2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 04:54:01 +08:00
linux-next/drivers/iio/gyro/fxas21002c_core.c
Andy Shevchenko 61b9c4c7e3 iio: gyro: fxas21002c: Make use of device properties
Convert the module to be property provider agnostic and allow
it to be used on non-OF platforms.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: Rui Miguel Silva <rmfrfs@gmail.com>
Link: https://lore.kernel.org/r/20220413131513.59258-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2022-04-28 19:22:55 +01:00

1060 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for NXP FXAS21002C Gyroscope - Core
*
* Copyright (C) 2019 Linaro Ltd.
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include "fxas21002c.h"
#define FXAS21002C_CHIP_ID_1 0xD6
#define FXAS21002C_CHIP_ID_2 0xD7
enum fxas21002c_mode_state {
FXAS21002C_MODE_STANDBY,
FXAS21002C_MODE_READY,
FXAS21002C_MODE_ACTIVE,
};
#define FXAS21002C_STANDBY_ACTIVE_TIME_MS 62
#define FXAS21002C_READY_ACTIVE_TIME_MS 7
#define FXAS21002C_ODR_LIST_MAX 10
#define FXAS21002C_SCALE_FRACTIONAL 32
#define FXAS21002C_RANGE_LIMIT_DOUBLE 2000
#define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2))
static const struct reg_field fxas21002c_reg_fields[] = {
[F_DR_STATUS] = REG_FIELD(FXAS21002C_REG_STATUS, 0, 7),
[F_OUT_X_MSB] = REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7),
[F_OUT_X_LSB] = REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7),
[F_OUT_Y_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7),
[F_OUT_Y_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7),
[F_OUT_Z_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7),
[F_OUT_Z_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7),
[F_ZYX_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7),
[F_Z_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6),
[F_Y_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5),
[F_X_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4),
[F_ZYX_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3),
[F_Z_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2),
[F_Y_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1),
[F_X_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0),
[F_OVF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7),
[F_WMKF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6),
[F_CNT] = REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5),
[F_MODE] = REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7),
[F_WMRK] = REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5),
[F_EVENT] = REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5),
[FE_TIME] = REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4),
[F_BOOTEND] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3),
[F_SRC_FIFO] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2),
[F_SRC_RT] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1),
[F_SRC_DRDY] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0),
[F_WHO_AM_I] = REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7),
[F_BW] = REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7),
[F_SPIW] = REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5),
[F_SEL] = REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4),
[F_HPF_EN] = REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2),
[F_FS] = REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1),
[F_ELE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3),
[F_ZTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2),
[F_YTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1),
[F_XTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0),
[F_EA] = REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6),
[F_ZRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5),
[F_ZRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4),
[F_YRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3),
[F_YRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2),
[F_XRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1),
[F_XRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0),
[F_DBCNTM] = REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7),
[F_THS] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6),
[F_RT_COUNT] = REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7),
[F_TEMP] = REG_FIELD(FXAS21002C_REG_TEMP, 0, 7),
[F_RST] = REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6),
[F_ST] = REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5),
[F_DR] = REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4),
[F_ACTIVE] = REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1),
[F_READY] = REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0),
[F_INT_CFG_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7),
[F_INT_EN_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6),
[F_INT_CFG_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5),
[F_INT_EN_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4),
[F_INT_CFG_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3),
[F_INT_EN_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2),
[F_IPOL] = REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1),
[F_PP_OD] = REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0),
[F_WRAPTOONE] = REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3),
[F_EXTCTRLEN] = REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2),
[F_FS_DOUBLE] = REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0),
};
static const int fxas21002c_odr_values[] = {
800, 400, 200, 100, 50, 25, 12, 12
};
/*
* These values are taken from the low-pass filter cutoff frequency calculated
* ODR * 0.lpf_values. So, for ODR = 800Hz with a lpf value = 0.32
* => LPF cutoff frequency = 800 * 0.32 = 256 Hz
*/
static const int fxas21002c_lpf_values[] = {
32, 16, 8
};
/*
* These values are taken from the high-pass filter cutoff frequency calculated
* ODR * 0.0hpf_values. So, for ODR = 800Hz with a hpf value = 0.018750
* => HPF cutoff frequency = 800 * 0.018750 = 15 Hz
*/
static const int fxas21002c_hpf_values[] = {
18750, 9625, 4875, 2475
};
static const int fxas21002c_range_values[] = {
4000, 2000, 1000, 500, 250
};
struct fxas21002c_data {
u8 chip_id;
enum fxas21002c_mode_state mode;
enum fxas21002c_mode_state prev_mode;
struct mutex lock; /* serialize data access */
struct regmap *regmap;
struct regmap_field *regmap_fields[F_MAX_FIELDS];
struct iio_trigger *dready_trig;
s64 timestamp;
int irq;
struct regulator *vdd;
struct regulator *vddio;
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
s16 buffer[8] ____cacheline_aligned;
};
enum fxas21002c_channel_index {
CHANNEL_SCAN_INDEX_X,
CHANNEL_SCAN_INDEX_Y,
CHANNEL_SCAN_INDEX_Z,
CHANNEL_SCAN_MAX,
};
static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value)
{
int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1;
value = min_t(u8, value, odr_value_max);
return fxas21002c_odr_values[value];
}
static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data,
unsigned int hz)
{
int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values);
int i;
for (i = 0; i < odr_table_size; i++)
if (fxas21002c_odr_values[i] == hz)
return i;
return -EINVAL;
}
static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value)
{
int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1;
value = min_t(u8, value, lpf_value_max);
return fxas21002c_lpf_values[value];
}
static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data,
unsigned int hz)
{
int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values);
int i;
for (i = 0; i < lpf_table_size; i++)
if (fxas21002c_lpf_values[i] == hz)
return i;
return -EINVAL;
}
static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value)
{
int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1;
value = min_t(u8, value, hpf_value_max);
return fxas21002c_hpf_values[value];
}
static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data,
unsigned int hz)
{
int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values);
int i;
for (i = 0; i < hpf_table_size; i++)
if (fxas21002c_hpf_values[i] == hz)
return i;
return -EINVAL;
}
static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data,
u8 value)
{
int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1;
unsigned int fs_double;
int ret;
/* We need to check if FS_DOUBLE is enabled to offset the value */
ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double);
if (ret < 0)
return ret;
if (!fs_double)
value += 1;
value = min_t(u8, value, range_value_max);
return fxas21002c_range_values[value];
}
static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data,
unsigned int range)
{
int range_table_size = ARRAY_SIZE(fxas21002c_range_values);
bool found = false;
int fs_double = 0;
int ret;
int i;
for (i = 0; i < range_table_size; i++)
if (fxas21002c_range_values[i] == range) {
found = true;
break;
}
if (!found)
return -EINVAL;
if (range > FXAS21002C_RANGE_LIMIT_DOUBLE)
fs_double = 1;
ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double);
if (ret < 0)
return ret;
return i;
}
static int fxas21002c_mode_get(struct fxas21002c_data *data)
{
unsigned int active;
unsigned int ready;
int ret;
ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active);
if (ret < 0)
return ret;
if (active)
return FXAS21002C_MODE_ACTIVE;
ret = regmap_field_read(data->regmap_fields[F_READY], &ready);
if (ret < 0)
return ret;
if (ready)
return FXAS21002C_MODE_READY;
return FXAS21002C_MODE_STANDBY;
}
static int fxas21002c_mode_set(struct fxas21002c_data *data,
enum fxas21002c_mode_state mode)
{
int ret;
if (mode == data->mode)
return 0;
if (mode == FXAS21002C_MODE_READY)
ret = regmap_field_write(data->regmap_fields[F_READY], 1);
else
ret = regmap_field_write(data->regmap_fields[F_READY], 0);
if (ret < 0)
return ret;
if (mode == FXAS21002C_MODE_ACTIVE)
ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1);
else
ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0);
if (ret < 0)
return ret;
/* if going to active wait the setup times */
if (mode == FXAS21002C_MODE_ACTIVE &&
data->mode == FXAS21002C_MODE_STANDBY)
msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS);
if (data->mode == FXAS21002C_MODE_READY)
msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS);
data->prev_mode = data->mode;
data->mode = mode;
return ret;
}
static int fxas21002c_write(struct fxas21002c_data *data,
enum fxas21002c_fields field, int bits)
{
int actual_mode;
int ret;
mutex_lock(&data->lock);
actual_mode = fxas21002c_mode_get(data);
if (actual_mode < 0) {
ret = actual_mode;
goto out_unlock;
}
ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
if (ret < 0)
goto out_unlock;
ret = regmap_field_write(data->regmap_fields[field], bits);
if (ret < 0)
goto out_unlock;
ret = fxas21002c_mode_set(data, data->prev_mode);
out_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int fxas21002c_pm_get(struct fxas21002c_data *data)
{
return pm_runtime_resume_and_get(regmap_get_device(data->regmap));
}
static int fxas21002c_pm_put(struct fxas21002c_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
pm_runtime_mark_last_busy(dev);
return pm_runtime_put_autosuspend(dev);
}
static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val)
{
struct device *dev = regmap_get_device(data->regmap);
unsigned int temp;
int ret;
mutex_lock(&data->lock);
ret = fxas21002c_pm_get(data);
if (ret < 0)
goto data_unlock;
ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp);
if (ret < 0) {
dev_err(dev, "failed to read temp: %d\n", ret);
fxas21002c_pm_put(data);
goto data_unlock;
}
*val = sign_extend32(temp, 7);
ret = fxas21002c_pm_put(data);
if (ret < 0)
goto data_unlock;
ret = IIO_VAL_INT;
data_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int fxas21002c_axis_get(struct fxas21002c_data *data,
int index, int *val)
{
struct device *dev = regmap_get_device(data->regmap);
__be16 axis_be;
int ret;
mutex_lock(&data->lock);
ret = fxas21002c_pm_get(data);
if (ret < 0)
goto data_unlock;
ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index),
&axis_be, sizeof(axis_be));
if (ret < 0) {
dev_err(dev, "failed to read axis: %d: %d\n", index, ret);
fxas21002c_pm_put(data);
goto data_unlock;
}
*val = sign_extend32(be16_to_cpu(axis_be), 15);
ret = fxas21002c_pm_put(data);
if (ret < 0)
goto data_unlock;
ret = IIO_VAL_INT;
data_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr)
{
unsigned int odr_bits;
int ret;
mutex_lock(&data->lock);
ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits);
if (ret < 0)
goto data_unlock;
*odr = fxas21002c_odr_hz_from_value(data, odr_bits);
ret = IIO_VAL_INT;
data_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr)
{
int odr_bits;
odr_bits = fxas21002c_odr_value_from_hz(data, odr);
if (odr_bits < 0)
return odr_bits;
return fxas21002c_write(data, F_DR, odr_bits);
}
static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2)
{
unsigned int bw_bits;
int ret;
mutex_lock(&data->lock);
ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits);
if (ret < 0)
goto data_unlock;
*val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000;
ret = IIO_VAL_INT_PLUS_MICRO;
data_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw)
{
int bw_bits;
int odr;
int ret;
bw_bits = fxas21002c_lpf_value_from_bw(data, bw);
if (bw_bits < 0)
return bw_bits;
/*
* From table 33 of the device spec, for ODR = 25Hz and 12.5 value 0.08
* is not allowed and for ODR = 12.5 value 0.16 is also not allowed
*/
ret = fxas21002c_odr_get(data, &odr);
if (ret < 0)
return -EINVAL;
if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0))
return -EINVAL;
return fxas21002c_write(data, F_BW, bw_bits);
}
static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2)
{
unsigned int sel_bits;
int ret;
mutex_lock(&data->lock);
ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits);
if (ret < 0)
goto data_unlock;
*val2 = fxas21002c_hpf_sel_from_value(data, sel_bits);
ret = IIO_VAL_INT_PLUS_MICRO;
data_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel)
{
int sel_bits;
sel_bits = fxas21002c_hpf_value_from_sel(data, sel);
if (sel_bits < 0)
return sel_bits;
return fxas21002c_write(data, F_SEL, sel_bits);
}
static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val)
{
int fs_bits;
int scale;
int ret;
mutex_lock(&data->lock);
ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits);
if (ret < 0)
goto data_unlock;
scale = fxas21002c_range_fs_from_value(data, fs_bits);
if (scale < 0) {
ret = scale;
goto data_unlock;
}
*val = scale;
data_unlock:
mutex_unlock(&data->lock);
return ret;
}
static int fxas21002c_scale_set(struct fxas21002c_data *data, int range)
{
int fs_bits;
fs_bits = fxas21002c_range_value_from_fs(data, range);
if (fs_bits < 0)
return fs_bits;
return fxas21002c_write(data, F_FS, fs_bits);
}
static int fxas21002c_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct fxas21002c_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_TEMP:
return fxas21002c_temp_get(data, val);
case IIO_ANGL_VEL:
return fxas21002c_axis_get(data, chan->scan_index, val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
*val2 = FXAS21002C_SCALE_FRACTIONAL;
ret = fxas21002c_scale_get(data, val);
if (ret < 0)
return ret;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*val = 0;
return fxas21002c_lpf_get(data, val2);
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
*val = 0;
return fxas21002c_hpf_get(data, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
*val2 = 0;
return fxas21002c_odr_get(data, val);
default:
return -EINVAL;
}
}
static int fxas21002c_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct fxas21002c_data *data = iio_priv(indio_dev);
int range;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (val2)
return -EINVAL;
return fxas21002c_odr_set(data, val);
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
if (val)
return -EINVAL;
val2 = val2 / 10000;
return fxas21002c_lpf_set(data, val2);
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ANGL_VEL:
range = (((val * 1000 + val2 / 1000) *
FXAS21002C_SCALE_FRACTIONAL) / 1000);
return fxas21002c_scale_set(data, range);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
return fxas21002c_hpf_set(data, val2);
default:
return -EINVAL;
}
}
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800");
static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available,
"0.32 0.16 0.08");
static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available,
"0.018750 0.009625 0.004875 0.002475");
static IIO_CONST_ATTR(in_anglvel_scale_available,
"125.0 62.5 31.25 15.625 7.8125");
static struct attribute *fxas21002c_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
&iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr,
&iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr,
&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group fxas21002c_attrs_group = {
.attrs = fxas21002c_attributes,
};
#define FXAS21002C_CHANNEL(_axis) { \
.type = IIO_ANGL_VEL, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \
BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = CHANNEL_SCAN_INDEX_##_axis, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_BE, \
}, \
}
static const struct iio_chan_spec fxas21002c_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.scan_index = -1,
},
FXAS21002C_CHANNEL(X),
FXAS21002C_CHANNEL(Y),
FXAS21002C_CHANNEL(Z),
};
static const struct iio_info fxas21002c_info = {
.attrs = &fxas21002c_attrs_group,
.read_raw = &fxas21002c_read_raw,
.write_raw = &fxas21002c_write_raw,
};
static irqreturn_t fxas21002c_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct fxas21002c_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->lock);
ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB,
data->buffer, CHANNEL_SCAN_MAX * sizeof(s16));
if (ret < 0)
goto out_unlock;
iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
data->timestamp);
out_unlock:
mutex_unlock(&data->lock);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int fxas21002c_chip_init(struct fxas21002c_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
unsigned int chip_id;
int ret;
ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id);
if (ret < 0)
return ret;
if (chip_id != FXAS21002C_CHIP_ID_1 &&
chip_id != FXAS21002C_CHIP_ID_2) {
dev_err(dev, "chip id 0x%02x is not supported\n", chip_id);
return -EINVAL;
}
data->chip_id = chip_id;
ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
if (ret < 0)
return ret;
/* Set ODR to 200HZ as default */
ret = fxas21002c_odr_set(data, 200);
if (ret < 0)
dev_err(dev, "failed to set ODR: %d\n", ret);
return ret;
}
static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct fxas21002c_data *data = iio_priv(indio_dev);
return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state);
}
static const struct iio_trigger_ops fxas21002c_trigger_ops = {
.set_trigger_state = &fxas21002c_data_rdy_trigger_set_state,
};
static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct fxas21002c_data *data = iio_priv(indio_dev);
data->timestamp = iio_get_time_ns(indio_dev);
return IRQ_WAKE_THREAD;
}
static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct fxas21002c_data *data = iio_priv(indio_dev);
unsigned int data_ready;
int ret;
ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready);
if (ret < 0)
return IRQ_NONE;
if (!data_ready)
return IRQ_NONE;
iio_trigger_poll_chained(data->dready_trig);
return IRQ_HANDLED;
}
static int fxas21002c_trigger_probe(struct fxas21002c_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
struct iio_dev *indio_dev = dev_get_drvdata(dev);
unsigned long irq_trig;
bool irq_open_drain;
int irq1;
int ret;
if (!data->irq)
return 0;
irq1 = fwnode_irq_get_byname(dev_fwnode(dev), "INT1");
if (irq1 == data->irq) {
dev_info(dev, "using interrupt line INT1\n");
ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY],
1);
if (ret < 0)
return ret;
}
dev_info(dev, "using interrupt line INT2\n");
irq_open_drain = device_property_read_bool(dev, "drive-open-drain");
data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!data->dready_trig)
return -ENOMEM;
irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq));
if (irq_trig == IRQF_TRIGGER_RISING) {
ret = regmap_field_write(data->regmap_fields[F_IPOL], 1);
if (ret < 0)
return ret;
}
if (irq_open_drain)
irq_trig |= IRQF_SHARED;
ret = devm_request_threaded_irq(dev, data->irq,
fxas21002c_data_rdy_handler,
fxas21002c_data_rdy_thread,
irq_trig, "fxas21002c_data_ready",
indio_dev);
if (ret < 0)
return ret;
data->dready_trig->ops = &fxas21002c_trigger_ops;
iio_trigger_set_drvdata(data->dready_trig, indio_dev);
return devm_iio_trigger_register(dev, data->dready_trig);
}
static int fxas21002c_power_enable(struct fxas21002c_data *data)
{
int ret;
ret = regulator_enable(data->vdd);
if (ret < 0)
return ret;
ret = regulator_enable(data->vddio);
if (ret < 0) {
regulator_disable(data->vdd);
return ret;
}
return 0;
}
static void fxas21002c_power_disable(struct fxas21002c_data *data)
{
regulator_disable(data->vdd);
regulator_disable(data->vddio);
}
static void fxas21002c_power_disable_action(void *_data)
{
struct fxas21002c_data *data = _data;
fxas21002c_power_disable(data);
}
static int fxas21002c_regulators_get(struct fxas21002c_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
data->vdd = devm_regulator_get(dev->parent, "vdd");
if (IS_ERR(data->vdd))
return PTR_ERR(data->vdd);
data->vddio = devm_regulator_get(dev->parent, "vddio");
return PTR_ERR_OR_ZERO(data->vddio);
}
int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq,
const char *name)
{
struct fxas21002c_data *data;
struct iio_dev *indio_dev;
struct regmap_field *f;
int i;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->irq = irq;
data->regmap = regmap;
for (i = 0; i < F_MAX_FIELDS; i++) {
f = devm_regmap_field_alloc(dev, data->regmap,
fxas21002c_reg_fields[i]);
if (IS_ERR(f))
return PTR_ERR(f);
data->regmap_fields[i] = f;
}
mutex_init(&data->lock);
ret = fxas21002c_regulators_get(data);
if (ret < 0)
return ret;
ret = fxas21002c_power_enable(data);
if (ret < 0)
return ret;
ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action,
data);
if (ret < 0)
return ret;
ret = fxas21002c_chip_init(data);
if (ret < 0)
return ret;
indio_dev->channels = fxas21002c_channels;
indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels);
indio_dev->name = name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &fxas21002c_info;
ret = fxas21002c_trigger_probe(data);
if (ret < 0)
return ret;
ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
fxas21002c_trigger_handler, NULL);
if (ret < 0)
return ret;
ret = pm_runtime_set_active(dev);
if (ret)
return ret;
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, 2000);
pm_runtime_use_autosuspend(dev);
ret = iio_device_register(indio_dev);
if (ret < 0)
goto pm_disable;
return 0;
pm_disable:
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
return ret;
}
EXPORT_SYMBOL_GPL(fxas21002c_core_probe);
void fxas21002c_core_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
}
EXPORT_SYMBOL_GPL(fxas21002c_core_remove);
static int __maybe_unused fxas21002c_suspend(struct device *dev)
{
struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY);
fxas21002c_power_disable(data);
return 0;
}
static int __maybe_unused fxas21002c_resume(struct device *dev)
{
struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
int ret;
ret = fxas21002c_power_enable(data);
if (ret < 0)
return ret;
return fxas21002c_mode_set(data, data->prev_mode);
}
static int __maybe_unused fxas21002c_runtime_suspend(struct device *dev)
{
struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
return fxas21002c_mode_set(data, FXAS21002C_MODE_READY);
}
static int __maybe_unused fxas21002c_runtime_resume(struct device *dev)
{
struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev));
return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE);
}
const struct dev_pm_ops fxas21002c_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume)
SET_RUNTIME_PM_OPS(fxas21002c_runtime_suspend,
fxas21002c_runtime_resume, NULL)
};
EXPORT_SYMBOL_GPL(fxas21002c_pm_ops);
MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("FXAS21002C Gyro driver");