mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-27 14:43:58 +08:00
236541ace2
Signed-off-by: Martin Povišer <povik+lin@cutebit.org> Link: https://lore.kernel.org/r/20220312135722.20770-1-povik+lin@cutebit.org Signed-off-by: Stephen Boyd <sboyd@kernel.org>
335 lines
8.6 KiB
C
335 lines
8.6 KiB
C
// SPDX-License-Identifier: GPL-2.0-only OR MIT
|
|
/*
|
|
* Driver for an SoC block (Numerically Controlled Oscillator)
|
|
* found on t8103 (M1) and other Apple chips
|
|
*
|
|
* Copyright (C) The Asahi Linux Contributors
|
|
*/
|
|
|
|
#include <linux/bits.h>
|
|
#include <linux/bitfield.h>
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#define NCO_CHANNEL_STRIDE 0x4000
|
|
#define NCO_CHANNEL_REGSIZE 20
|
|
|
|
#define REG_CTRL 0
|
|
#define CTRL_ENABLE BIT(31)
|
|
#define REG_DIV 4
|
|
#define DIV_FINE GENMASK(1, 0)
|
|
#define DIV_COARSE GENMASK(12, 2)
|
|
#define REG_INC1 8
|
|
#define REG_INC2 12
|
|
#define REG_ACCINIT 16
|
|
|
|
/*
|
|
* Theory of operation (postulated)
|
|
*
|
|
* The REG_DIV register indirectly expresses a base integer divisor, roughly
|
|
* corresponding to twice the desired ratio of input to output clock. This
|
|
* base divisor is adjusted on a cycle-by-cycle basis based on the state of a
|
|
* 32-bit phase accumulator to achieve a desired precise clock ratio over the
|
|
* long term.
|
|
*
|
|
* Specifically an output clock cycle is produced after (REG_DIV divisor)/2
|
|
* or (REG_DIV divisor + 1)/2 input cycles, the latter taking effect when top
|
|
* bit of the 32-bit accumulator is set. The accumulator is incremented each
|
|
* produced output cycle, by the value from either REG_INC1 or REG_INC2, which
|
|
* of the two is selected depending again on the accumulator's current top bit.
|
|
*
|
|
* Because the NCO hardware implements counting of input clock cycles in part
|
|
* in a Galois linear-feedback shift register, the higher bits of divisor
|
|
* are programmed into REG_DIV by picking an appropriate LFSR state. See
|
|
* applnco_compute_tables/applnco_div_translate for details on this.
|
|
*/
|
|
|
|
#define LFSR_POLY 0xa01
|
|
#define LFSR_INIT 0x7ff
|
|
#define LFSR_LEN 11
|
|
#define LFSR_PERIOD ((1 << LFSR_LEN) - 1)
|
|
#define LFSR_TBLSIZE (1 << LFSR_LEN)
|
|
|
|
/* The minimal attainable coarse divisor (first value in table) */
|
|
#define COARSE_DIV_OFFSET 2
|
|
|
|
struct applnco_tables {
|
|
u16 fwd[LFSR_TBLSIZE];
|
|
u16 inv[LFSR_TBLSIZE];
|
|
};
|
|
|
|
struct applnco_channel {
|
|
void __iomem *base;
|
|
struct applnco_tables *tbl;
|
|
struct clk_hw hw;
|
|
|
|
spinlock_t lock;
|
|
};
|
|
|
|
#define to_applnco_channel(_hw) container_of(_hw, struct applnco_channel, hw)
|
|
|
|
static void applnco_enable_nolock(struct clk_hw *hw)
|
|
{
|
|
struct applnco_channel *chan = to_applnco_channel(hw);
|
|
u32 val;
|
|
|
|
val = readl_relaxed(chan->base + REG_CTRL);
|
|
writel_relaxed(val | CTRL_ENABLE, chan->base + REG_CTRL);
|
|
}
|
|
|
|
static void applnco_disable_nolock(struct clk_hw *hw)
|
|
{
|
|
struct applnco_channel *chan = to_applnco_channel(hw);
|
|
u32 val;
|
|
|
|
val = readl_relaxed(chan->base + REG_CTRL);
|
|
writel_relaxed(val & ~CTRL_ENABLE, chan->base + REG_CTRL);
|
|
}
|
|
|
|
static int applnco_is_enabled(struct clk_hw *hw)
|
|
{
|
|
struct applnco_channel *chan = to_applnco_channel(hw);
|
|
|
|
return (readl_relaxed(chan->base + REG_CTRL) & CTRL_ENABLE) != 0;
|
|
}
|
|
|
|
static void applnco_compute_tables(struct applnco_tables *tbl)
|
|
{
|
|
int i;
|
|
u32 state = LFSR_INIT;
|
|
|
|
/*
|
|
* Go through the states of a Galois LFSR and build
|
|
* a coarse divisor translation table.
|
|
*/
|
|
for (i = LFSR_PERIOD; i > 0; i--) {
|
|
if (state & 1)
|
|
state = (state >> 1) ^ (LFSR_POLY >> 1);
|
|
else
|
|
state = (state >> 1);
|
|
tbl->fwd[i] = state;
|
|
tbl->inv[state] = i;
|
|
}
|
|
|
|
/* Zero value is special-cased */
|
|
tbl->fwd[0] = 0;
|
|
tbl->inv[0] = 0;
|
|
}
|
|
|
|
static bool applnco_div_out_of_range(unsigned int div)
|
|
{
|
|
unsigned int coarse = div / 4;
|
|
|
|
return coarse < COARSE_DIV_OFFSET ||
|
|
coarse >= COARSE_DIV_OFFSET + LFSR_TBLSIZE;
|
|
}
|
|
|
|
static u32 applnco_div_translate(struct applnco_tables *tbl, unsigned int div)
|
|
{
|
|
unsigned int coarse = div / 4;
|
|
|
|
if (WARN_ON(applnco_div_out_of_range(div)))
|
|
return 0;
|
|
|
|
return FIELD_PREP(DIV_COARSE, tbl->fwd[coarse - COARSE_DIV_OFFSET]) |
|
|
FIELD_PREP(DIV_FINE, div % 4);
|
|
}
|
|
|
|
static unsigned int applnco_div_translate_inv(struct applnco_tables *tbl, u32 regval)
|
|
{
|
|
unsigned int coarse, fine;
|
|
|
|
coarse = tbl->inv[FIELD_GET(DIV_COARSE, regval)] + COARSE_DIV_OFFSET;
|
|
fine = FIELD_GET(DIV_FINE, regval);
|
|
|
|
return coarse * 4 + fine;
|
|
}
|
|
|
|
static int applnco_set_rate(struct clk_hw *hw, unsigned long rate,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct applnco_channel *chan = to_applnco_channel(hw);
|
|
unsigned long flags;
|
|
u32 div, inc1, inc2;
|
|
bool was_enabled;
|
|
|
|
div = 2 * parent_rate / rate;
|
|
inc1 = 2 * parent_rate - div * rate;
|
|
inc2 = inc1 - rate;
|
|
|
|
if (applnco_div_out_of_range(div))
|
|
return -EINVAL;
|
|
|
|
div = applnco_div_translate(chan->tbl, div);
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
was_enabled = applnco_is_enabled(hw);
|
|
applnco_disable_nolock(hw);
|
|
|
|
writel_relaxed(div, chan->base + REG_DIV);
|
|
writel_relaxed(inc1, chan->base + REG_INC1);
|
|
writel_relaxed(inc2, chan->base + REG_INC2);
|
|
|
|
/* Presumably a neutral initial value for accumulator */
|
|
writel_relaxed(1 << 31, chan->base + REG_ACCINIT);
|
|
|
|
if (was_enabled)
|
|
applnco_enable_nolock(hw);
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long applnco_recalc_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct applnco_channel *chan = to_applnco_channel(hw);
|
|
u32 div, inc1, inc2, incbase;
|
|
|
|
div = applnco_div_translate_inv(chan->tbl,
|
|
readl_relaxed(chan->base + REG_DIV));
|
|
|
|
inc1 = readl_relaxed(chan->base + REG_INC1);
|
|
inc2 = readl_relaxed(chan->base + REG_INC2);
|
|
|
|
/*
|
|
* We don't support wraparound of accumulator
|
|
* nor the edge case of both increments being zero
|
|
*/
|
|
if (inc1 >= (1 << 31) || inc2 < (1 << 31) || (inc1 == 0 && inc2 == 0))
|
|
return 0;
|
|
|
|
/* Scale both sides of division by incbase to maintain precision */
|
|
incbase = inc1 - inc2;
|
|
|
|
return div64_u64(((u64) parent_rate) * 2 * incbase,
|
|
((u64) div) * incbase + inc1);
|
|
}
|
|
|
|
static long applnco_round_rate(struct clk_hw *hw, unsigned long rate,
|
|
unsigned long *parent_rate)
|
|
{
|
|
unsigned long lo = *parent_rate / (COARSE_DIV_OFFSET + LFSR_TBLSIZE) + 1;
|
|
unsigned long hi = *parent_rate / COARSE_DIV_OFFSET;
|
|
|
|
return clamp(rate, lo, hi);
|
|
}
|
|
|
|
static int applnco_enable(struct clk_hw *hw)
|
|
{
|
|
struct applnco_channel *chan = to_applnco_channel(hw);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
applnco_enable_nolock(hw);
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void applnco_disable(struct clk_hw *hw)
|
|
{
|
|
struct applnco_channel *chan = to_applnco_channel(hw);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
applnco_disable_nolock(hw);
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
}
|
|
|
|
static const struct clk_ops applnco_ops = {
|
|
.set_rate = applnco_set_rate,
|
|
.recalc_rate = applnco_recalc_rate,
|
|
.round_rate = applnco_round_rate,
|
|
.enable = applnco_enable,
|
|
.disable = applnco_disable,
|
|
.is_enabled = applnco_is_enabled,
|
|
};
|
|
|
|
static int applnco_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct clk_parent_data pdata = { .index = 0 };
|
|
struct clk_init_data init;
|
|
struct clk_hw_onecell_data *onecell_data;
|
|
void __iomem *base;
|
|
struct resource *res;
|
|
struct applnco_tables *tbl;
|
|
unsigned int nchannels;
|
|
int ret, i;
|
|
|
|
base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
|
|
if (IS_ERR(base))
|
|
return PTR_ERR(base);
|
|
|
|
if (resource_size(res) < NCO_CHANNEL_REGSIZE)
|
|
return -EINVAL;
|
|
nchannels = (resource_size(res) - NCO_CHANNEL_REGSIZE)
|
|
/ NCO_CHANNEL_STRIDE + 1;
|
|
|
|
onecell_data = devm_kzalloc(&pdev->dev, struct_size(onecell_data, hws,
|
|
nchannels), GFP_KERNEL);
|
|
if (!onecell_data)
|
|
return -ENOMEM;
|
|
onecell_data->num = nchannels;
|
|
|
|
tbl = devm_kzalloc(&pdev->dev, sizeof(*tbl), GFP_KERNEL);
|
|
if (!tbl)
|
|
return -ENOMEM;
|
|
applnco_compute_tables(tbl);
|
|
|
|
for (i = 0; i < nchannels; i++) {
|
|
struct applnco_channel *chan;
|
|
|
|
chan = devm_kzalloc(&pdev->dev, sizeof(*chan), GFP_KERNEL);
|
|
if (!chan)
|
|
return -ENOMEM;
|
|
chan->base = base + NCO_CHANNEL_STRIDE * i;
|
|
chan->tbl = tbl;
|
|
spin_lock_init(&chan->lock);
|
|
|
|
memset(&init, 0, sizeof(init));
|
|
init.name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
|
|
"%s-%d", np->name, i);
|
|
init.ops = &applnco_ops;
|
|
init.parent_data = &pdata;
|
|
init.num_parents = 1;
|
|
init.flags = 0;
|
|
|
|
chan->hw.init = &init;
|
|
ret = devm_clk_hw_register(&pdev->dev, &chan->hw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
onecell_data->hws[i] = &chan->hw;
|
|
}
|
|
|
|
return devm_of_clk_add_hw_provider(&pdev->dev, of_clk_hw_onecell_get,
|
|
onecell_data);
|
|
}
|
|
|
|
static const struct of_device_id applnco_ids[] = {
|
|
{ .compatible = "apple,nco" },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, applnco_ids);
|
|
|
|
static struct platform_driver applnco_driver = {
|
|
.driver = {
|
|
.name = "apple-nco",
|
|
.of_match_table = applnco_ids,
|
|
},
|
|
.probe = applnco_probe,
|
|
};
|
|
module_platform_driver(applnco_driver);
|
|
|
|
MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>");
|
|
MODULE_DESCRIPTION("Clock driver for NCO blocks on Apple SoCs");
|
|
MODULE_LICENSE("GPL");
|