2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/arch/alpha/kernel/osf_sys.c
Frederic Weisbecker 2019e8a302 alpha: Fix jiffies based cputime assumption
That code wrongly assumes that cputime_t wraps jiffies_t. Lets use
the correct accessors/mutators.

In practice there should be no harm yet because alpha currently
only support tick based cputime accounting which is always jiffies
based.

Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Christoph Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc; John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2015-07-29 15:44:58 +02:00

1451 lines
34 KiB
C

/*
* linux/arch/alpha/kernel/osf_sys.c
*
* Copyright (C) 1995 Linus Torvalds
*/
/*
* This file handles some of the stranger OSF/1 system call interfaces.
* Some of the system calls expect a non-C calling standard, others have
* special parameter blocks..
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/syscalls.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/utsname.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/major.h>
#include <linux/stat.h>
#include <linux/mman.h>
#include <linux/shm.h>
#include <linux/poll.h>
#include <linux/file.h>
#include <linux/types.h>
#include <linux/ipc.h>
#include <linux/namei.h>
#include <linux/uio.h>
#include <linux/vfs.h>
#include <linux/rcupdate.h>
#include <linux/slab.h>
#include <asm/fpu.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/sysinfo.h>
#include <asm/thread_info.h>
#include <asm/hwrpb.h>
#include <asm/processor.h>
/*
* Brk needs to return an error. Still support Linux's brk(0) query idiom,
* which OSF programs just shouldn't be doing. We're still not quite
* identical to OSF as we don't return 0 on success, but doing otherwise
* would require changes to libc. Hopefully this is good enough.
*/
SYSCALL_DEFINE1(osf_brk, unsigned long, brk)
{
unsigned long retval = sys_brk(brk);
if (brk && brk != retval)
retval = -ENOMEM;
return retval;
}
/*
* This is pure guess-work..
*/
SYSCALL_DEFINE4(osf_set_program_attributes, unsigned long, text_start,
unsigned long, text_len, unsigned long, bss_start,
unsigned long, bss_len)
{
struct mm_struct *mm;
mm = current->mm;
mm->end_code = bss_start + bss_len;
mm->start_brk = bss_start + bss_len;
mm->brk = bss_start + bss_len;
#if 0
printk("set_program_attributes(%lx %lx %lx %lx)\n",
text_start, text_len, bss_start, bss_len);
#endif
return 0;
}
/*
* OSF/1 directory handling functions...
*
* The "getdents()" interface is much more sane: the "basep" stuff is
* braindamage (it can't really handle filesystems where the directory
* offset differences aren't the same as "d_reclen").
*/
#define NAME_OFFSET offsetof (struct osf_dirent, d_name)
struct osf_dirent {
unsigned int d_ino;
unsigned short d_reclen;
unsigned short d_namlen;
char d_name[1];
};
struct osf_dirent_callback {
struct dir_context ctx;
struct osf_dirent __user *dirent;
long __user *basep;
unsigned int count;
int error;
};
static int
osf_filldir(struct dir_context *ctx, const char *name, int namlen,
loff_t offset, u64 ino, unsigned int d_type)
{
struct osf_dirent __user *dirent;
struct osf_dirent_callback *buf =
container_of(ctx, struct osf_dirent_callback, ctx);
unsigned int reclen = ALIGN(NAME_OFFSET + namlen + 1, sizeof(u32));
unsigned int d_ino;
buf->error = -EINVAL; /* only used if we fail */
if (reclen > buf->count)
return -EINVAL;
d_ino = ino;
if (sizeof(d_ino) < sizeof(ino) && d_ino != ino) {
buf->error = -EOVERFLOW;
return -EOVERFLOW;
}
if (buf->basep) {
if (put_user(offset, buf->basep))
goto Efault;
buf->basep = NULL;
}
dirent = buf->dirent;
if (put_user(d_ino, &dirent->d_ino) ||
put_user(namlen, &dirent->d_namlen) ||
put_user(reclen, &dirent->d_reclen) ||
copy_to_user(dirent->d_name, name, namlen) ||
put_user(0, dirent->d_name + namlen))
goto Efault;
dirent = (void __user *)dirent + reclen;
buf->dirent = dirent;
buf->count -= reclen;
return 0;
Efault:
buf->error = -EFAULT;
return -EFAULT;
}
SYSCALL_DEFINE4(osf_getdirentries, unsigned int, fd,
struct osf_dirent __user *, dirent, unsigned int, count,
long __user *, basep)
{
int error;
struct fd arg = fdget(fd);
struct osf_dirent_callback buf = {
.ctx.actor = osf_filldir,
.dirent = dirent,
.basep = basep,
.count = count
};
if (!arg.file)
return -EBADF;
error = iterate_dir(arg.file, &buf.ctx);
if (error >= 0)
error = buf.error;
if (count != buf.count)
error = count - buf.count;
fdput(arg);
return error;
}
#undef NAME_OFFSET
SYSCALL_DEFINE6(osf_mmap, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags, unsigned long, fd,
unsigned long, off)
{
unsigned long ret = -EINVAL;
#if 0
if (flags & (_MAP_HASSEMAPHORE | _MAP_INHERIT | _MAP_UNALIGNED))
printk("%s: unimplemented OSF mmap flags %04lx\n",
current->comm, flags);
#endif
if ((off + PAGE_ALIGN(len)) < off)
goto out;
if (off & ~PAGE_MASK)
goto out;
ret = sys_mmap_pgoff(addr, len, prot, flags, fd, off >> PAGE_SHIFT);
out:
return ret;
}
struct osf_stat {
int st_dev;
int st_pad1;
unsigned st_mode;
unsigned short st_nlink;
short st_nlink_reserved;
unsigned st_uid;
unsigned st_gid;
int st_rdev;
int st_ldev;
long st_size;
int st_pad2;
int st_uatime;
int st_pad3;
int st_umtime;
int st_pad4;
int st_uctime;
int st_pad5;
int st_pad6;
unsigned st_flags;
unsigned st_gen;
long st_spare[4];
unsigned st_ino;
int st_ino_reserved;
int st_atime;
int st_atime_reserved;
int st_mtime;
int st_mtime_reserved;
int st_ctime;
int st_ctime_reserved;
long st_blksize;
long st_blocks;
};
/*
* The OSF/1 statfs structure is much larger, but this should
* match the beginning, at least.
*/
struct osf_statfs {
short f_type;
short f_flags;
int f_fsize;
int f_bsize;
int f_blocks;
int f_bfree;
int f_bavail;
int f_files;
int f_ffree;
__kernel_fsid_t f_fsid;
};
struct osf_statfs64 {
short f_type;
short f_flags;
int f_pad1;
int f_pad2;
int f_pad3;
int f_pad4;
int f_pad5;
int f_pad6;
int f_pad7;
__kernel_fsid_t f_fsid;
u_short f_namemax;
short f_reserved1;
int f_spare[8];
char f_pad8[90];
char f_pad9[90];
long mount_info[10];
u_long f_flags2;
long f_spare2[14];
long f_fsize;
long f_bsize;
long f_blocks;
long f_bfree;
long f_bavail;
long f_files;
long f_ffree;
};
static int
linux_to_osf_stat(struct kstat *lstat, struct osf_stat __user *osf_stat)
{
struct osf_stat tmp = { 0 };
tmp.st_dev = lstat->dev;
tmp.st_mode = lstat->mode;
tmp.st_nlink = lstat->nlink;
tmp.st_uid = from_kuid_munged(current_user_ns(), lstat->uid);
tmp.st_gid = from_kgid_munged(current_user_ns(), lstat->gid);
tmp.st_rdev = lstat->rdev;
tmp.st_ldev = lstat->rdev;
tmp.st_size = lstat->size;
tmp.st_uatime = lstat->atime.tv_nsec / 1000;
tmp.st_umtime = lstat->mtime.tv_nsec / 1000;
tmp.st_uctime = lstat->ctime.tv_nsec / 1000;
tmp.st_ino = lstat->ino;
tmp.st_atime = lstat->atime.tv_sec;
tmp.st_mtime = lstat->mtime.tv_sec;
tmp.st_ctime = lstat->ctime.tv_sec;
tmp.st_blksize = lstat->blksize;
tmp.st_blocks = lstat->blocks;
return copy_to_user(osf_stat, &tmp, sizeof(tmp)) ? -EFAULT : 0;
}
static int
linux_to_osf_statfs(struct kstatfs *linux_stat, struct osf_statfs __user *osf_stat,
unsigned long bufsiz)
{
struct osf_statfs tmp_stat;
tmp_stat.f_type = linux_stat->f_type;
tmp_stat.f_flags = 0; /* mount flags */
tmp_stat.f_fsize = linux_stat->f_frsize;
tmp_stat.f_bsize = linux_stat->f_bsize;
tmp_stat.f_blocks = linux_stat->f_blocks;
tmp_stat.f_bfree = linux_stat->f_bfree;
tmp_stat.f_bavail = linux_stat->f_bavail;
tmp_stat.f_files = linux_stat->f_files;
tmp_stat.f_ffree = linux_stat->f_ffree;
tmp_stat.f_fsid = linux_stat->f_fsid;
if (bufsiz > sizeof(tmp_stat))
bufsiz = sizeof(tmp_stat);
return copy_to_user(osf_stat, &tmp_stat, bufsiz) ? -EFAULT : 0;
}
static int
linux_to_osf_statfs64(struct kstatfs *linux_stat, struct osf_statfs64 __user *osf_stat,
unsigned long bufsiz)
{
struct osf_statfs64 tmp_stat = { 0 };
tmp_stat.f_type = linux_stat->f_type;
tmp_stat.f_fsize = linux_stat->f_frsize;
tmp_stat.f_bsize = linux_stat->f_bsize;
tmp_stat.f_blocks = linux_stat->f_blocks;
tmp_stat.f_bfree = linux_stat->f_bfree;
tmp_stat.f_bavail = linux_stat->f_bavail;
tmp_stat.f_files = linux_stat->f_files;
tmp_stat.f_ffree = linux_stat->f_ffree;
tmp_stat.f_fsid = linux_stat->f_fsid;
if (bufsiz > sizeof(tmp_stat))
bufsiz = sizeof(tmp_stat);
return copy_to_user(osf_stat, &tmp_stat, bufsiz) ? -EFAULT : 0;
}
SYSCALL_DEFINE3(osf_statfs, const char __user *, pathname,
struct osf_statfs __user *, buffer, unsigned long, bufsiz)
{
struct kstatfs linux_stat;
int error = user_statfs(pathname, &linux_stat);
if (!error)
error = linux_to_osf_statfs(&linux_stat, buffer, bufsiz);
return error;
}
SYSCALL_DEFINE2(osf_stat, char __user *, name, struct osf_stat __user *, buf)
{
struct kstat stat;
int error;
error = vfs_stat(name, &stat);
if (error)
return error;
return linux_to_osf_stat(&stat, buf);
}
SYSCALL_DEFINE2(osf_lstat, char __user *, name, struct osf_stat __user *, buf)
{
struct kstat stat;
int error;
error = vfs_lstat(name, &stat);
if (error)
return error;
return linux_to_osf_stat(&stat, buf);
}
SYSCALL_DEFINE2(osf_fstat, int, fd, struct osf_stat __user *, buf)
{
struct kstat stat;
int error;
error = vfs_fstat(fd, &stat);
if (error)
return error;
return linux_to_osf_stat(&stat, buf);
}
SYSCALL_DEFINE3(osf_fstatfs, unsigned long, fd,
struct osf_statfs __user *, buffer, unsigned long, bufsiz)
{
struct kstatfs linux_stat;
int error = fd_statfs(fd, &linux_stat);
if (!error)
error = linux_to_osf_statfs(&linux_stat, buffer, bufsiz);
return error;
}
SYSCALL_DEFINE3(osf_statfs64, char __user *, pathname,
struct osf_statfs64 __user *, buffer, unsigned long, bufsiz)
{
struct kstatfs linux_stat;
int error = user_statfs(pathname, &linux_stat);
if (!error)
error = linux_to_osf_statfs64(&linux_stat, buffer, bufsiz);
return error;
}
SYSCALL_DEFINE3(osf_fstatfs64, unsigned long, fd,
struct osf_statfs64 __user *, buffer, unsigned long, bufsiz)
{
struct kstatfs linux_stat;
int error = fd_statfs(fd, &linux_stat);
if (!error)
error = linux_to_osf_statfs64(&linux_stat, buffer, bufsiz);
return error;
}
/*
* Uhh.. OSF/1 mount parameters aren't exactly obvious..
*
* Although to be frank, neither are the native Linux/i386 ones..
*/
struct ufs_args {
char __user *devname;
int flags;
uid_t exroot;
};
struct cdfs_args {
char __user *devname;
int flags;
uid_t exroot;
/* This has lots more here, which Linux handles with the option block
but I'm too lazy to do the translation into ASCII. */
};
struct procfs_args {
char __user *devname;
int flags;
uid_t exroot;
};
/*
* We can't actually handle ufs yet, so we translate UFS mounts to
* ext2fs mounts. I wouldn't mind a UFS filesystem, but the UFS
* layout is so braindead it's a major headache doing it.
*
* Just how long ago was it written? OTOH our UFS driver may be still
* unhappy with OSF UFS. [CHECKME]
*/
static int
osf_ufs_mount(const char __user *dirname,
struct ufs_args __user *args, int flags)
{
int retval;
struct cdfs_args tmp;
struct filename *devname;
retval = -EFAULT;
if (copy_from_user(&tmp, args, sizeof(tmp)))
goto out;
devname = getname(tmp.devname);
retval = PTR_ERR(devname);
if (IS_ERR(devname))
goto out;
retval = do_mount(devname->name, dirname, "ext2", flags, NULL);
putname(devname);
out:
return retval;
}
static int
osf_cdfs_mount(const char __user *dirname,
struct cdfs_args __user *args, int flags)
{
int retval;
struct cdfs_args tmp;
struct filename *devname;
retval = -EFAULT;
if (copy_from_user(&tmp, args, sizeof(tmp)))
goto out;
devname = getname(tmp.devname);
retval = PTR_ERR(devname);
if (IS_ERR(devname))
goto out;
retval = do_mount(devname->name, dirname, "iso9660", flags, NULL);
putname(devname);
out:
return retval;
}
static int
osf_procfs_mount(const char __user *dirname,
struct procfs_args __user *args, int flags)
{
struct procfs_args tmp;
if (copy_from_user(&tmp, args, sizeof(tmp)))
return -EFAULT;
return do_mount("", dirname, "proc", flags, NULL);
}
SYSCALL_DEFINE4(osf_mount, unsigned long, typenr, const char __user *, path,
int, flag, void __user *, data)
{
int retval;
switch (typenr) {
case 1:
retval = osf_ufs_mount(path, data, flag);
break;
case 6:
retval = osf_cdfs_mount(path, data, flag);
break;
case 9:
retval = osf_procfs_mount(path, data, flag);
break;
default:
retval = -EINVAL;
printk("osf_mount(%ld, %x)\n", typenr, flag);
}
return retval;
}
SYSCALL_DEFINE1(osf_utsname, char __user *, name)
{
int error;
down_read(&uts_sem);
error = -EFAULT;
if (copy_to_user(name + 0, utsname()->sysname, 32))
goto out;
if (copy_to_user(name + 32, utsname()->nodename, 32))
goto out;
if (copy_to_user(name + 64, utsname()->release, 32))
goto out;
if (copy_to_user(name + 96, utsname()->version, 32))
goto out;
if (copy_to_user(name + 128, utsname()->machine, 32))
goto out;
error = 0;
out:
up_read(&uts_sem);
return error;
}
SYSCALL_DEFINE0(getpagesize)
{
return PAGE_SIZE;
}
SYSCALL_DEFINE0(getdtablesize)
{
return sysctl_nr_open;
}
/*
* For compatibility with OSF/1 only. Use utsname(2) instead.
*/
SYSCALL_DEFINE2(osf_getdomainname, char __user *, name, int, namelen)
{
unsigned len;
int i;
if (!access_ok(VERIFY_WRITE, name, namelen))
return -EFAULT;
len = namelen;
if (len > 32)
len = 32;
down_read(&uts_sem);
for (i = 0; i < len; ++i) {
__put_user(utsname()->domainname[i], name + i);
if (utsname()->domainname[i] == '\0')
break;
}
up_read(&uts_sem);
return 0;
}
/*
* The following stuff should move into a header file should it ever
* be labeled "officially supported." Right now, there is just enough
* support to avoid applications (such as tar) printing error
* messages. The attributes are not really implemented.
*/
/*
* Values for Property list entry flag
*/
#define PLE_PROPAGATE_ON_COPY 0x1 /* cp(1) will copy entry
by default */
#define PLE_FLAG_MASK 0x1 /* Valid flag values */
#define PLE_FLAG_ALL -1 /* All flag value */
struct proplistname_args {
unsigned int pl_mask;
unsigned int pl_numnames;
char **pl_names;
};
union pl_args {
struct setargs {
char __user *path;
long follow;
long nbytes;
char __user *buf;
} set;
struct fsetargs {
long fd;
long nbytes;
char __user *buf;
} fset;
struct getargs {
char __user *path;
long follow;
struct proplistname_args __user *name_args;
long nbytes;
char __user *buf;
int __user *min_buf_size;
} get;
struct fgetargs {
long fd;
struct proplistname_args __user *name_args;
long nbytes;
char __user *buf;
int __user *min_buf_size;
} fget;
struct delargs {
char __user *path;
long follow;
struct proplistname_args __user *name_args;
} del;
struct fdelargs {
long fd;
struct proplistname_args __user *name_args;
} fdel;
};
enum pl_code {
PL_SET = 1, PL_FSET = 2,
PL_GET = 3, PL_FGET = 4,
PL_DEL = 5, PL_FDEL = 6
};
SYSCALL_DEFINE2(osf_proplist_syscall, enum pl_code, code,
union pl_args __user *, args)
{
long error;
int __user *min_buf_size_ptr;
switch (code) {
case PL_SET:
if (get_user(error, &args->set.nbytes))
error = -EFAULT;
break;
case PL_FSET:
if (get_user(error, &args->fset.nbytes))
error = -EFAULT;
break;
case PL_GET:
error = get_user(min_buf_size_ptr, &args->get.min_buf_size);
if (error)
break;
error = put_user(0, min_buf_size_ptr);
break;
case PL_FGET:
error = get_user(min_buf_size_ptr, &args->fget.min_buf_size);
if (error)
break;
error = put_user(0, min_buf_size_ptr);
break;
case PL_DEL:
case PL_FDEL:
error = 0;
break;
default:
error = -EOPNOTSUPP;
break;
};
return error;
}
SYSCALL_DEFINE2(osf_sigstack, struct sigstack __user *, uss,
struct sigstack __user *, uoss)
{
unsigned long usp = rdusp();
unsigned long oss_sp = current->sas_ss_sp + current->sas_ss_size;
unsigned long oss_os = on_sig_stack(usp);
int error;
if (uss) {
void __user *ss_sp;
error = -EFAULT;
if (get_user(ss_sp, &uss->ss_sp))
goto out;
/* If the current stack was set with sigaltstack, don't
swap stacks while we are on it. */
error = -EPERM;
if (current->sas_ss_sp && on_sig_stack(usp))
goto out;
/* Since we don't know the extent of the stack, and we don't
track onstack-ness, but rather calculate it, we must
presume a size. Ho hum this interface is lossy. */
current->sas_ss_sp = (unsigned long)ss_sp - SIGSTKSZ;
current->sas_ss_size = SIGSTKSZ;
}
if (uoss) {
error = -EFAULT;
if (! access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))
|| __put_user(oss_sp, &uoss->ss_sp)
|| __put_user(oss_os, &uoss->ss_onstack))
goto out;
}
error = 0;
out:
return error;
}
SYSCALL_DEFINE3(osf_sysinfo, int, command, char __user *, buf, long, count)
{
const char *sysinfo_table[] = {
utsname()->sysname,
utsname()->nodename,
utsname()->release,
utsname()->version,
utsname()->machine,
"alpha", /* instruction set architecture */
"dummy", /* hardware serial number */
"dummy", /* hardware manufacturer */
"dummy", /* secure RPC domain */
};
unsigned long offset;
const char *res;
long len, err = -EINVAL;
offset = command-1;
if (offset >= ARRAY_SIZE(sysinfo_table)) {
/* Digital UNIX has a few unpublished interfaces here */
printk("sysinfo(%d)", command);
goto out;
}
down_read(&uts_sem);
res = sysinfo_table[offset];
len = strlen(res)+1;
if ((unsigned long)len > (unsigned long)count)
len = count;
if (copy_to_user(buf, res, len))
err = -EFAULT;
else
err = 0;
up_read(&uts_sem);
out:
return err;
}
SYSCALL_DEFINE5(osf_getsysinfo, unsigned long, op, void __user *, buffer,
unsigned long, nbytes, int __user *, start, void __user *, arg)
{
unsigned long w;
struct percpu_struct *cpu;
switch (op) {
case GSI_IEEE_FP_CONTROL:
/* Return current software fp control & status bits. */
/* Note that DU doesn't verify available space here. */
w = current_thread_info()->ieee_state & IEEE_SW_MASK;
w = swcr_update_status(w, rdfpcr());
if (put_user(w, (unsigned long __user *) buffer))
return -EFAULT;
return 0;
case GSI_IEEE_STATE_AT_SIGNAL:
/*
* Not sure anybody will ever use this weird stuff. These
* ops can be used (under OSF/1) to set the fpcr that should
* be used when a signal handler starts executing.
*/
break;
case GSI_UACPROC:
if (nbytes < sizeof(unsigned int))
return -EINVAL;
w = current_thread_info()->status & UAC_BITMASK;
if (put_user(w, (unsigned int __user *)buffer))
return -EFAULT;
return 1;
case GSI_PROC_TYPE:
if (nbytes < sizeof(unsigned long))
return -EINVAL;
cpu = (struct percpu_struct*)
((char*)hwrpb + hwrpb->processor_offset);
w = cpu->type;
if (put_user(w, (unsigned long __user*)buffer))
return -EFAULT;
return 1;
case GSI_GET_HWRPB:
if (nbytes > sizeof(*hwrpb))
return -EINVAL;
if (copy_to_user(buffer, hwrpb, nbytes) != 0)
return -EFAULT;
return 1;
default:
break;
}
return -EOPNOTSUPP;
}
SYSCALL_DEFINE5(osf_setsysinfo, unsigned long, op, void __user *, buffer,
unsigned long, nbytes, int __user *, start, void __user *, arg)
{
switch (op) {
case SSI_IEEE_FP_CONTROL: {
unsigned long swcr, fpcr;
unsigned int *state;
/*
* Alpha Architecture Handbook 4.7.7.3:
* To be fully IEEE compiant, we must track the current IEEE
* exception state in software, because spurious bits can be
* set in the trap shadow of a software-complete insn.
*/
if (get_user(swcr, (unsigned long __user *)buffer))
return -EFAULT;
state = &current_thread_info()->ieee_state;
/* Update softare trap enable bits. */
*state = (*state & ~IEEE_SW_MASK) | (swcr & IEEE_SW_MASK);
/* Update the real fpcr. */
fpcr = rdfpcr() & FPCR_DYN_MASK;
fpcr |= ieee_swcr_to_fpcr(swcr);
wrfpcr(fpcr);
return 0;
}
case SSI_IEEE_RAISE_EXCEPTION: {
unsigned long exc, swcr, fpcr, fex;
unsigned int *state;
if (get_user(exc, (unsigned long __user *)buffer))
return -EFAULT;
state = &current_thread_info()->ieee_state;
exc &= IEEE_STATUS_MASK;
/* Update softare trap enable bits. */
swcr = (*state & IEEE_SW_MASK) | exc;
*state |= exc;
/* Update the real fpcr. */
fpcr = rdfpcr();
fpcr |= ieee_swcr_to_fpcr(swcr);
wrfpcr(fpcr);
/* If any exceptions set by this call, and are unmasked,
send a signal. Old exceptions are not signaled. */
fex = (exc >> IEEE_STATUS_TO_EXCSUM_SHIFT) & swcr;
if (fex) {
siginfo_t info;
int si_code = 0;
if (fex & IEEE_TRAP_ENABLE_DNO) si_code = FPE_FLTUND;
if (fex & IEEE_TRAP_ENABLE_INE) si_code = FPE_FLTRES;
if (fex & IEEE_TRAP_ENABLE_UNF) si_code = FPE_FLTUND;
if (fex & IEEE_TRAP_ENABLE_OVF) si_code = FPE_FLTOVF;
if (fex & IEEE_TRAP_ENABLE_DZE) si_code = FPE_FLTDIV;
if (fex & IEEE_TRAP_ENABLE_INV) si_code = FPE_FLTINV;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = si_code;
info.si_addr = NULL; /* FIXME */
send_sig_info(SIGFPE, &info, current);
}
return 0;
}
case SSI_IEEE_STATE_AT_SIGNAL:
case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
/*
* Not sure anybody will ever use this weird stuff. These
* ops can be used (under OSF/1) to set the fpcr that should
* be used when a signal handler starts executing.
*/
break;
case SSI_NVPAIRS: {
unsigned __user *p = buffer;
unsigned i;
for (i = 0, p = buffer; i < nbytes; ++i, p += 2) {
unsigned v, w, status;
if (get_user(v, p) || get_user(w, p + 1))
return -EFAULT;
switch (v) {
case SSIN_UACPROC:
w &= UAC_BITMASK;
status = current_thread_info()->status;
status = (status & ~UAC_BITMASK) | w;
current_thread_info()->status = status;
break;
default:
return -EOPNOTSUPP;
}
}
return 0;
}
case SSI_LMF:
return 0;
default:
break;
}
return -EOPNOTSUPP;
}
/* Translations due to the fact that OSF's time_t is an int. Which
affects all sorts of things, like timeval and itimerval. */
extern struct timezone sys_tz;
struct timeval32
{
int tv_sec, tv_usec;
};
struct itimerval32
{
struct timeval32 it_interval;
struct timeval32 it_value;
};
static inline long
get_tv32(struct timeval *o, struct timeval32 __user *i)
{
return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
(__get_user(o->tv_sec, &i->tv_sec) |
__get_user(o->tv_usec, &i->tv_usec)));
}
static inline long
put_tv32(struct timeval32 __user *o, struct timeval *i)
{
return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
(__put_user(i->tv_sec, &o->tv_sec) |
__put_user(i->tv_usec, &o->tv_usec)));
}
static inline long
get_it32(struct itimerval *o, struct itimerval32 __user *i)
{
return (!access_ok(VERIFY_READ, i, sizeof(*i)) ||
(__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) |
__get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) |
__get_user(o->it_value.tv_sec, &i->it_value.tv_sec) |
__get_user(o->it_value.tv_usec, &i->it_value.tv_usec)));
}
static inline long
put_it32(struct itimerval32 __user *o, struct itimerval *i)
{
return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) ||
(__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) |
__put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) |
__put_user(i->it_value.tv_sec, &o->it_value.tv_sec) |
__put_user(i->it_value.tv_usec, &o->it_value.tv_usec)));
}
static inline void
jiffies_to_timeval32(unsigned long jiffies, struct timeval32 *value)
{
value->tv_usec = (jiffies % HZ) * (1000000L / HZ);
value->tv_sec = jiffies / HZ;
}
SYSCALL_DEFINE2(osf_gettimeofday, struct timeval32 __user *, tv,
struct timezone __user *, tz)
{
if (tv) {
struct timeval ktv;
do_gettimeofday(&ktv);
if (put_tv32(tv, &ktv))
return -EFAULT;
}
if (tz) {
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
return -EFAULT;
}
return 0;
}
SYSCALL_DEFINE2(osf_settimeofday, struct timeval32 __user *, tv,
struct timezone __user *, tz)
{
struct timespec kts;
struct timezone ktz;
if (tv) {
if (get_tv32((struct timeval *)&kts, tv))
return -EFAULT;
kts.tv_nsec *= 1000;
}
if (tz) {
if (copy_from_user(&ktz, tz, sizeof(*tz)))
return -EFAULT;
}
return do_sys_settimeofday(tv ? &kts : NULL, tz ? &ktz : NULL);
}
SYSCALL_DEFINE2(osf_getitimer, int, which, struct itimerval32 __user *, it)
{
struct itimerval kit;
int error;
error = do_getitimer(which, &kit);
if (!error && put_it32(it, &kit))
error = -EFAULT;
return error;
}
SYSCALL_DEFINE3(osf_setitimer, int, which, struct itimerval32 __user *, in,
struct itimerval32 __user *, out)
{
struct itimerval kin, kout;
int error;
if (in) {
if (get_it32(&kin, in))
return -EFAULT;
} else
memset(&kin, 0, sizeof(kin));
error = do_setitimer(which, &kin, out ? &kout : NULL);
if (error || !out)
return error;
if (put_it32(out, &kout))
return -EFAULT;
return 0;
}
SYSCALL_DEFINE2(osf_utimes, const char __user *, filename,
struct timeval32 __user *, tvs)
{
struct timespec tv[2];
if (tvs) {
struct timeval ktvs[2];
if (get_tv32(&ktvs[0], &tvs[0]) ||
get_tv32(&ktvs[1], &tvs[1]))
return -EFAULT;
if (ktvs[0].tv_usec < 0 || ktvs[0].tv_usec >= 1000000 ||
ktvs[1].tv_usec < 0 || ktvs[1].tv_usec >= 1000000)
return -EINVAL;
tv[0].tv_sec = ktvs[0].tv_sec;
tv[0].tv_nsec = 1000 * ktvs[0].tv_usec;
tv[1].tv_sec = ktvs[1].tv_sec;
tv[1].tv_nsec = 1000 * ktvs[1].tv_usec;
}
return do_utimes(AT_FDCWD, filename, tvs ? tv : NULL, 0);
}
SYSCALL_DEFINE5(osf_select, int, n, fd_set __user *, inp, fd_set __user *, outp,
fd_set __user *, exp, struct timeval32 __user *, tvp)
{
struct timespec end_time, *to = NULL;
if (tvp) {
time_t sec, usec;
to = &end_time;
if (!access_ok(VERIFY_READ, tvp, sizeof(*tvp))
|| __get_user(sec, &tvp->tv_sec)
|| __get_user(usec, &tvp->tv_usec)) {
return -EFAULT;
}
if (sec < 0 || usec < 0)
return -EINVAL;
if (poll_select_set_timeout(to, sec, usec * NSEC_PER_USEC))
return -EINVAL;
}
/* OSF does not copy back the remaining time. */
return core_sys_select(n, inp, outp, exp, to);
}
struct rusage32 {
struct timeval32 ru_utime; /* user time used */
struct timeval32 ru_stime; /* system time used */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims */
long ru_majflt; /* page faults */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary " */
};
SYSCALL_DEFINE2(osf_getrusage, int, who, struct rusage32 __user *, ru)
{
struct rusage32 r;
cputime_t utime, stime;
unsigned long utime_jiffies, stime_jiffies;
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
return -EINVAL;
memset(&r, 0, sizeof(r));
switch (who) {
case RUSAGE_SELF:
task_cputime(current, &utime, &stime);
utime_jiffies = cputime_to_jiffies(utime);
stime_jiffies = cputime_to_jiffies(stime);
jiffies_to_timeval32(utime_jiffies, &r.ru_utime);
jiffies_to_timeval32(stime_jiffies, &r.ru_stime);
r.ru_minflt = current->min_flt;
r.ru_majflt = current->maj_flt;
break;
case RUSAGE_CHILDREN:
utime_jiffies = cputime_to_jiffies(current->signal->cutime);
stime_jiffies = cputime_to_jiffies(current->signal->cstime);
jiffies_to_timeval32(utime_jiffies, &r.ru_utime);
jiffies_to_timeval32(stime_jiffies, &r.ru_stime);
r.ru_minflt = current->signal->cmin_flt;
r.ru_majflt = current->signal->cmaj_flt;
break;
}
return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
}
SYSCALL_DEFINE4(osf_wait4, pid_t, pid, int __user *, ustatus, int, options,
struct rusage32 __user *, ur)
{
struct rusage r;
long ret, err;
unsigned int status = 0;
mm_segment_t old_fs;
if (!ur)
return sys_wait4(pid, ustatus, options, NULL);
old_fs = get_fs();
set_fs (KERNEL_DS);
ret = sys_wait4(pid, (unsigned int __user *) &status, options,
(struct rusage __user *) &r);
set_fs (old_fs);
if (!access_ok(VERIFY_WRITE, ur, sizeof(*ur)))
return -EFAULT;
err = 0;
err |= put_user(status, ustatus);
err |= __put_user(r.ru_utime.tv_sec, &ur->ru_utime.tv_sec);
err |= __put_user(r.ru_utime.tv_usec, &ur->ru_utime.tv_usec);
err |= __put_user(r.ru_stime.tv_sec, &ur->ru_stime.tv_sec);
err |= __put_user(r.ru_stime.tv_usec, &ur->ru_stime.tv_usec);
err |= __put_user(r.ru_maxrss, &ur->ru_maxrss);
err |= __put_user(r.ru_ixrss, &ur->ru_ixrss);
err |= __put_user(r.ru_idrss, &ur->ru_idrss);
err |= __put_user(r.ru_isrss, &ur->ru_isrss);
err |= __put_user(r.ru_minflt, &ur->ru_minflt);
err |= __put_user(r.ru_majflt, &ur->ru_majflt);
err |= __put_user(r.ru_nswap, &ur->ru_nswap);
err |= __put_user(r.ru_inblock, &ur->ru_inblock);
err |= __put_user(r.ru_oublock, &ur->ru_oublock);
err |= __put_user(r.ru_msgsnd, &ur->ru_msgsnd);
err |= __put_user(r.ru_msgrcv, &ur->ru_msgrcv);
err |= __put_user(r.ru_nsignals, &ur->ru_nsignals);
err |= __put_user(r.ru_nvcsw, &ur->ru_nvcsw);
err |= __put_user(r.ru_nivcsw, &ur->ru_nivcsw);
return err ? err : ret;
}
/*
* I don't know what the parameters are: the first one
* seems to be a timeval pointer, and I suspect the second
* one is the time remaining.. Ho humm.. No documentation.
*/
SYSCALL_DEFINE2(osf_usleep_thread, struct timeval32 __user *, sleep,
struct timeval32 __user *, remain)
{
struct timeval tmp;
unsigned long ticks;
if (get_tv32(&tmp, sleep))
goto fault;
ticks = timeval_to_jiffies(&tmp);
ticks = schedule_timeout_interruptible(ticks);
if (remain) {
jiffies_to_timeval(ticks, &tmp);
if (put_tv32(remain, &tmp))
goto fault;
}
return 0;
fault:
return -EFAULT;
}
struct timex32 {
unsigned int modes; /* mode selector */
long offset; /* time offset (usec) */
long freq; /* frequency offset (scaled ppm) */
long maxerror; /* maximum error (usec) */
long esterror; /* estimated error (usec) */
int status; /* clock command/status */
long constant; /* pll time constant */
long precision; /* clock precision (usec) (read only) */
long tolerance; /* clock frequency tolerance (ppm)
* (read only)
*/
struct timeval32 time; /* (read only) */
long tick; /* (modified) usecs between clock ticks */
long ppsfreq; /* pps frequency (scaled ppm) (ro) */
long jitter; /* pps jitter (us) (ro) */
int shift; /* interval duration (s) (shift) (ro) */
long stabil; /* pps stability (scaled ppm) (ro) */
long jitcnt; /* jitter limit exceeded (ro) */
long calcnt; /* calibration intervals (ro) */
long errcnt; /* calibration errors (ro) */
long stbcnt; /* stability limit exceeded (ro) */
int :32; int :32; int :32; int :32;
int :32; int :32; int :32; int :32;
int :32; int :32; int :32; int :32;
};
SYSCALL_DEFINE1(old_adjtimex, struct timex32 __user *, txc_p)
{
struct timex txc;
int ret;
/* copy relevant bits of struct timex. */
if (copy_from_user(&txc, txc_p, offsetof(struct timex32, time)) ||
copy_from_user(&txc.tick, &txc_p->tick, sizeof(struct timex32) -
offsetof(struct timex32, time)))
return -EFAULT;
ret = do_adjtimex(&txc);
if (ret < 0)
return ret;
/* copy back to timex32 */
if (copy_to_user(txc_p, &txc, offsetof(struct timex32, time)) ||
(copy_to_user(&txc_p->tick, &txc.tick, sizeof(struct timex32) -
offsetof(struct timex32, tick))) ||
(put_tv32(&txc_p->time, &txc.time)))
return -EFAULT;
return ret;
}
/* Get an address range which is currently unmapped. Similar to the
generic version except that we know how to honor ADDR_LIMIT_32BIT. */
static unsigned long
arch_get_unmapped_area_1(unsigned long addr, unsigned long len,
unsigned long limit)
{
struct vm_unmapped_area_info info;
info.flags = 0;
info.length = len;
info.low_limit = addr;
info.high_limit = limit;
info.align_mask = 0;
info.align_offset = 0;
return vm_unmapped_area(&info);
}
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
unsigned long limit;
/* "32 bit" actually means 31 bit, since pointers sign extend. */
if (current->personality & ADDR_LIMIT_32BIT)
limit = 0x80000000;
else
limit = TASK_SIZE;
if (len > limit)
return -ENOMEM;
if (flags & MAP_FIXED)
return addr;
/* First, see if the given suggestion fits.
The OSF/1 loader (/sbin/loader) relies on us returning an
address larger than the requested if one exists, which is
a terribly broken way to program.
That said, I can see the use in being able to suggest not
merely specific addresses, but regions of memory -- perhaps
this feature should be incorporated into all ports? */
if (addr) {
addr = arch_get_unmapped_area_1 (PAGE_ALIGN(addr), len, limit);
if (addr != (unsigned long) -ENOMEM)
return addr;
}
/* Next, try allocating at TASK_UNMAPPED_BASE. */
addr = arch_get_unmapped_area_1 (PAGE_ALIGN(TASK_UNMAPPED_BASE),
len, limit);
if (addr != (unsigned long) -ENOMEM)
return addr;
/* Finally, try allocating in low memory. */
addr = arch_get_unmapped_area_1 (PAGE_SIZE, len, limit);
return addr;
}
#ifdef CONFIG_OSF4_COMPAT
/* Clear top 32 bits of iov_len in the user's buffer for
compatibility with old versions of OSF/1 where iov_len
was defined as int. */
static int
osf_fix_iov_len(const struct iovec __user *iov, unsigned long count)
{
unsigned long i;
for (i = 0 ; i < count ; i++) {
int __user *iov_len_high = (int __user *)&iov[i].iov_len + 1;
if (put_user(0, iov_len_high))
return -EFAULT;
}
return 0;
}
SYSCALL_DEFINE3(osf_readv, unsigned long, fd,
const struct iovec __user *, vector, unsigned long, count)
{
if (unlikely(personality(current->personality) == PER_OSF4))
if (osf_fix_iov_len(vector, count))
return -EFAULT;
return sys_readv(fd, vector, count);
}
SYSCALL_DEFINE3(osf_writev, unsigned long, fd,
const struct iovec __user *, vector, unsigned long, count)
{
if (unlikely(personality(current->personality) == PER_OSF4))
if (osf_fix_iov_len(vector, count))
return -EFAULT;
return sys_writev(fd, vector, count);
}
#endif
SYSCALL_DEFINE2(osf_getpriority, int, which, int, who)
{
int prio = sys_getpriority(which, who);
if (prio >= 0) {
/* Return value is the unbiased priority, i.e. 20 - prio.
This does result in negative return values, so signal
no error */
force_successful_syscall_return();
prio = 20 - prio;
}
return prio;
}
SYSCALL_DEFINE0(getxuid)
{
current_pt_regs()->r20 = sys_geteuid();
return sys_getuid();
}
SYSCALL_DEFINE0(getxgid)
{
current_pt_regs()->r20 = sys_getegid();
return sys_getgid();
}
SYSCALL_DEFINE0(getxpid)
{
current_pt_regs()->r20 = sys_getppid();
return sys_getpid();
}
SYSCALL_DEFINE0(alpha_pipe)
{
int fd[2];
int res = do_pipe_flags(fd, 0);
if (!res) {
/* The return values are in $0 and $20. */
current_pt_regs()->r20 = fd[1];
res = fd[0];
}
return res;
}
SYSCALL_DEFINE1(sethae, unsigned long, val)
{
current_pt_regs()->hae = val;
return 0;
}