2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 06:04:05 +08:00
linux-next/drivers/ssb/driver_chipcommon.c
John W. Linville d53cdbb94a ssb: do not read SPROM if it does not exist
Attempting to read registers that don't exist on the SSB bus can cause
hangs on some boxes.  At least some b43 devices are 'in the wild' that
don't have SPROMs at all.  When the SSB bus support loads, it attempts
to read these (non-existant) SPROMs and causes hard hangs on the box --
no console output, etc.

This patch adds some intelligence to determine whether or not the SPROM
is present before attempting to read it.  This avoids those hard hangs
on those devices with no SPROM attached to their SSB bus.  The
SSB-attached devices (e.g. b43, et al.) won't work, but at least the box
will survive to test further patches. :-)

Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: Rafał Miłecki <zajec5@gmail.com>
Cc: Larry Finger <Larry.Finger@lwfinger.net>
Cc: Michael Buesch <mb@bu3sch.de>
2010-04-26 13:50:54 -04:00

490 lines
13 KiB
C

/*
* Sonics Silicon Backplane
* Broadcom ChipCommon core driver
*
* Copyright 2005, Broadcom Corporation
* Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
*
* Licensed under the GNU/GPL. See COPYING for details.
*/
#include <linux/ssb/ssb.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/pci.h>
#include "ssb_private.h"
/* Clock sources */
enum ssb_clksrc {
/* PCI clock */
SSB_CHIPCO_CLKSRC_PCI,
/* Crystal slow clock oscillator */
SSB_CHIPCO_CLKSRC_XTALOS,
/* Low power oscillator */
SSB_CHIPCO_CLKSRC_LOPWROS,
};
static inline u32 chipco_write32_masked(struct ssb_chipcommon *cc, u16 offset,
u32 mask, u32 value)
{
value &= mask;
value |= chipco_read32(cc, offset) & ~mask;
chipco_write32(cc, offset, value);
return value;
}
void ssb_chipco_set_clockmode(struct ssb_chipcommon *cc,
enum ssb_clkmode mode)
{
struct ssb_device *ccdev = cc->dev;
struct ssb_bus *bus;
u32 tmp;
if (!ccdev)
return;
bus = ccdev->bus;
/* chipcommon cores prior to rev6 don't support dynamic clock control */
if (ccdev->id.revision < 6)
return;
/* chipcommon cores rev10 are a whole new ball game */
if (ccdev->id.revision >= 10)
return;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
switch (mode) {
case SSB_CLKMODE_SLOW:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp |= SSB_CHIPCO_SLOWCLKCTL_FSLOW;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
break;
case SSB_CLKMODE_FAST:
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 1); /* Force crystal on */
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp |= SSB_CHIPCO_SLOWCLKCTL_IPLL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
break;
case SSB_CLKMODE_DYNAMIC:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_FSLOW;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_IPLL;
tmp &= ~SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
if ((tmp & SSB_CHIPCO_SLOWCLKCTL_SRC) != SSB_CHIPCO_SLOWCLKCTL_SRC_XTAL)
tmp |= SSB_CHIPCO_SLOWCLKCTL_ENXTAL;
chipco_write32(cc, SSB_CHIPCO_SLOWCLKCTL, tmp);
/* for dynamic control, we have to release our xtal_pu "force on" */
if (tmp & SSB_CHIPCO_SLOWCLKCTL_ENXTAL)
ssb_pci_xtal(bus, SSB_GPIO_XTAL, 0);
break;
default:
SSB_WARN_ON(1);
}
}
/* Get the Slow Clock Source */
static enum ssb_clksrc chipco_pctl_get_slowclksrc(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
u32 uninitialized_var(tmp);
if (cc->dev->id.revision < 6) {
if (bus->bustype == SSB_BUSTYPE_SSB ||
bus->bustype == SSB_BUSTYPE_PCMCIA)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (bus->bustype == SSB_BUSTYPE_PCI) {
pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &tmp);
if (tmp & 0x10)
return SSB_CHIPCO_CLKSRC_PCI;
return SSB_CHIPCO_CLKSRC_XTALOS;
}
}
if (cc->dev->id.revision < 10) {
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
tmp &= 0x7;
if (tmp == 0)
return SSB_CHIPCO_CLKSRC_LOPWROS;
if (tmp == 1)
return SSB_CHIPCO_CLKSRC_XTALOS;
if (tmp == 2)
return SSB_CHIPCO_CLKSRC_PCI;
}
return SSB_CHIPCO_CLKSRC_XTALOS;
}
/* Get maximum or minimum (depending on get_max flag) slowclock frequency. */
static int chipco_pctl_clockfreqlimit(struct ssb_chipcommon *cc, int get_max)
{
int uninitialized_var(limit);
enum ssb_clksrc clocksrc;
int divisor = 1;
u32 tmp;
clocksrc = chipco_pctl_get_slowclksrc(cc);
if (cc->dev->id.revision < 6) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_PCI:
divisor = 64;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
divisor = 32;
break;
default:
SSB_WARN_ON(1);
}
} else if (cc->dev->id.revision < 10) {
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
case SSB_CHIPCO_CLKSRC_PCI:
tmp = chipco_read32(cc, SSB_CHIPCO_SLOWCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
break;
}
} else {
tmp = chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL);
divisor = (tmp >> 16) + 1;
divisor *= 4;
}
switch (clocksrc) {
case SSB_CHIPCO_CLKSRC_LOPWROS:
if (get_max)
limit = 43000;
else
limit = 25000;
break;
case SSB_CHIPCO_CLKSRC_XTALOS:
if (get_max)
limit = 20200000;
else
limit = 19800000;
break;
case SSB_CHIPCO_CLKSRC_PCI:
if (get_max)
limit = 34000000;
else
limit = 25000000;
break;
}
limit /= divisor;
return limit;
}
static void chipco_powercontrol_init(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
if (bus->chip_id == 0x4321) {
if (bus->chip_rev == 0)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0x3A4);
else if (bus->chip_rev == 1)
chipco_write32(cc, SSB_CHIPCO_CHIPCTL, 0xA4);
}
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
if (cc->dev->id.revision >= 10) {
/* Set Idle Power clock rate to 1Mhz */
chipco_write32(cc, SSB_CHIPCO_SYSCLKCTL,
(chipco_read32(cc, SSB_CHIPCO_SYSCLKCTL) &
0x0000FFFF) | 0x00040000);
} else {
int maxfreq;
maxfreq = chipco_pctl_clockfreqlimit(cc, 1);
chipco_write32(cc, SSB_CHIPCO_PLLONDELAY,
(maxfreq * 150 + 999999) / 1000000);
chipco_write32(cc, SSB_CHIPCO_FREFSELDELAY,
(maxfreq * 15 + 999999) / 1000000);
}
}
static void calc_fast_powerup_delay(struct ssb_chipcommon *cc)
{
struct ssb_bus *bus = cc->dev->bus;
int minfreq;
unsigned int tmp;
u32 pll_on_delay;
if (bus->bustype != SSB_BUSTYPE_PCI)
return;
if (!(cc->capabilities & SSB_CHIPCO_CAP_PCTL))
return;
minfreq = chipco_pctl_clockfreqlimit(cc, 0);
pll_on_delay = chipco_read32(cc, SSB_CHIPCO_PLLONDELAY);
tmp = (((pll_on_delay + 2) * 1000000) + (minfreq - 1)) / minfreq;
SSB_WARN_ON(tmp & ~0xFFFF);
cc->fast_pwrup_delay = tmp;
}
void ssb_chipcommon_init(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return; /* We don't have a ChipCommon */
if (cc->dev->id.revision >= 11)
cc->status = chipco_read32(cc, SSB_CHIPCO_CHIPSTAT);
ssb_pmu_init(cc);
chipco_powercontrol_init(cc);
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
calc_fast_powerup_delay(cc);
}
void ssb_chipco_suspend(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return;
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
}
void ssb_chipco_resume(struct ssb_chipcommon *cc)
{
if (!cc->dev)
return;
chipco_powercontrol_init(cc);
ssb_chipco_set_clockmode(cc, SSB_CLKMODE_FAST);
}
/* Get the processor clock */
void ssb_chipco_get_clockcpu(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m)
{
*n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N);
*plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
switch (*plltype) {
case SSB_PLLTYPE_2:
case SSB_PLLTYPE_4:
case SSB_PLLTYPE_6:
case SSB_PLLTYPE_7:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS);
break;
case SSB_PLLTYPE_3:
/* 5350 uses m2 to control mips */
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2);
break;
default:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB);
break;
}
}
/* Get the bus clock */
void ssb_chipco_get_clockcontrol(struct ssb_chipcommon *cc,
u32 *plltype, u32 *n, u32 *m)
{
*n = chipco_read32(cc, SSB_CHIPCO_CLOCK_N);
*plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
switch (*plltype) {
case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_MIPS);
break;
case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
if (cc->dev->bus->chip_id != 0x5365) {
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_M2);
break;
}
/* Fallthough */
default:
*m = chipco_read32(cc, SSB_CHIPCO_CLOCK_SB);
}
}
void ssb_chipco_timing_init(struct ssb_chipcommon *cc,
unsigned long ns)
{
struct ssb_device *dev = cc->dev;
struct ssb_bus *bus = dev->bus;
u32 tmp;
/* set register for external IO to control LED. */
chipco_write32(cc, SSB_CHIPCO_PROG_CFG, 0x11);
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= DIV_ROUND_UP(40, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 40ns */
tmp |= DIV_ROUND_UP(240, ns); /* Waitcount-0 = 240ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
/* Set timing for the flash */
tmp = DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_3_SHIFT; /* Waitcount-3 = 10nS */
tmp |= DIV_ROUND_UP(10, ns) << SSB_FLASH_WCNT_1_SHIFT; /* Waitcount-1 = 10nS */
tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120nS */
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9))
chipco_write32(cc, SSB_CHIPCO_FLASH_WAITCNT, tmp);
if ((bus->chip_id == 0x5365) ||
(dev->id.revision < 9) ||
((bus->chip_id == 0x5350) && (bus->chip_rev == 0)))
chipco_write32(cc, SSB_CHIPCO_PCMCIA_MEMWAIT, tmp);
if (bus->chip_id == 0x5350) {
/* Enable EXTIF */
tmp = DIV_ROUND_UP(10, ns) << SSB_PROG_WCNT_3_SHIFT; /* Waitcount-3 = 10ns */
tmp |= DIV_ROUND_UP(20, ns) << SSB_PROG_WCNT_2_SHIFT; /* Waitcount-2 = 20ns */
tmp |= DIV_ROUND_UP(100, ns) << SSB_PROG_WCNT_1_SHIFT; /* Waitcount-1 = 100ns */
tmp |= DIV_ROUND_UP(120, ns); /* Waitcount-0 = 120ns */
chipco_write32(cc, SSB_CHIPCO_PROG_WAITCNT, tmp); /* 0x01020a0c for a 100Mhz clock */
}
}
/* Set chip watchdog reset timer to fire in 'ticks' backplane cycles */
void ssb_chipco_watchdog_timer_set(struct ssb_chipcommon *cc, u32 ticks)
{
/* instant NMI */
chipco_write32(cc, SSB_CHIPCO_WATCHDOG, ticks);
}
void ssb_chipco_irq_mask(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
chipco_write32_masked(cc, SSB_CHIPCO_IRQMASK, mask, value);
}
u32 ssb_chipco_irq_status(struct ssb_chipcommon *cc, u32 mask)
{
return chipco_read32(cc, SSB_CHIPCO_IRQSTAT) & mask;
}
u32 ssb_chipco_gpio_in(struct ssb_chipcommon *cc, u32 mask)
{
return chipco_read32(cc, SSB_CHIPCO_GPIOIN) & mask;
}
u32 ssb_chipco_gpio_out(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
return chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUT, mask, value);
}
u32 ssb_chipco_gpio_outen(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
return chipco_write32_masked(cc, SSB_CHIPCO_GPIOOUTEN, mask, value);
}
u32 ssb_chipco_gpio_control(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
return chipco_write32_masked(cc, SSB_CHIPCO_GPIOCTL, mask, value);
}
EXPORT_SYMBOL(ssb_chipco_gpio_control);
u32 ssb_chipco_gpio_intmask(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
return chipco_write32_masked(cc, SSB_CHIPCO_GPIOIRQ, mask, value);
}
u32 ssb_chipco_gpio_polarity(struct ssb_chipcommon *cc, u32 mask, u32 value)
{
return chipco_write32_masked(cc, SSB_CHIPCO_GPIOPOL, mask, value);
}
#ifdef CONFIG_SSB_SERIAL
int ssb_chipco_serial_init(struct ssb_chipcommon *cc,
struct ssb_serial_port *ports)
{
struct ssb_bus *bus = cc->dev->bus;
int nr_ports = 0;
u32 plltype;
unsigned int irq;
u32 baud_base, div;
u32 i, n;
unsigned int ccrev = cc->dev->id.revision;
plltype = (cc->capabilities & SSB_CHIPCO_CAP_PLLT);
irq = ssb_mips_irq(cc->dev);
if (plltype == SSB_PLLTYPE_1) {
/* PLL clock */
baud_base = ssb_calc_clock_rate(plltype,
chipco_read32(cc, SSB_CHIPCO_CLOCK_N),
chipco_read32(cc, SSB_CHIPCO_CLOCK_M2));
div = 1;
} else {
if (ccrev == 20) {
/* BCM5354 uses constant 25MHz clock */
baud_base = 25000000;
div = 48;
/* Set the override bit so we don't divide it */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
chipco_read32(cc, SSB_CHIPCO_CORECTL)
| SSB_CHIPCO_CORECTL_UARTCLK0);
} else if ((ccrev >= 11) && (ccrev != 15)) {
/* Fixed ALP clock */
baud_base = 20000000;
if (cc->capabilities & SSB_CHIPCO_CAP_PMU) {
/* FIXME: baud_base is different for devices with a PMU */
SSB_WARN_ON(1);
}
div = 1;
if (ccrev >= 21) {
/* Turn off UART clock before switching clocksource. */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
chipco_read32(cc, SSB_CHIPCO_CORECTL)
& ~SSB_CHIPCO_CORECTL_UARTCLKEN);
}
/* Set the override bit so we don't divide it */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
chipco_read32(cc, SSB_CHIPCO_CORECTL)
| SSB_CHIPCO_CORECTL_UARTCLK0);
if (ccrev >= 21) {
/* Re-enable the UART clock. */
chipco_write32(cc, SSB_CHIPCO_CORECTL,
chipco_read32(cc, SSB_CHIPCO_CORECTL)
| SSB_CHIPCO_CORECTL_UARTCLKEN);
}
} else if (ccrev >= 3) {
/* Internal backplane clock */
baud_base = ssb_clockspeed(bus);
div = chipco_read32(cc, SSB_CHIPCO_CLKDIV)
& SSB_CHIPCO_CLKDIV_UART;
} else {
/* Fixed internal backplane clock */
baud_base = 88000000;
div = 48;
}
/* Clock source depends on strapping if UartClkOverride is unset */
if ((ccrev > 0) &&
!(chipco_read32(cc, SSB_CHIPCO_CORECTL) & SSB_CHIPCO_CORECTL_UARTCLK0)) {
if ((cc->capabilities & SSB_CHIPCO_CAP_UARTCLK) ==
SSB_CHIPCO_CAP_UARTCLK_INT) {
/* Internal divided backplane clock */
baud_base /= div;
} else {
/* Assume external clock of 1.8432 MHz */
baud_base = 1843200;
}
}
}
/* Determine the registers of the UARTs */
n = (cc->capabilities & SSB_CHIPCO_CAP_NRUART);
for (i = 0; i < n; i++) {
void __iomem *cc_mmio;
void __iomem *uart_regs;
cc_mmio = cc->dev->bus->mmio + (cc->dev->core_index * SSB_CORE_SIZE);
uart_regs = cc_mmio + SSB_CHIPCO_UART0_DATA;
/* Offset changed at after rev 0 */
if (ccrev == 0)
uart_regs += (i * 8);
else
uart_regs += (i * 256);
nr_ports++;
ports[i].regs = uart_regs;
ports[i].irq = irq;
ports[i].baud_base = baud_base;
ports[i].reg_shift = 0;
}
return nr_ports;
}
#endif /* CONFIG_SSB_SERIAL */