2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 12:14:01 +08:00
linux-next/drivers/scsi/isci/port_config.c
Edmund Nadolski e301370ac5 isci: state machine cleanup
This cleans up several areas of the state machine mechanism:

 o Rename sci_base_state_machine_change_state to sci_change_state
 o Remove sci_base_state_machine_get_state function
 o Rename 'state_machine' struct member to 'sm' in client structs
 o Shorten the name of request states
 o Shorten state machine state names as follows:
        SCI_BASE_CONTROLLER_STATE_xxx to SCIC_xxx
        SCI_BASE_PHY_STATE_xxx to SCI_PHY_xxx
        SCIC_SDS_PHY_STARTING_SUBSTATE_xxx to SCI_PHY_SUB_xxx
        SCI_BASE_PORT_STATE_xxx to SCI_PORT_xxx and
        SCIC_SDS_PORT_READY_SUBSTATE_xxx to SCI_PORT_SUB_xxx
        SCI_BASE_REMOTE_DEVICE_STATE_xxx to SCI_DEV_xxx
        SCIC_SDS_STP_REMOTE_DEVICE_READY_SUBSTATE_xxx to SCI_STP_DEV_xxx
        SCIC_SDS_SMP_REMOTE_DEVICE_READY_SUBSTATE_xxx to SCI_SMP_DEV_xxx
        SCIC_SDS_REMOTE_NODE_CONTEXT_xxx_STATE to SCI_RNC_xxx

Signed-off-by: Edmund Nadolski <edmund.nadolski@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2011-07-03 04:04:50 -07:00

809 lines
27 KiB
C

/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "host.h"
#define SCIC_SDS_MPC_RECONFIGURATION_TIMEOUT (10)
#define SCIC_SDS_APC_RECONFIGURATION_TIMEOUT (10)
#define SCIC_SDS_APC_WAIT_LINK_UP_NOTIFICATION (100)
enum SCIC_SDS_APC_ACTIVITY {
SCIC_SDS_APC_SKIP_PHY,
SCIC_SDS_APC_ADD_PHY,
SCIC_SDS_APC_START_TIMER,
SCIC_SDS_APC_ACTIVITY_MAX
};
/*
* ******************************************************************************
* General port configuration agent routines
* ****************************************************************************** */
/**
*
* @address_one: A SAS Address to be compared.
* @address_two: A SAS Address to be compared.
*
* Compare the two SAS Address and if SAS Address One is greater than SAS
* Address Two then return > 0 else if SAS Address One is less than SAS Address
* Two return < 0 Otherwise they are the same return 0 A signed value of x > 0
* > y where x is returned for Address One > Address Two y is returned for
* Address One < Address Two 0 is returned ofr Address One = Address Two
*/
static s32 sci_sas_address_compare(
struct sci_sas_address address_one,
struct sci_sas_address address_two)
{
if (address_one.high > address_two.high) {
return 1;
} else if (address_one.high < address_two.high) {
return -1;
} else if (address_one.low > address_two.low) {
return 1;
} else if (address_one.low < address_two.low) {
return -1;
}
/* The two SAS Address must be identical */
return 0;
}
/**
*
* @controller: The controller object used for the port search.
* @phy: The phy object to match.
*
* This routine will find a matching port for the phy. This means that the
* port and phy both have the same broadcast sas address and same received sas
* address. The port address or the NULL if there is no matching
* port. port address if the port can be found to match the phy.
* NULL if there is no matching port for the phy.
*/
static struct scic_sds_port *scic_sds_port_configuration_agent_find_port(
struct scic_sds_controller *scic,
struct scic_sds_phy *phy)
{
u8 i;
struct sci_sas_address port_sas_address;
struct sci_sas_address port_attached_device_address;
struct sci_sas_address phy_sas_address;
struct sci_sas_address phy_attached_device_address;
/*
* Since this phy can be a member of a wide port check to see if one or
* more phys match the sent and received SAS address as this phy in which
* case it should participate in the same port.
*/
scic_sds_phy_get_sas_address(phy, &phy_sas_address);
scic_sds_phy_get_attached_sas_address(phy, &phy_attached_device_address);
for (i = 0; i < scic->logical_port_entries; i++) {
struct isci_host *ihost = scic_to_ihost(scic);
struct scic_sds_port *sci_port = &ihost->ports[i].sci;
scic_sds_port_get_sas_address(sci_port, &port_sas_address);
scic_sds_port_get_attached_sas_address(sci_port, &port_attached_device_address);
if (sci_sas_address_compare(port_sas_address, phy_sas_address) == 0 &&
sci_sas_address_compare(port_attached_device_address, phy_attached_device_address) == 0)
return sci_port;
}
return NULL;
}
/**
*
* @controller: This is the controller object that contains the port agent
* @port_agent: This is the port configruation agent for the controller.
*
* This routine will validate the port configuration is correct for the SCU
* hardware. The SCU hardware allows for port configurations as follows. LP0
* -> (PE0), (PE0, PE1), (PE0, PE1, PE2, PE3) LP1 -> (PE1) LP2 -> (PE2), (PE2,
* PE3) LP3 -> (PE3) enum sci_status SCI_SUCCESS the port configuration is valid for
* this port configuration agent. SCI_FAILURE_UNSUPPORTED_PORT_CONFIGURATION
* the port configuration is not valid for this port configuration agent.
*/
static enum sci_status scic_sds_port_configuration_agent_validate_ports(
struct scic_sds_controller *controller,
struct scic_sds_port_configuration_agent *port_agent)
{
struct isci_host *ihost = scic_to_ihost(controller);
struct sci_sas_address first_address;
struct sci_sas_address second_address;
/*
* Sanity check the max ranges for all the phys the max index
* is always equal to the port range index */
if (port_agent->phy_valid_port_range[0].max_index != 0 ||
port_agent->phy_valid_port_range[1].max_index != 1 ||
port_agent->phy_valid_port_range[2].max_index != 2 ||
port_agent->phy_valid_port_range[3].max_index != 3)
return SCI_FAILURE_UNSUPPORTED_PORT_CONFIGURATION;
/*
* This is a request to configure a single x4 port or at least attempt
* to make all the phys into a single port */
if (port_agent->phy_valid_port_range[0].min_index == 0 &&
port_agent->phy_valid_port_range[1].min_index == 0 &&
port_agent->phy_valid_port_range[2].min_index == 0 &&
port_agent->phy_valid_port_range[3].min_index == 0)
return SCI_SUCCESS;
/*
* This is a degenerate case where phy 1 and phy 2 are assigned
* to the same port this is explicitly disallowed by the hardware
* unless they are part of the same x4 port and this condition was
* already checked above. */
if (port_agent->phy_valid_port_range[2].min_index == 1) {
return SCI_FAILURE_UNSUPPORTED_PORT_CONFIGURATION;
}
/*
* PE0 and PE3 can never have the same SAS Address unless they
* are part of the same x4 wide port and we have already checked
* for this condition. */
scic_sds_phy_get_sas_address(&ihost->phys[0].sci, &first_address);
scic_sds_phy_get_sas_address(&ihost->phys[3].sci, &second_address);
if (sci_sas_address_compare(first_address, second_address) == 0) {
return SCI_FAILURE_UNSUPPORTED_PORT_CONFIGURATION;
}
/*
* PE0 and PE1 are configured into a 2x1 ports make sure that the
* SAS Address for PE0 and PE2 are different since they can not be
* part of the same port. */
if (port_agent->phy_valid_port_range[0].min_index == 0 &&
port_agent->phy_valid_port_range[1].min_index == 1) {
scic_sds_phy_get_sas_address(&ihost->phys[0].sci, &first_address);
scic_sds_phy_get_sas_address(&ihost->phys[2].sci, &second_address);
if (sci_sas_address_compare(first_address, second_address) == 0) {
return SCI_FAILURE_UNSUPPORTED_PORT_CONFIGURATION;
}
}
/*
* PE2 and PE3 are configured into a 2x1 ports make sure that the
* SAS Address for PE1 and PE3 are different since they can not be
* part of the same port. */
if (port_agent->phy_valid_port_range[2].min_index == 2 &&
port_agent->phy_valid_port_range[3].min_index == 3) {
scic_sds_phy_get_sas_address(&ihost->phys[1].sci, &first_address);
scic_sds_phy_get_sas_address(&ihost->phys[3].sci, &second_address);
if (sci_sas_address_compare(first_address, second_address) == 0) {
return SCI_FAILURE_UNSUPPORTED_PORT_CONFIGURATION;
}
}
return SCI_SUCCESS;
}
/*
* ******************************************************************************
* Manual port configuration agent routines
* ****************************************************************************** */
/**
*
*
* This routine will verify that all of the phys in the same port are using the
* same SAS address.
*/
static enum sci_status scic_sds_mpc_agent_validate_phy_configuration(
struct scic_sds_controller *controller,
struct scic_sds_port_configuration_agent *port_agent)
{
struct isci_host *ihost = scic_to_ihost(controller);
u32 phy_mask;
u32 assigned_phy_mask;
struct sci_sas_address sas_address;
struct sci_sas_address phy_assigned_address;
u8 port_index;
u8 phy_index;
assigned_phy_mask = 0;
sas_address.high = 0;
sas_address.low = 0;
for (port_index = 0; port_index < SCI_MAX_PORTS; port_index++) {
phy_mask = controller->oem_parameters.sds1.ports[port_index].phy_mask;
if (!phy_mask)
continue;
/*
* Make sure that one or more of the phys were not already assinged to
* a different port. */
if ((phy_mask & ~assigned_phy_mask) == 0) {
return SCI_FAILURE_UNSUPPORTED_PORT_CONFIGURATION;
}
/* Find the starting phy index for this round through the loop */
for (phy_index = 0; phy_index < SCI_MAX_PHYS; phy_index++) {
if ((phy_mask & (1 << phy_index)) == 0)
continue;
scic_sds_phy_get_sas_address(&ihost->phys[phy_index].sci,
&sas_address);
/*
* The phy_index can be used as the starting point for the
* port range since the hardware starts all logical ports
* the same as the PE index. */
port_agent->phy_valid_port_range[phy_index].min_index = port_index;
port_agent->phy_valid_port_range[phy_index].max_index = phy_index;
if (phy_index != port_index) {
return SCI_FAILURE_UNSUPPORTED_PORT_CONFIGURATION;
}
break;
}
/*
* See how many additional phys are being added to this logical port.
* Note: We have not moved the current phy_index so we will actually
* compare the startting phy with itself.
* This is expected and required to add the phy to the port. */
while (phy_index < SCI_MAX_PHYS) {
if ((phy_mask & (1 << phy_index)) == 0)
continue;
scic_sds_phy_get_sas_address(&ihost->phys[phy_index].sci,
&phy_assigned_address);
if (sci_sas_address_compare(sas_address, phy_assigned_address) != 0) {
/*
* The phy mask specified that this phy is part of the same port
* as the starting phy and it is not so fail this configuration */
return SCI_FAILURE_UNSUPPORTED_PORT_CONFIGURATION;
}
port_agent->phy_valid_port_range[phy_index].min_index = port_index;
port_agent->phy_valid_port_range[phy_index].max_index = phy_index;
scic_sds_port_add_phy(&ihost->ports[port_index].sci,
&ihost->phys[phy_index].sci);
assigned_phy_mask |= (1 << phy_index);
}
phy_index++;
}
return scic_sds_port_configuration_agent_validate_ports(controller, port_agent);
}
static void mpc_agent_timeout(unsigned long data)
{
u8 index;
struct sci_timer *tmr = (struct sci_timer *)data;
struct scic_sds_port_configuration_agent *port_agent;
struct scic_sds_controller *scic;
struct isci_host *ihost;
unsigned long flags;
u16 configure_phy_mask;
port_agent = container_of(tmr, typeof(*port_agent), timer);
scic = container_of(port_agent, typeof(*scic), port_agent);
ihost = scic_to_ihost(scic);
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
port_agent->timer_pending = false;
/* Find the mask of phys that are reported read but as yet unconfigured into a port */
configure_phy_mask = ~port_agent->phy_configured_mask & port_agent->phy_ready_mask;
for (index = 0; index < SCI_MAX_PHYS; index++) {
struct scic_sds_phy *sci_phy = &ihost->phys[index].sci;
if (configure_phy_mask & (1 << index)) {
port_agent->link_up_handler(scic, port_agent,
phy_get_non_dummy_port(sci_phy),
sci_phy);
}
}
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
/**
*
* @controller: This is the controller object that receives the link up
* notification.
* @port: This is the port object associated with the phy. If the is no
* associated port this is an NULL.
* @phy: This is the phy object which has gone ready.
*
* This method handles the manual port configuration link up notifications.
* Since all ports and phys are associate at initialization time we just turn
* around and notifiy the port object that there is a link up. If this PHY is
* not associated with a port there is no action taken. Is it possible to get a
* link up notification from a phy that has no assocoated port?
*/
static void scic_sds_mpc_agent_link_up(
struct scic_sds_controller *controller,
struct scic_sds_port_configuration_agent *port_agent,
struct scic_sds_port *port,
struct scic_sds_phy *phy)
{
/*
* If the port has an invalid handle then the phy was not assigned to
* a port. This is because the phy was not given the same SAS Address
* as the other PHYs in the port. */
if (port != NULL) {
port_agent->phy_ready_mask |= (1 << scic_sds_phy_get_index(phy));
scic_sds_port_link_up(port, phy);
if ((port->active_phy_mask & (1 << scic_sds_phy_get_index(phy))) != 0) {
port_agent->phy_configured_mask |= (1 << scic_sds_phy_get_index(phy));
}
}
}
/**
*
* @controller: This is the controller object that receives the link down
* notification.
* @port: This is the port object associated with the phy. If the is no
* associated port this is an NULL. The port is an invalid
* handle only if the phy was never port of this port. This happens when
* the phy is not broadcasting the same SAS address as the other phys in the
* assigned port.
* @phy: This is the phy object which has gone link down.
*
* This function handles the manual port configuration link down notifications.
* Since all ports and phys are associated at initialization time we just turn
* around and notifiy the port object of the link down event. If this PHY is
* not associated with a port there is no action taken. Is it possible to get a
* link down notification from a phy that has no assocoated port?
*/
static void scic_sds_mpc_agent_link_down(
struct scic_sds_controller *scic,
struct scic_sds_port_configuration_agent *port_agent,
struct scic_sds_port *sci_port,
struct scic_sds_phy *sci_phy)
{
if (sci_port != NULL) {
/*
* If we can form a new port from the remainder of the phys
* then we want to start the timer to allow the SCI User to
* cleanup old devices and rediscover the port before
* rebuilding the port with the phys that remain in the ready
* state.
*/
port_agent->phy_ready_mask &=
~(1 << scic_sds_phy_get_index(sci_phy));
port_agent->phy_configured_mask &=
~(1 << scic_sds_phy_get_index(sci_phy));
/*
* Check to see if there are more phys waiting to be
* configured into a port. If there are allow the SCI User
* to tear down this port, if necessary, and then reconstruct
* the port after the timeout.
*/
if ((port_agent->phy_configured_mask == 0x0000) &&
(port_agent->phy_ready_mask != 0x0000) &&
!port_agent->timer_pending) {
port_agent->timer_pending = true;
sci_mod_timer(&port_agent->timer,
SCIC_SDS_MPC_RECONFIGURATION_TIMEOUT);
}
scic_sds_port_link_down(sci_port, sci_phy);
}
}
/*
* ******************************************************************************
* Automatic port configuration agent routines
* ****************************************************************************** */
/**
*
*
* This routine will verify that the phys are assigned a valid SAS address for
* automatic port configuration mode.
*/
static enum sci_status scic_sds_apc_agent_validate_phy_configuration(
struct scic_sds_controller *controller,
struct scic_sds_port_configuration_agent *port_agent)
{
u8 phy_index;
u8 port_index;
struct sci_sas_address sas_address;
struct sci_sas_address phy_assigned_address;
struct isci_host *ihost = scic_to_ihost(controller);
phy_index = 0;
while (phy_index < SCI_MAX_PHYS) {
port_index = phy_index;
/* Get the assigned SAS Address for the first PHY on the controller. */
scic_sds_phy_get_sas_address(&ihost->phys[phy_index].sci,
&sas_address);
while (++phy_index < SCI_MAX_PHYS) {
scic_sds_phy_get_sas_address(&ihost->phys[phy_index].sci,
&phy_assigned_address);
/* Verify each of the SAS address are all the same for every PHY */
if (sci_sas_address_compare(sas_address, phy_assigned_address) == 0) {
port_agent->phy_valid_port_range[phy_index].min_index = port_index;
port_agent->phy_valid_port_range[phy_index].max_index = phy_index;
} else {
port_agent->phy_valid_port_range[phy_index].min_index = phy_index;
port_agent->phy_valid_port_range[phy_index].max_index = phy_index;
break;
}
}
}
return scic_sds_port_configuration_agent_validate_ports(controller, port_agent);
}
/**
*
* @controller: This is the controller object that receives the link up
* notification.
* @phy: This is the phy object which has gone link up.
*
* This method handles the automatic port configuration for link up
* notifications.
*/
static void scic_sds_apc_agent_configure_ports(
struct scic_sds_controller *controller,
struct scic_sds_port_configuration_agent *port_agent,
struct scic_sds_phy *phy,
bool start_timer)
{
u8 port_index;
enum sci_status status;
struct scic_sds_port *port;
enum SCIC_SDS_APC_ACTIVITY apc_activity = SCIC_SDS_APC_SKIP_PHY;
struct isci_host *ihost = scic_to_ihost(controller);
port = scic_sds_port_configuration_agent_find_port(controller, phy);
if (port != NULL) {
if (scic_sds_port_is_valid_phy_assignment(port, phy->phy_index))
apc_activity = SCIC_SDS_APC_ADD_PHY;
else
apc_activity = SCIC_SDS_APC_SKIP_PHY;
} else {
/*
* There is no matching Port for this PHY so lets search through the
* Ports and see if we can add the PHY to its own port or maybe start
* the timer and wait to see if a wider port can be made.
*
* Note the break when we reach the condition of the port id == phy id */
for (
port_index = port_agent->phy_valid_port_range[phy->phy_index].min_index;
port_index <= port_agent->phy_valid_port_range[phy->phy_index].max_index;
port_index++
) {
port = &ihost->ports[port_index].sci;
/* First we must make sure that this PHY can be added to this Port. */
if (scic_sds_port_is_valid_phy_assignment(port, phy->phy_index)) {
/*
* Port contains a PHY with a greater PHY ID than the current
* PHY that has gone link up. This phy can not be part of any
* port so skip it and move on. */
if (port->active_phy_mask > (1 << phy->phy_index)) {
apc_activity = SCIC_SDS_APC_SKIP_PHY;
break;
}
/*
* We have reached the end of our Port list and have not found
* any reason why we should not either add the PHY to the port
* or wait for more phys to become active. */
if (port->physical_port_index == phy->phy_index) {
/*
* The Port either has no active PHYs.
* Consider that if the port had any active PHYs we would have
* or active PHYs with
* a lower PHY Id than this PHY. */
if (apc_activity != SCIC_SDS_APC_START_TIMER) {
apc_activity = SCIC_SDS_APC_ADD_PHY;
}
break;
}
/*
* The current Port has no active PHYs and this PHY could be part
* of this Port. Since we dont know as yet setup to start the
* timer and see if there is a better configuration. */
if (port->active_phy_mask == 0) {
apc_activity = SCIC_SDS_APC_START_TIMER;
}
} else if (port->active_phy_mask != 0) {
/*
* The Port has an active phy and the current Phy can not
* participate in this port so skip the PHY and see if
* there is a better configuration. */
apc_activity = SCIC_SDS_APC_SKIP_PHY;
}
}
}
/*
* Check to see if the start timer operations should instead map to an
* add phy operation. This is caused because we have been waiting to
* add a phy to a port but could not becuase the automatic port
* configuration engine had a choice of possible ports for the phy.
* Since we have gone through a timeout we are going to restrict the
* choice to the smallest possible port. */
if (
(start_timer == false)
&& (apc_activity == SCIC_SDS_APC_START_TIMER)
) {
apc_activity = SCIC_SDS_APC_ADD_PHY;
}
switch (apc_activity) {
case SCIC_SDS_APC_ADD_PHY:
status = scic_sds_port_add_phy(port, phy);
if (status == SCI_SUCCESS) {
port_agent->phy_configured_mask |= (1 << phy->phy_index);
}
break;
case SCIC_SDS_APC_START_TIMER:
/*
* This can occur for either a link down event, or a link
* up event where we cannot yet tell the port to which a
* phy belongs.
*/
if (port_agent->timer_pending)
sci_del_timer(&port_agent->timer);
port_agent->timer_pending = true;
sci_mod_timer(&port_agent->timer,
SCIC_SDS_APC_WAIT_LINK_UP_NOTIFICATION);
break;
case SCIC_SDS_APC_SKIP_PHY:
default:
/* do nothing the PHY can not be made part of a port at this time. */
break;
}
}
/**
* scic_sds_apc_agent_link_up - handle apc link up events
* @scic: This is the controller object that receives the link up
* notification.
* @sci_port: This is the port object associated with the phy. If the is no
* associated port this is an NULL.
* @sci_phy: This is the phy object which has gone link up.
*
* This method handles the automatic port configuration for link up
* notifications. Is it possible to get a link down notification from a phy
* that has no assocoated port?
*/
static void scic_sds_apc_agent_link_up(struct scic_sds_controller *scic,
struct scic_sds_port_configuration_agent *port_agent,
struct scic_sds_port *sci_port,
struct scic_sds_phy *sci_phy)
{
u8 phy_index = sci_phy->phy_index;
if (!sci_port) {
/* the phy is not the part of this port */
port_agent->phy_ready_mask |= 1 << phy_index;
scic_sds_apc_agent_configure_ports(scic, port_agent, sci_phy, true);
} else {
/* the phy is already the part of the port */
u32 port_state = sci_port->sm.current_state_id;
/* if the PORT'S state is resetting then the link up is from
* port hard reset in this case, we need to tell the port
* that link up is recieved
*/
BUG_ON(port_state != SCI_PORT_RESETTING);
port_agent->phy_ready_mask |= 1 << phy_index;
scic_sds_port_link_up(sci_port, sci_phy);
}
}
/**
*
* @controller: This is the controller object that receives the link down
* notification.
* @port: This is the port object associated with the phy. If the is no
* associated port this is an NULL.
* @phy: This is the phy object which has gone link down.
*
* This method handles the automatic port configuration link down
* notifications. not associated with a port there is no action taken. Is it
* possible to get a link down notification from a phy that has no assocoated
* port?
*/
static void scic_sds_apc_agent_link_down(
struct scic_sds_controller *controller,
struct scic_sds_port_configuration_agent *port_agent,
struct scic_sds_port *port,
struct scic_sds_phy *phy)
{
port_agent->phy_ready_mask &= ~(1 << scic_sds_phy_get_index(phy));
if (port != NULL) {
if (port_agent->phy_configured_mask & (1 << phy->phy_index)) {
enum sci_status status;
status = scic_sds_port_remove_phy(port, phy);
if (status == SCI_SUCCESS) {
port_agent->phy_configured_mask &= ~(1 << phy->phy_index);
}
}
}
}
/* configure the phys into ports when the timer fires */
static void apc_agent_timeout(unsigned long data)
{
u32 index;
struct sci_timer *tmr = (struct sci_timer *)data;
struct scic_sds_port_configuration_agent *port_agent;
struct scic_sds_controller *scic;
struct isci_host *ihost;
unsigned long flags;
u16 configure_phy_mask;
port_agent = container_of(tmr, typeof(*port_agent), timer);
scic = container_of(port_agent, typeof(*scic), port_agent);
ihost = scic_to_ihost(scic);
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
port_agent->timer_pending = false;
configure_phy_mask = ~port_agent->phy_configured_mask & port_agent->phy_ready_mask;
if (!configure_phy_mask)
return;
for (index = 0; index < SCI_MAX_PHYS; index++) {
if ((configure_phy_mask & (1 << index)) == 0)
continue;
scic_sds_apc_agent_configure_ports(scic, port_agent,
&ihost->phys[index].sci, false);
}
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
/*
* ******************************************************************************
* Public port configuration agent routines
* ****************************************************************************** */
/**
*
*
* This method will construct the port configuration agent for operation. This
* call is universal for both manual port configuration and automatic port
* configuration modes.
*/
void scic_sds_port_configuration_agent_construct(
struct scic_sds_port_configuration_agent *port_agent)
{
u32 index;
port_agent->phy_configured_mask = 0x00;
port_agent->phy_ready_mask = 0x00;
port_agent->link_up_handler = NULL;
port_agent->link_down_handler = NULL;
port_agent->timer_pending = false;
for (index = 0; index < SCI_MAX_PORTS; index++) {
port_agent->phy_valid_port_range[index].min_index = 0;
port_agent->phy_valid_port_range[index].max_index = 0;
}
}
enum sci_status scic_sds_port_configuration_agent_initialize(
struct scic_sds_controller *scic,
struct scic_sds_port_configuration_agent *port_agent)
{
enum sci_status status;
enum scic_port_configuration_mode mode;
mode = scic->oem_parameters.sds1.controller.mode_type;
if (mode == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
status = scic_sds_mpc_agent_validate_phy_configuration(
scic, port_agent);
port_agent->link_up_handler = scic_sds_mpc_agent_link_up;
port_agent->link_down_handler = scic_sds_mpc_agent_link_down;
sci_init_timer(&port_agent->timer, mpc_agent_timeout);
} else {
status = scic_sds_apc_agent_validate_phy_configuration(
scic, port_agent);
port_agent->link_up_handler = scic_sds_apc_agent_link_up;
port_agent->link_down_handler = scic_sds_apc_agent_link_down;
sci_init_timer(&port_agent->timer, apc_agent_timeout);
}
return status;
}