/*
* Does the node contain a particular key?
*/
static bool contains_key(struct btree_node *node, uint64_t key)
{
int i = lower_bound(node, key);
if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
return true;
return false;
}
/*
* In general we preemptively make sure there's a free entry in every
* node on the spine when doing an insert. But we can avoid that with
* leaf nodes if we know it's an overwrite.
*/
static bool has_space_for_insert(struct btree_node *node, uint64_t key)
{
if (node->header.nr_entries == node->header.max_entries) {
if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
/* we don't need space if it's an overwrite */
return contains_key(node, key);
}
return false;
}
return true;
}
static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
struct dm_btree_value_type *vt,
uint64_t key, unsigned *index)
@ -719,17 +1105,18 @@ static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
node = dm_block_data(shadow_current(s));
if (node->header.nr_entries == node->header.max_entries) {
if (!has_space_for_insert(node, key)) {
if (top)
r = btree_split_beneath(s, key);
else
r = btree_split_sibling(s, i, key);
r = rebalance_or_split(s, vt, i, key);
if (r < 0)
return r;
}
node = dm_block_data(shadow_current(s));
/* making space can cause the current node to change */
node = dm_block_data(shadow_current(s));
}
i = lower_bound(node, key);
@ -753,6 +1140,77 @@ static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
return 0;
}
static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
uint64_t key, int *index)
{
int r, i = -1;
struct btree_node *node;
*index = 0;
for (;;) {
r = shadow_step(s, root, &s->info->value_type);
if (r < 0)
return r;
node = dm_block_data(shadow_current(s));
/*
* We have to patch up the parent node, ugly, but I don't
* see a way to do this automatically as part of the spine
* op.
*/
if (shadow_has_parent(s) && i >= 0) {
__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
__dm_bless_for_disk(&location);
memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
&location, sizeof(__le64));
}
node = dm_block_data(shadow_current(s));
i = lower_bound(node, key);
BUG_ON(i < 0);
BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
if (key != le64_to_cpu(node->keys[i]))
return -EINVAL;
break;
}
root = value64(node, i);
}
*index = i;
return 0;
}
int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
uint64_t key, int *index,
dm_block_t *new_root, struct dm_block **leaf)
{
int r;
struct shadow_spine spine;
BUG_ON(info->levels > 1);
init_shadow_spine(&spine, info);
r = __btree_get_overwrite_leaf(&spine, root, key, index);
if (!r) {
*new_root = shadow_root(&spine);
*leaf = shadow_current(&spine);
/*
* Decrement the count so exit_shadow_spine() doesn't
* unlock the leaf.
*/
spine.count--;
}
exit_shadow_spine(&spine);
return r;
}
static bool need_insert(struct btree_node *node, uint64_t *keys,
unsigned level, unsigned index)
{
@ -829,7 +1287,7 @@ static int insert(struct dm_btree_info *info, dm_block_t root,
value_ptr(n, index),
value))) {
info->value_type.dec(info->value_type.context,
value_ptr(n, index));
value_ptr(n, index), 1);
}
memcpy_disk(value_ptr(n, index),
value, info->value_type.size);

View File

@ -51,21 +51,21 @@ struct dm_btree_value_type {
*/
/*
* The btree is making a duplicate of the value, for instance
* The btree is making a duplicate of a run of values, for instance
* because previously-shared btree nodes have now diverged.
* @value argument is the new copy that the copy function may modify.
* (Probably it just wants to increment a reference count
* somewhere.) This method is _not_ called for insertion of a new
* value: It is assumed the ref count is already 1.
*/
void (*inc)(void *context, const void *value);
void (*inc)(void *context, const void *value, unsigned count);
/*
* This value is being deleted. The btree takes care of freeing
* These values are being deleted. The btree takes care of freeing
* the memory pointed to by @value. Often the del function just
* needs to decrement a reference count somewhere.
* needs to decrement a reference counts somewhere.
*/
void (*dec)(void *context, const void *value);
void (*dec)(void *context, const void *value, unsigned count);
/*
* A test for equality between two values. When a value is

View File

@ -6,6 +6,8 @@
#include "dm-space-map-common.h"
#include "dm-transaction-manager.h"
#include "dm-btree-internal.h"
#include "dm-persistent-data-internal.h"
#include <linux/bitops.h>
#include <linux/device-mapper.h>
@ -409,12 +411,13 @@ int sm_ll_find_common_free_block(struct ll_disk *old_ll, struct ll_disk *new_ll,
return r;
}
static int sm_ll_mutate(struct ll_disk *ll, dm_block_t b,
int (*mutator)(void *context, uint32_t old, uint32_t *new),
void *context, enum allocation_event *ev)
/*----------------------------------------------------------------*/
int sm_ll_insert(struct ll_disk *ll, dm_block_t b,
uint32_t ref_count, int32_t *nr_allocations)
{
int r;
uint32_t bit, old, ref_count;
uint32_t bit, old;
struct dm_block *nb;
dm_block_t index = b;
struct disk_index_entry ie_disk;
@ -433,10 +436,9 @@ static int sm_ll_mutate(struct ll_disk *ll, dm_block_t b,
return r;
}
ie_disk.blocknr = cpu_to_le64(dm_block_location(nb));
bm_le = dm_bitmap_data(nb);
old = sm_lookup_bitmap(bm_le, bit);
old = sm_lookup_bitmap(bm_le, bit);
if (old > 2) {
r = sm_ll_lookup_big_ref_count(ll, b, &old);
if (r < 0) {
@ -445,7 +447,6 @@ static int sm_ll_mutate(struct ll_disk *ll, dm_block_t b,
}
}
r = mutator(context, old, &ref_count);
if (r) {
dm_tm_unlock(ll->tm, nb);
return r;
@ -453,7 +454,6 @@ static int sm_ll_mutate(struct ll_disk *ll, dm_block_t b,
if (ref_count <= 2) {
sm_set_bitmap(bm_le, bit, ref_count);
dm_tm_unlock(ll->tm, nb);
if (old > 2) {
@ -480,62 +480,459 @@ static int sm_ll_mutate(struct ll_disk *ll, dm_block_t b,
}
if (ref_count && !old) {
*ev = SM_ALLOC;
*nr_allocations = 1;
ll->nr_allocated++;
le32_add_cpu(&ie_disk.nr_free, -1);
if (le32_to_cpu(ie_disk.none_free_before) == bit)
ie_disk.none_free_before = cpu_to_le32(bit + 1);
} else if (old && !ref_count) {
*ev = SM_FREE;
*nr_allocations = -1;
ll->nr_allocated--;
le32_add_cpu(&ie_disk.nr_free, 1);
ie_disk.none_free_before = cpu_to_le32(min(le32_to_cpu(ie_disk.none_free_before), bit));
} else
*ev = SM_NONE;
*nr_allocations = 0;
return ll->save_ie(ll, index, &ie_disk);
}
static int set_ref_count(void *context, uint32_t old, uint32_t *new)
/*----------------------------------------------------------------*/
/*
* Holds useful intermediate results for the range based inc and dec
* operations.
*/
struct inc_context {
struct disk_index_entry ie_disk;
struct dm_block *bitmap_block;
void *bitmap;
struct dm_block *overflow_leaf;
};
static inline void init_inc_context(struct inc_context *ic)
{
*new = *((uint32_t *) context);
return 0;
ic->bitmap_block = NULL;
ic->bitmap = NULL;
ic->overflow_leaf = NULL;
}
int sm_ll_insert(struct ll_disk *ll, dm_block_t b,
uint32_t ref_count, enum allocation_event *ev)
static inline void exit_inc_context(struct ll_disk *ll, struct inc_context *ic)
{
return sm_ll_mutate(ll, b, set_ref_count, &ref_count, ev);
if (ic->bitmap_block)
dm_tm_unlock(ll->tm, ic->bitmap_block);
if (ic->overflow_leaf)
dm_tm_unlock(ll->tm, ic->overflow_leaf);
}
static int inc_ref_count(void *context, uint32_t old, uint32_t *new)
static inline void reset_inc_context(struct ll_disk *ll, struct inc_context *ic)
{
*new = old + 1;
return 0;
exit_inc_context(ll, ic);
init_inc_context(ic);
}
int sm_ll_inc(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev)
/*
* Confirms a btree node contains a particular key at an index.
*/
static bool contains_key(struct btree_node *n, uint64_t key, int index)
{
return sm_ll_mutate(ll, b, inc_ref_count, NULL, ev);
return index >= 0 &&
index < le32_to_cpu(n->header.nr_entries) &&
le64_to_cpu(n->keys[index]) == key;
}
static int dec_ref_count(void *context, uint32_t old, uint32_t *new)
static int __sm_ll_inc_overflow(struct ll_disk *ll, dm_block_t b, struct inc_context *ic)
{
if (!old) {
DMERR_LIMIT("unable to decrement a reference count below 0");
int r;
int index;
struct btree_node *n;
__le32 *v_ptr;
uint32_t rc;
/*
* bitmap_block needs to be unlocked because getting the
* overflow_leaf may need to allocate, and thus use the space map.
*/
reset_inc_context(ll, ic);
r = btree_get_overwrite_leaf(&ll->ref_count_info, ll->ref_count_root,
b, &index, &ll->ref_count_root, &ic->overflow_leaf);
if (r < 0)
return r;
n = dm_block_data(ic->overflow_leaf);
if (!contains_key(n, b, index)) {
DMERR("overflow btree is missing an entry");
return -EINVAL;
}
*new = old - 1;
v_ptr = value_ptr(n, index);
rc = le32_to_cpu(*v_ptr) + 1;
*v_ptr = cpu_to_le32(rc);
return 0;
}
int sm_ll_dec(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev)
static int sm_ll_inc_overflow(struct ll_disk *ll, dm_block_t b, struct inc_context *ic)
{
return sm_ll_mutate(ll, b, dec_ref_count, NULL, ev);
int index;
struct btree_node *n;
__le32 *v_ptr;
uint32_t rc;
/*
* Do we already have the correct overflow leaf?
*/
if (ic->overflow_leaf) {
n = dm_block_data(ic->overflow_leaf);
index = lower_bound(n, b);
if (contains_key(n, b, index)) {
v_ptr = value_ptr(n, index);
rc = le32_to_cpu(*v_ptr) + 1;
*v_ptr = cpu_to_le32(rc);
return 0;
}
}
return __sm_ll_inc_overflow(ll, b, ic);
}
static inline int shadow_bitmap(struct ll_disk *ll, struct inc_context *ic)
{
int r, inc;
r = dm_tm_shadow_block(ll->tm, le64_to_cpu(ic->ie_disk.blocknr),
&dm_sm_bitmap_validator, &ic->bitmap_block, &inc);
if (r < 0) {
DMERR("dm_tm_shadow_block() failed");
return r;
}
ic->ie_disk.blocknr = cpu_to_le64(dm_block_location(ic->bitmap_block));
ic->bitmap = dm_bitmap_data(ic->bitmap_block);
return 0;
}
/*
* Once shadow_bitmap has been called, which always happens at the start of inc/dec,
* we can reopen the bitmap with a simple write lock, rather than re calling
* dm_tm_shadow_block().
*/
static inline int ensure_bitmap(struct ll_disk *ll, struct inc_context *ic)
{
if (!ic->bitmap_block) {
int r = dm_bm_write_lock(dm_tm_get_bm(ll->tm), le64_to_cpu(ic->ie_disk.blocknr),
&dm_sm_bitmap_validator, &ic->bitmap_block);
if (r) {
DMERR("unable to re-get write lock for bitmap");
return r;
}
ic->bitmap = dm_bitmap_data(ic->bitmap_block);
}
return 0;
}
/*
* Loops round incrementing entries in a single bitmap.
*/
static inline int sm_ll_inc_bitmap(struct ll_disk *ll, dm_block_t b,
uint32_t bit, uint32_t bit_end,
int32_t *nr_allocations, dm_block_t *new_b,
struct inc_context *ic)
{
int r;
__le32 le_rc;
uint32_t old;
for (; bit != bit_end; bit++, b++) {
/*
* We only need to drop the bitmap if we need to find a new btree
* leaf for the overflow. So if it was dropped last iteration,
* we now re-get it.
*/
r = ensure_bitmap(ll, ic);
if (r)
return r;
old = sm_lookup_bitmap(ic->bitmap, bit);
switch (old) {
case 0:
/* inc bitmap, adjust nr_allocated */
sm_set_bitmap(ic->bitmap, bit, 1);
(*nr_allocations)++;
ll->nr_allocated++;
le32_add_cpu(&ic->ie_disk.nr_free, -1);
if (le32_to_cpu(ic->ie_disk.none_free_before) == bit)
ic->ie_disk.none_free_before = cpu_to_le32(bit + 1);
break;
case 1:
/* inc bitmap */
sm_set_bitmap(ic->bitmap, bit, 2);
break;
case 2:
/* inc bitmap and insert into overflow */
sm_set_bitmap(ic->bitmap, bit, 3);
reset_inc_context(ll, ic);
le_rc = cpu_to_le32(3);
__dm_bless_for_disk(&le_rc);
r = dm_btree_insert(&ll->ref_count_info, ll->ref_count_root,
&b, &le_rc, &ll->ref_count_root);
if (r < 0) {
DMERR("ref count insert failed");
return r;
}
break;
default:
/*
* inc within the overflow tree only.
*/
r = sm_ll_inc_overflow(ll, b, ic);
if (r < 0)
return r;
}
}
*new_b = b;
return 0;
}
/*
* Finds a bitmap that contains entries in the block range, and increments
* them.
*/
static int __sm_ll_inc(struct ll_disk *ll, dm_block_t b, dm_block_t e,
int32_t *nr_allocations, dm_block_t *new_b)
{
int r;
struct inc_context ic;
uint32_t bit, bit_end;
dm_block_t index = b;
init_inc_context(&ic);
bit = do_div(index, ll->entries_per_block);
r = ll->load_ie(ll, index, &ic.ie_disk);
if (r < 0)
return r;
r = shadow_bitmap(ll, &ic);
if (r)
return r;
bit_end = min(bit + (e - b), (dm_block_t) ll->entries_per_block);
r = sm_ll_inc_bitmap(ll, b, bit, bit_end, nr_allocations, new_b, &ic);
exit_inc_context(ll, &ic);
if (r)
return r;
return ll->save_ie(ll, index, &ic.ie_disk);
}
int sm_ll_inc(struct ll_disk *ll, dm_block_t b, dm_block_t e,
int32_t *nr_allocations)
{
*nr_allocations = 0;
while (b != e) {
int r = __sm_ll_inc(ll, b, e, nr_allocations, &b);
if (r)
return r;
}
return 0;
}
/*----------------------------------------------------------------*/
static int __sm_ll_del_overflow(struct ll_disk *ll, dm_block_t b,
struct inc_context *ic)
{
reset_inc_context(ll, ic);
return dm_btree_remove(&ll->ref_count_info, ll->ref_count_root,
&b, &ll->ref_count_root);
}
static int __sm_ll_dec_overflow(struct ll_disk *ll, dm_block_t b,
struct inc_context *ic, uint32_t *old_rc)
{
int r;
int index = -1;
struct btree_node *n;
__le32 *v_ptr;
uint32_t rc;
reset_inc_context(ll, ic);
r = btree_get_overwrite_leaf(&ll->ref_count_info, ll->ref_count_root,
b, &index, &ll->ref_count_root, &ic->overflow_leaf);
if (r < 0)
return r;
n = dm_block_data(ic->overflow_leaf);
if (!contains_key(n, b, index)) {
DMERR("overflow btree is missing an entry");
return -EINVAL;
}
v_ptr = value_ptr(n, index);
rc = le32_to_cpu(*v_ptr);
*old_rc = rc;
if (rc == 3) {
return __sm_ll_del_overflow(ll, b, ic);
} else {
rc--;
*v_ptr = cpu_to_le32(rc);
return 0;
}
}
static int sm_ll_dec_overflow(struct ll_disk *ll, dm_block_t b,
struct inc_context *ic, uint32_t *old_rc)
{
/*
* Do we already have the correct overflow leaf?
*/
if (ic->overflow_leaf) {
int index;
struct btree_node *n;
__le32 *v_ptr;
uint32_t rc;
n = dm_block_data(ic->overflow_leaf);
index = lower_bound(n, b);
if (contains_key(n, b, index)) {
v_ptr = value_ptr(n, index);
rc = le32_to_cpu(*v_ptr);
*old_rc = rc;
if (rc > 3) {
rc--;
*v_ptr = cpu_to_le32(rc);
return 0;
} else {
return __sm_ll_del_overflow(ll, b, ic);
}
}
}
return __sm_ll_dec_overflow(ll, b, ic, old_rc);
}
/*
* Loops round incrementing entries in a single bitmap.
*/
static inline int sm_ll_dec_bitmap(struct ll_disk *ll, dm_block_t b,
uint32_t bit, uint32_t bit_end,
struct inc_context *ic,
int32_t *nr_allocations, dm_block_t *new_b)
{
int r;
uint32_t old;
for (; bit != bit_end; bit++, b++) {
/*
* We only need to drop the bitmap if we need to find a new btree
* leaf for the overflow. So if it was dropped last iteration,
* we now re-get it.
*/
r = ensure_bitmap(ll, ic);
if (r)
return r;
old = sm_lookup_bitmap(ic->bitmap, bit);
switch (old) {
case 0:
DMERR("unable to decrement block");
return -EINVAL;
case 1:
/* dec bitmap */
sm_set_bitmap(ic->bitmap, bit, 0);
(*nr_allocations)--;
ll->nr_allocated--;
le32_add_cpu(&ic->ie_disk.nr_free, 1);
ic->ie_disk.none_free_before =
cpu_to_le32(min(le32_to_cpu(ic->ie_disk.none_free_before), bit));
break;
case 2:
/* dec bitmap and insert into overflow */
sm_set_bitmap(ic->bitmap, bit, 1);
break;
case 3:
r = sm_ll_dec_overflow(ll, b, ic, &old);
if (r < 0)
return r;
if (old == 3) {
r = ensure_bitmap(ll, ic);
if (r)
return r;
sm_set_bitmap(ic->bitmap, bit, 2);
}
break;
}
}
*new_b = b;
return 0;
}
static int __sm_ll_dec(struct ll_disk *ll, dm_block_t b, dm_block_t e,
int32_t *nr_allocations, dm_block_t *new_b)
{
int r;
uint32_t bit, bit_end;
struct inc_context ic;
dm_block_t index = b;
init_inc_context(&ic);
bit = do_div(index, ll->entries_per_block);
r = ll->load_ie(ll, index, &ic.ie_disk);
if (r < 0)
return r;
r = shadow_bitmap(ll, &ic);
if (r)
return r;
bit_end = min(bit + (e - b), (dm_block_t) ll->entries_per_block);
r = sm_ll_dec_bitmap(ll, b, bit, bit_end, &ic, nr_allocations, new_b);
exit_inc_context(ll, &ic);
if (r)
return r;
return ll->save_ie(ll, index, &ic.ie_disk);
}
int sm_ll_dec(struct ll_disk *ll, dm_block_t b, dm_block_t e,
int32_t *nr_allocations)
{
*nr_allocations = 0;
while (b != e) {
int r = __sm_ll_dec(ll, b, e, nr_allocations, &b);
if (r)
return r;
}
return 0;
}
/*----------------------------------------------------------------*/
int sm_ll_commit(struct ll_disk *ll)
{
int r = 0;
@ -687,28 +1084,92 @@ int sm_ll_open_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm,
/*----------------------------------------------------------------*/
static inline int ie_cache_writeback(struct ll_disk *ll, struct ie_cache *iec)
{
iec->dirty = false;
__dm_bless_for_disk(iec->ie);
return dm_btree_insert(&ll->bitmap_info, ll->bitmap_root,
&iec->index, &iec->ie, &ll->bitmap_root);
}
static inline unsigned hash_index(dm_block_t index)
{
return dm_hash_block(index, IE_CACHE_MASK);
}
static int disk_ll_load_ie(struct ll_disk *ll, dm_block_t index,
struct disk_index_entry *ie)
{
return dm_btree_lookup(&ll->bitmap_info, ll->bitmap_root, &index, ie);
int r;
unsigned h = hash_index(index);
struct ie_cache *iec = ll->ie_cache + h;
if (iec->valid) {
if (iec->index == index) {
memcpy(ie, &iec->ie, sizeof(*ie));
return 0;
}
if (iec->dirty) {
r = ie_cache_writeback(ll, iec);
if (r)
return r;
}
}
r = dm_btree_lookup(&ll->bitmap_info, ll->bitmap_root, &index, ie);
if (!r) {
iec->valid = true;
iec->dirty = false;
iec->index = index;
memcpy(&iec->ie, ie, sizeof(*ie));
}
return r;
}
static int disk_ll_save_ie(struct ll_disk *ll, dm_block_t index,
struct disk_index_entry *ie)
{
__dm_bless_for_disk(ie);
return dm_btree_insert(&ll->bitmap_info, ll->bitmap_root,
&index, ie, &ll->bitmap_root);
int r;
unsigned h = hash_index(index);
struct ie_cache *iec = ll->ie_cache + h;
ll->bitmap_index_changed = true;
if (iec->valid) {
if (iec->index == index) {
memcpy(&iec->ie, ie, sizeof(*ie));
iec->dirty = true;
return 0;
}
if (iec->dirty) {
r = ie_cache_writeback(ll, iec);
if (r)
return r;
}
}
iec->valid = true;
iec->dirty = true;
iec->index = index;
memcpy(&iec->ie, ie, sizeof(*ie));
return 0;
}
static int disk_ll_init_index(struct ll_disk *ll)
{
unsigned i;
for (i = 0; i < IE_CACHE_SIZE; i++) {
struct ie_cache *iec = ll->ie_cache + i;
iec->valid = false;
iec->dirty = false;
}
return dm_btree_empty(&ll->bitmap_info, &ll->bitmap_root);
}
static int disk_ll_open(struct ll_disk *ll)
{
/* nothing to do */
return 0;
}
@ -719,7 +1180,16 @@ static dm_block_t disk_ll_max_entries(struct ll_disk *ll)
static int disk_ll_commit(struct ll_disk *ll)
{
return 0;
int r = 0;
unsigned i;
for (i = 0; i < IE_CACHE_SIZE; i++) {
struct ie_cache *iec = ll->ie_cache + i;
if (iec->valid && iec->dirty)
r = ie_cache_writeback(ll, iec);
}
return r;
}
int sm_ll_new_disk(struct ll_disk *ll, struct dm_transaction_manager *tm)

View File

@ -54,6 +54,20 @@ typedef int (*open_index_fn)(struct ll_disk *ll);
typedef dm_block_t (*max_index_entries_fn)(struct ll_disk *ll);
typedef int (*commit_fn)(struct ll_disk *ll);
/*
* A lot of time can be wasted reading and writing the same
* index entry. So we cache a few entries.
*/
#define IE_CACHE_SIZE 64
#define IE_CACHE_MASK (IE_CACHE_SIZE - 1)
struct ie_cache {
bool valid;
bool dirty;
dm_block_t index;
struct disk_index_entry ie;
};
struct ll_disk {
struct dm_transaction_manager *tm;
struct dm_btree_info bitmap_info;
@ -79,6 +93,8 @@ struct ll_disk {
max_index_entries_fn max_entries;
commit_fn commit;
bool bitmap_index_changed:1;
struct ie_cache ie_cache[IE_CACHE_SIZE];
};
struct disk_sm_root {
@ -96,12 +112,6 @@ struct disk_bitmap_header {
__le64 blocknr;
} __attribute__ ((packed, aligned(8)));
enum allocation_event {
SM_NONE,
SM_ALLOC,
SM_FREE,
};
/*----------------------------------------------------------------*/
int sm_ll_extend(struct ll_disk *ll, dm_block_t extra_blocks);
@ -111,9 +121,15 @@ int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin,
dm_block_t end, dm_block_t *result);
int sm_ll_find_common_free_block(struct ll_disk *old_ll, struct ll_disk *new_ll,
dm_block_t begin, dm_block_t end, dm_block_t *result);
int sm_ll_insert(struct ll_disk *ll, dm_block_t b, uint32_t ref_count, enum allocation_event *ev);
int sm_ll_inc(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev);
int sm_ll_dec(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev);
/*
* The next three functions return (via nr_allocations) the net number of
* allocations that were made. This number may be negative if there were
* more frees than allocs.
*/
int sm_ll_insert(struct ll_disk *ll, dm_block_t b, uint32_t ref_count, int32_t *nr_allocations);
int sm_ll_inc(struct ll_disk *ll, dm_block_t b, dm_block_t e, int32_t *nr_allocations);
int sm_ll_dec(struct ll_disk *ll, dm_block_t b, dm_block_t e, int32_t *nr_allocations);
int sm_ll_commit(struct ll_disk *ll);
int sm_ll_new_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm);

View File

@ -87,76 +87,39 @@ static int sm_disk_set_count(struct dm_space_map *sm, dm_block_t b,
uint32_t count)
{
int r;
uint32_t old_count;
enum allocation_event ev;
int32_t nr_allocations;
struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
r = sm_ll_insert(&smd->ll, b, count, &ev);
r = sm_ll_insert(&smd->ll, b, count, &nr_allocations);
if (!r) {
switch (ev) {
case SM_NONE:
break;
case SM_ALLOC:
/*
* This _must_ be free in the prior transaction
* otherwise we've lost atomicity.
*/
smd->nr_allocated_this_transaction++;
break;
case SM_FREE:
/*
* It's only free if it's also free in the last
* transaction.
*/
r = sm_ll_lookup(&smd->old_ll, b, &old_count);
if (r)
return r;
if (!old_count)
smd->nr_allocated_this_transaction--;
break;
}
smd->nr_allocated_this_transaction += nr_allocations;
}
return r;
}
static int sm_disk_inc_block(struct dm_space_map *sm, dm_block_t b)
static int sm_disk_inc_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
{
int r;
enum allocation_event ev;
int32_t nr_allocations;
struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
r = sm_ll_inc(&smd->ll, b, &ev);
if (!r && (ev == SM_ALLOC))
/*
* This _must_ be free in the prior transaction
* otherwise we've lost atomicity.
*/
smd->nr_allocated_this_transaction++;
r = sm_ll_inc(&smd->ll, b, e, &nr_allocations);
if (!r)
smd->nr_allocated_this_transaction += nr_allocations;
return r;
}
static int sm_disk_dec_block(struct dm_space_map *sm, dm_block_t b)
static int sm_disk_dec_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
{
int r;
uint32_t old_count;
enum allocation_event ev;
int32_t nr_allocations;
struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
r = sm_ll_dec(&smd->ll, b, &ev);
if (!r && (ev == SM_FREE)) {
/*
* It's only free if it's also free in the last
* transaction.
*/
r = sm_ll_lookup(&smd->old_ll, b, &old_count);
if (!r && !old_count)
smd->nr_allocated_this_transaction--;
}
r = sm_ll_dec(&smd->ll, b, e, &nr_allocations);
if (!r)
smd->nr_allocated_this_transaction += nr_allocations;
return r;
}
@ -164,21 +127,28 @@ static int sm_disk_dec_block(struct dm_space_map *sm, dm_block_t b)
static int sm_disk_new_block(struct dm_space_map *sm, dm_block_t *b)
{
int r;
enum allocation_event ev;
int32_t nr_allocations;
struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
/*
* Any block we allocate has to be free in both the old and current ll.
*/
r = sm_ll_find_common_free_block(&smd->old_ll, &smd->ll, smd->begin, smd->ll.nr_blocks, b);
if (r == -ENOSPC) {
/*
* There's no free block between smd->begin and the end of the metadata device.
* We search before smd->begin in case something has been freed.
*/
r = sm_ll_find_common_free_block(&smd->old_ll, &smd->ll, 0, smd->begin, b);
}
if (r)
return r;
smd->begin = *b + 1;
r = sm_ll_inc(&smd->ll, *b, &ev);
r = sm_ll_inc(&smd->ll, *b, *b + 1, &nr_allocations);
if (!r) {
BUG_ON(ev != SM_ALLOC);
smd->nr_allocated_this_transaction++;
smd->nr_allocated_this_transaction += nr_allocations;
}
return r;
@ -194,7 +164,6 @@ static int sm_disk_commit(struct dm_space_map *sm)
return r;
memcpy(&smd->old_ll, &smd->ll, sizeof(smd->old_ll));
smd->begin = 0;
smd->nr_allocated_this_transaction = 0;
return 0;
@ -235,8 +204,8 @@ static struct dm_space_map ops = {
.get_count = sm_disk_get_count,
.count_is_more_than_one = sm_disk_count_is_more_than_one,
.set_count = sm_disk_set_count,
.inc_block = sm_disk_inc_block,
.dec_block = sm_disk_dec_block,
.inc_blocks = sm_disk_inc_blocks,
.dec_blocks = sm_disk_dec_blocks,
.new_block = sm_disk_new_block,
.commit = sm_disk_commit,
.root_size = sm_disk_root_size,

View File

@ -89,7 +89,8 @@ enum block_op_type {
struct block_op {
enum block_op_type type;
dm_block_t block;
dm_block_t b;
dm_block_t e;
};
struct bop_ring_buffer {
@ -116,7 +117,7 @@ static unsigned brb_next(struct bop_ring_buffer *brb, unsigned old)
}
static int brb_push(struct bop_ring_buffer *brb,
enum block_op_type type, dm_block_t b)
enum block_op_type type, dm_block_t b, dm_block_t e)
{
struct block_op *bop;
unsigned next = brb_next(brb, brb->end);
@ -130,7 +131,8 @@ static int brb_push(struct bop_ring_buffer *brb,
bop = brb->bops + brb->end;
bop->type = type;
bop->block = b;
bop->b = b;
bop->e = e;
brb->end = next;
@ -145,9 +147,7 @@ static int brb_peek(struct bop_ring_buffer *brb, struct block_op *result)
return -ENODATA;
bop = brb->bops + brb->begin;
result->type = bop->type;
result->block = bop->block;
memcpy(result, bop, sizeof(*result));
return 0;
}
@ -178,10 +178,9 @@ struct sm_metadata {
struct threshold threshold;
};
static int add_bop(struct sm_metadata *smm, enum block_op_type type, dm_block_t b)
static int add_bop(struct sm_metadata *smm, enum block_op_type type, dm_block_t b, dm_block_t e)
{
int r = brb_push(&smm->uncommitted, type, b);
int r = brb_push(&smm->uncommitted, type, b, e);
if (r) {
DMERR("too many recursive allocations");
return -ENOMEM;
@ -193,15 +192,15 @@ static int add_bop(struct sm_metadata *smm, enum block_op_type type, dm_block_t
static int commit_bop(struct sm_metadata *smm, struct block_op *op)
{
int r = 0;
enum allocation_event ev;
int32_t nr_allocations;
switch (op->type) {
case BOP_INC:
r = sm_ll_inc(&smm->ll, op->block, &ev);
r = sm_ll_inc(&smm->ll, op->b, op->e, &nr_allocations);
break;
case BOP_DEC:
r = sm_ll_dec(&smm->ll, op->block, &ev);
r = sm_ll_dec(&smm->ll, op->b, op->e, &nr_allocations);
break;
}
@ -314,7 +313,7 @@ static int sm_metadata_get_count(struct dm_space_map *sm, dm_block_t b,
i = brb_next(&smm->uncommitted, i)) {
struct block_op *op = smm->uncommitted.bops + i;
if (op->block != b)
if (b < op->b || b >= op->e)
continue;
switch (op->type) {
@ -355,7 +354,7 @@ static int sm_metadata_count_is_more_than_one(struct dm_space_map *sm,
struct block_op *op = smm->uncommitted.bops + i;
if (op->block != b)
if (b < op->b || b >= op->e)
continue;
switch (op->type) {
@ -393,7 +392,7 @@ static int sm_metadata_set_count(struct dm_space_map *sm, dm_block_t b,
uint32_t count)
{
int r, r2;
enum allocation_event ev;
int32_t nr_allocations;
struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
if (smm->recursion_count) {
@ -402,40 +401,42 @@ static int sm_metadata_set_count(struct dm_space_map *sm, dm_block_t b,
}
in(smm);
r = sm_ll_insert(&smm->ll, b, count, &ev);
r = sm_ll_insert(&smm->ll, b, count, &nr_allocations);
r2 = out(smm);
return combine_errors(r, r2);
}
static int sm_metadata_inc_block(struct dm_space_map *sm, dm_block_t b)
static int sm_metadata_inc_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
{
int r, r2 = 0;
enum allocation_event ev;
int32_t nr_allocations;
struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
if (recursing(smm))
r = add_bop(smm, BOP_INC, b);
else {
if (recursing(smm)) {
r = add_bop(smm, BOP_INC, b, e);
if (r)
return r;
} else {
in(smm);
r = sm_ll_inc(&smm->ll, b, &ev);
r = sm_ll_inc(&smm->ll, b, e, &nr_allocations);
r2 = out(smm);
}
return combine_errors(r, r2);
}
static int sm_metadata_dec_block(struct dm_space_map *sm, dm_block_t b)
static int sm_metadata_dec_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
{
int r, r2 = 0;
enum allocation_event ev;
int32_t nr_allocations;
struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
if (recursing(smm))
r = add_bop(smm, BOP_DEC, b);
r = add_bop(smm, BOP_DEC, b, e);
else {
in(smm);
r = sm_ll_dec(&smm->ll, b, &ev);
r = sm_ll_dec(&smm->ll, b, e, &nr_allocations);
r2 = out(smm);
}
@ -445,23 +446,31 @@ static int sm_metadata_dec_block(struct dm_space_map *sm, dm_block_t b)
static int sm_metadata_new_block_(struct dm_space_map *sm, dm_block_t *b)
{
int r, r2 = 0;
enum allocation_event ev;
int32_t nr_allocations;
struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
/*
* Any block we allocate has to be free in both the old and current ll.
*/
r = sm_ll_find_common_free_block(&smm->old_ll, &smm->ll, smm->begin, smm->ll.nr_blocks, b);
if (r == -ENOSPC) {
/*
* There's no free block between smm->begin and the end of the metadata device.
* We search before smm->begin in case something has been freed.
*/
r = sm_ll_find_common_free_block(&smm->old_ll, &smm->ll, 0, smm->begin, b);
}
if (r)
return r;
smm->begin = *b + 1;
if (recursing(smm))
r = add_bop(smm, BOP_INC, *b);
r = add_bop(smm, BOP_INC, *b, *b + 1);
else {
in(smm);
r = sm_ll_inc(&smm->ll, *b, &ev);
r = sm_ll_inc(&smm->ll, *b, *b + 1, &nr_allocations);
r2 = out(smm);
}
@ -503,7 +512,6 @@ static int sm_metadata_commit(struct dm_space_map *sm)
return r;
memcpy(&smm->old_ll, &smm->ll, sizeof(smm->old_ll));
smm->begin = 0;
smm->allocated_this_transaction = 0;
return 0;
@ -556,8 +564,8 @@ static const struct dm_space_map ops = {
.get_count = sm_metadata_get_count,
.count_is_more_than_one = sm_metadata_count_is_more_than_one,
.set_count = sm_metadata_set_count,
.inc_block = sm_metadata_inc_block,
.dec_block = sm_metadata_dec_block,
.inc_blocks = sm_metadata_inc_blocks,
.dec_blocks = sm_metadata_dec_blocks,
.new_block = sm_metadata_new_block,
.commit = sm_metadata_commit,
.root_size = sm_metadata_root_size,
@ -641,18 +649,28 @@ static int sm_bootstrap_new_block(struct dm_space_map *sm, dm_block_t *b)
return 0;
}
static int sm_bootstrap_inc_block(struct dm_space_map *sm, dm_block_t b)
static int sm_bootstrap_inc_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
{
int r;
struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
return add_bop(smm, BOP_INC, b);
r = add_bop(smm, BOP_INC, b, e);
if (r)
return r;
return 0;
}
static int sm_bootstrap_dec_block(struct dm_space_map *sm, dm_block_t b)
static int sm_bootstrap_dec_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
{
int r;
struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
return add_bop(smm, BOP_DEC, b);
r = add_bop(smm, BOP_DEC, b, e);
if (r)
return r;
return 0;
}
static int sm_bootstrap_commit(struct dm_space_map *sm)
@ -683,8 +701,8 @@ static const struct dm_space_map bootstrap_ops = {
.get_count = sm_bootstrap_get_count,
.count_is_more_than_one = sm_bootstrap_count_is_more_than_one,
.set_count = sm_bootstrap_set_count,
.inc_block = sm_bootstrap_inc_block,
.dec_block = sm_bootstrap_dec_block,
.inc_blocks = sm_bootstrap_inc_blocks,
.dec_blocks = sm_bootstrap_dec_blocks,
.new_block = sm_bootstrap_new_block,
.commit = sm_bootstrap_commit,
.root_size = sm_bootstrap_root_size,
@ -696,7 +714,7 @@ static const struct dm_space_map bootstrap_ops = {
static int sm_metadata_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
{
int r, i;
int r;
struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
dm_block_t old_len = smm->ll.nr_blocks;
@ -718,9 +736,7 @@ static int sm_metadata_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
* allocate any new blocks.
*/
do {
for (i = old_len; !r && i < smm->begin; i++)
r = add_bop(smm, BOP_INC, i);
r = add_bop(smm, BOP_INC, old_len, smm->begin);
if (r)
goto out;
@ -767,7 +783,6 @@ int dm_sm_metadata_create(struct dm_space_map *sm,
dm_block_t superblock)
{
int r;
dm_block_t i;
struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
smm->begin = superblock + 1;
@ -792,9 +807,7 @@ int dm_sm_metadata_create(struct dm_space_map *sm,
* Now we need to update the newly created data structures with the
* allocated blocks that they were built from.
*/
for (i = superblock; !r && i < smm->begin; i++)
r = add_bop(smm, BOP_INC, i);
r = add_bop(smm, BOP_INC, superblock, smm->begin);
if (r)
return r;

View File

@ -46,8 +46,8 @@ struct dm_space_map {
int (*commit)(struct dm_space_map *sm);
int (*inc_block)(struct dm_space_map *sm, dm_block_t b);
int (*dec_block)(struct dm_space_map *sm, dm_block_t b);
int (*inc_blocks)(struct dm_space_map *sm, dm_block_t b, dm_block_t e);
int (*dec_blocks)(struct dm_space_map *sm, dm_block_t b, dm_block_t e);
/*
* new_block will increment the returned block.
@ -117,14 +117,24 @@ static inline int dm_sm_commit(struct dm_space_map *sm)
return sm->commit(sm);
}
static inline int dm_sm_inc_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
{
return sm->inc_blocks(sm, b, e);
}
static inline int dm_sm_inc_block(struct dm_space_map *sm, dm_block_t b)
{
return sm->inc_block(sm, b);
return dm_sm_inc_blocks(sm, b, b + 1);
}
static inline int dm_sm_dec_blocks(struct dm_space_map *sm, dm_block_t b, dm_block_t e)
{
return sm->dec_blocks(sm, b, e);
}
static inline int dm_sm_dec_block(struct dm_space_map *sm, dm_block_t b)
{
return sm->dec_block(sm, b);
return dm_sm_dec_blocks(sm, b, b + 1);
}
static inline int dm_sm_new_block(struct dm_space_map *sm, dm_block_t *b)

View File

@ -359,6 +359,17 @@ void dm_tm_inc(struct dm_transaction_manager *tm, dm_block_t b)
}
EXPORT_SYMBOL_GPL(dm_tm_inc);
void dm_tm_inc_range(struct dm_transaction_manager *tm, dm_block_t b, dm_block_t e)
{
/*
* The non-blocking clone doesn't support this.
*/
BUG_ON(tm->is_clone);
dm_sm_inc_blocks(tm->sm, b, e);
}
EXPORT_SYMBOL_GPL(dm_tm_inc_range);
void dm_tm_dec(struct dm_transaction_manager *tm, dm_block_t b)
{
/*
@ -370,6 +381,47 @@ void dm_tm_dec(struct dm_transaction_manager *tm, dm_block_t b)
}
EXPORT_SYMBOL_GPL(dm_tm_dec);
void dm_tm_dec_range(struct dm_transaction_manager *tm, dm_block_t b, dm_block_t e)
{
/*
* The non-blocking clone doesn't support this.
*/
BUG_ON(tm->is_clone);
dm_sm_dec_blocks(tm->sm, b, e);
}
EXPORT_SYMBOL_GPL(dm_tm_dec_range);
void dm_tm_with_runs(struct dm_transaction_manager *tm,
const __le64 *value_le, unsigned count, dm_tm_run_fn fn)
{
uint64_t b, begin, end;
bool in_run = false;
unsigned i;
for (i = 0; i < count; i++, value_le++) {
b = le64_to_cpu(*value_le);
if (in_run) {
if (b == end)
end++;
else {
fn(tm, begin, end);
begin = b;
end = b + 1;
}
} else {
in_run = true;
begin = b;
end = b + 1;
}
}
if (in_run)
fn(tm, begin, end);
}
EXPORT_SYMBOL_GPL(dm_tm_with_runs);
int dm_tm_ref(struct dm_transaction_manager *tm, dm_block_t b,
uint32_t *result)
{
@ -379,6 +431,15 @@ int dm_tm_ref(struct dm_transaction_manager *tm, dm_block_t b,
return dm_sm_get_count(tm->sm, b, result);
}
int dm_tm_block_is_shared(struct dm_transaction_manager *tm, dm_block_t b,
int *result)
{
if (tm->is_clone)
return -EWOULDBLOCK;
return dm_sm_count_is_more_than_one(tm->sm, b, result);
}
struct dm_block_manager *dm_tm_get_bm(struct dm_transaction_manager *tm)
{
return tm->bm;

View File

@ -100,11 +100,27 @@ void dm_tm_unlock(struct dm_transaction_manager *tm, struct dm_block *b);
* Functions for altering the reference count of a block directly.
*/
void dm_tm_inc(struct dm_transaction_manager *tm, dm_block_t b);
void dm_tm_inc_range(struct dm_transaction_manager *tm, dm_block_t b, dm_block_t e);
void dm_tm_dec(struct dm_transaction_manager *tm, dm_block_t b);
void dm_tm_dec_range(struct dm_transaction_manager *tm, dm_block_t b, dm_block_t e);
int dm_tm_ref(struct dm_transaction_manager *tm, dm_block_t b,
uint32_t *result);
/*
* Builds up runs of adjacent blocks, and then calls the given fn
* (typically dm_tm_inc/dec). Very useful when you have to perform
* the same tm operation on all values in a btree leaf.
*/
typedef void (*dm_tm_run_fn)(struct dm_transaction_manager *, dm_block_t, dm_block_t);
void dm_tm_with_runs(struct dm_transaction_manager *tm,
const __le64 *value_le, unsigned count, dm_tm_run_fn fn);
int dm_tm_ref(struct dm_transaction_manager *tm, dm_block_t b, uint32_t *result);
/*
* Finds out if a given block is shared (ie. has a reference count higher
* than one).
*/
int dm_tm_block_is_shared(struct dm_transaction_manager *tm, dm_block_t b,
int *result);
struct dm_block_manager *dm_tm_get_bm(struct dm_transaction_manager *tm);

View File

@ -300,6 +300,7 @@ enum {
BIO_CGROUP_ACCT, /* has been accounted to a cgroup */
BIO_TRACKED, /* set if bio goes through the rq_qos path */
BIO_REMAPPED,
BIO_ZONE_WRITE_LOCKED, /* Owns a zoned device zone write lock */
BIO_FLAG_LAST
};

View File

@ -1012,6 +1012,18 @@ static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
static inline unsigned int bio_zone_no(struct bio *bio)
{
return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev),
bio->bi_iter.bi_sector);
}
static inline unsigned int bio_zone_is_seq(struct bio *bio)
{
return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev),
bio->bi_iter.bi_sector);
}
static inline unsigned int blk_rq_zone_no(struct request *rq)
{
return blk_queue_zone_no(rq->q, blk_rq_pos(rq));

View File

@ -361,6 +361,12 @@ struct dm_target {
* Set if we need to limit the number of in-flight bios when swapping.
*/
bool limit_swap_bios:1;
/*
* Set if this target implements a a zoned device and needs emulation of
* zone append operations using regular writes.
*/
bool emulate_zone_append:1;
};
void *dm_per_bio_data(struct bio *bio, size_t data_size);
@ -478,7 +484,8 @@ struct dm_report_zones_args {
/* must be filled by ->report_zones before calling dm_report_zones_cb */
sector_t start;
};
int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data);
int dm_report_zones(struct block_device *bdev, sector_t start, sector_t sector,
struct dm_report_zones_args *args, unsigned int nr_zones);
#endif /* CONFIG_BLK_DEV_ZONED */
/*

View File

@ -51,6 +51,7 @@ MODULE_PARM_DESC(name, description)
struct dm_kcopyd_client;
struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle);
void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc);
void dm_kcopyd_client_flush(struct dm_kcopyd_client *kc);
/*
* Submit a copy job to kcopyd. This is built on top of the