2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 21:54:06 +08:00
linux-next/include/asm-cris/bitops.h
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

388 lines
9.7 KiB
C

/* asm/bitops.h for Linux/CRIS
*
* TODO: asm versions if speed is needed
*
* All bit operations return 0 if the bit was cleared before the
* operation and != 0 if it was not.
*
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
*/
#ifndef _CRIS_BITOPS_H
#define _CRIS_BITOPS_H
/* Currently this is unsuitable for consumption outside the kernel. */
#ifdef __KERNEL__
#include <asm/arch/bitops.h>
#include <asm/system.h>
#include <linux/compiler.h>
/*
* Some hacks to defeat gcc over-optimizations..
*/
struct __dummy { unsigned long a[100]; };
#define ADDR (*(struct __dummy *) addr)
#define CONST_ADDR (*(const struct __dummy *) addr)
/*
* set_bit - Atomically set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* This function is atomic and may not be reordered. See __set_bit()
* if you do not require the atomic guarantees.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
#define set_bit(nr, addr) (void)test_and_set_bit(nr, addr)
#define __set_bit(nr, addr) (void)__test_and_set_bit(nr, addr)
/*
* clear_bit - Clears a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* clear_bit() is atomic and may not be reordered. However, it does
* not contain a memory barrier, so if it is used for locking purposes,
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*/
#define clear_bit(nr, addr) (void)test_and_clear_bit(nr, addr)
#define __clear_bit(nr, addr) (void)__test_and_clear_bit(nr, addr)
/*
* change_bit - Toggle a bit in memory
* @nr: Bit to change
* @addr: Address to start counting from
*
* change_bit() is atomic and may not be reordered.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
#define change_bit(nr, addr) (void)test_and_change_bit(nr, addr)
/*
* __change_bit - Toggle a bit in memory
* @nr: the bit to change
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
#define __change_bit(nr, addr) (void)__test_and_change_bit(nr, addr)
/**
* test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
extern inline int test_and_set_bit(int nr, void *addr)
{
unsigned int mask, retval;
unsigned long flags;
unsigned int *adr = (unsigned int *)addr;
adr += nr >> 5;
mask = 1 << (nr & 0x1f);
local_save_flags(flags);
local_irq_disable();
retval = (mask & *adr) != 0;
*adr |= mask;
local_irq_restore(flags);
return retval;
}
extern inline int __test_and_set_bit(int nr, void *addr)
{
unsigned int mask, retval;
unsigned int *adr = (unsigned int *)addr;
adr += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *adr) != 0;
*adr |= mask;
return retval;
}
/*
* clear_bit() doesn't provide any barrier for the compiler.
*/
#define smp_mb__before_clear_bit() barrier()
#define smp_mb__after_clear_bit() barrier()
/**
* test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
extern inline int test_and_clear_bit(int nr, void *addr)
{
unsigned int mask, retval;
unsigned long flags;
unsigned int *adr = (unsigned int *)addr;
adr += nr >> 5;
mask = 1 << (nr & 0x1f);
local_save_flags(flags);
local_irq_disable();
retval = (mask & *adr) != 0;
*adr &= ~mask;
local_irq_restore(flags);
return retval;
}
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
extern inline int __test_and_clear_bit(int nr, void *addr)
{
unsigned int mask, retval;
unsigned int *adr = (unsigned int *)addr;
adr += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *adr) != 0;
*adr &= ~mask;
return retval;
}
/**
* test_and_change_bit - Change a bit and return its old value
* @nr: Bit to change
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
extern inline int test_and_change_bit(int nr, void *addr)
{
unsigned int mask, retval;
unsigned long flags;
unsigned int *adr = (unsigned int *)addr;
adr += nr >> 5;
mask = 1 << (nr & 0x1f);
local_save_flags(flags);
local_irq_disable();
retval = (mask & *adr) != 0;
*adr ^= mask;
local_irq_restore(flags);
return retval;
}
/* WARNING: non atomic and it can be reordered! */
extern inline int __test_and_change_bit(int nr, void *addr)
{
unsigned int mask, retval;
unsigned int *adr = (unsigned int *)addr;
adr += nr >> 5;
mask = 1 << (nr & 0x1f);
retval = (mask & *adr) != 0;
*adr ^= mask;
return retval;
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*
* This routine doesn't need to be atomic.
*/
extern inline int test_bit(int nr, const void *addr)
{
unsigned int mask;
unsigned int *adr = (unsigned int *)addr;
adr += nr >> 5;
mask = 1 << (nr & 0x1f);
return ((mask & *adr) != 0);
}
/*
* Find-bit routines..
*/
/*
* Since we define it "external", it collides with the built-in
* definition, which doesn't have the same semantics. We don't want to
* use -fno-builtin, so just hide the name ffs.
*/
#define ffs kernel_ffs
/*
* fls: find last bit set.
*/
#define fls(x) generic_fls(x)
/*
* hweightN - returns the hamming weight of a N-bit word
* @x: the word to weigh
*
* The Hamming Weight of a number is the total number of bits set in it.
*/
#define hweight32(x) generic_hweight32(x)
#define hweight16(x) generic_hweight16(x)
#define hweight8(x) generic_hweight8(x)
/**
* find_next_zero_bit - find the first zero bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
extern inline int find_next_zero_bit (void * addr, int size, int offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *(p++);
tmp |= ~0UL >> (32-offset);
if (size < 32)
goto found_first;
if (~tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size & ~31UL) {
if (~(tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp |= ~0UL >> size;
found_middle:
return result + ffz(tmp);
}
/**
* find_next_bit - find the first set bit in a memory region
* @addr: The address to base the search on
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
static __inline__ int find_next_bit(void *addr, int size, int offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset &= 31UL;
if (offset) {
tmp = *(p++);
tmp &= (~0UL << offset);
if (size < 32)
goto found_first;
if (tmp)
goto found_middle;
size -= 32;
result += 32;
}
while (size & ~31UL) {
if ((tmp = *(p++)))
goto found_middle;
result += 32;
size -= 32;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp &= (~0UL >> (32 - size));
if (tmp == 0UL) /* Are any bits set? */
return result + size; /* Nope. */
found_middle:
return result + __ffs(tmp);
}
/**
* find_first_zero_bit - find the first zero bit in a memory region
* @addr: The address to start the search at
* @size: The maximum size to search
*
* Returns the bit-number of the first zero bit, not the number of the byte
* containing a bit.
*/
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
#define find_first_bit(addr, size) \
find_next_bit((addr), (size), 0)
#define ext2_set_bit test_and_set_bit
#define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a)
#define ext2_clear_bit test_and_clear_bit
#define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a)
#define ext2_test_bit test_bit
#define ext2_find_first_zero_bit find_first_zero_bit
#define ext2_find_next_zero_bit find_next_zero_bit
/* Bitmap functions for the minix filesystem. */
#define minix_set_bit(nr,addr) test_and_set_bit(nr,addr)
#define minix_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
extern inline int sched_find_first_bit(unsigned long *b)
{
if (unlikely(b[0]))
return __ffs(b[0]);
if (unlikely(b[1]))
return __ffs(b[1]) + 32;
if (unlikely(b[2]))
return __ffs(b[2]) + 64;
if (unlikely(b[3]))
return __ffs(b[3]) + 96;
if (b[4])
return __ffs(b[4]) + 128;
return __ffs(b[5]) + 32 + 128;
}
#endif /* __KERNEL__ */
#endif /* _CRIS_BITOPS_H */