2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/drivers/gpu/drm/bridge/tc358767.c
Lucas Stach d630213f2a drm/bridge: tc358767: fix probe without attached output node
The output node of the TC358767 is only used if another bridge is chained
behind it. Panels attached to the TC358767 can be detected using the usual
DP AUX probing. This restores the old behavior of ignoring the output if
no endpoint is found.

Fixes: ebc9446135 (drm: convert drivers to use drm_of_find_panel_or_bridge)
CC: stable@vger.kernel.org
Acked-by: Andrey Gusakov <andrey.gusakov@cogentembedded.com>
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20170710124125.9019-1-l.stach@pengutronix.de
2017-07-28 09:28:28 +05:30

1380 lines
35 KiB
C

/*
* tc358767 eDP bridge driver
*
* Copyright (C) 2016 CogentEmbedded Inc
* Author: Andrey Gusakov <andrey.gusakov@cogentembedded.com>
*
* Copyright (C) 2016 Pengutronix, Philipp Zabel <p.zabel@pengutronix.de>
*
* Initially based on: drivers/gpu/drm/i2c/tda998x_drv.c
*
* Copyright (C) 2012 Texas Instruments
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
/* Registers */
/* Display Parallel Interface */
#define DPIPXLFMT 0x0440
#define VS_POL_ACTIVE_LOW (1 << 10)
#define HS_POL_ACTIVE_LOW (1 << 9)
#define DE_POL_ACTIVE_HIGH (0 << 8)
#define SUB_CFG_TYPE_CONFIG1 (0 << 2) /* LSB aligned */
#define SUB_CFG_TYPE_CONFIG2 (1 << 2) /* Loosely Packed */
#define SUB_CFG_TYPE_CONFIG3 (2 << 2) /* LSB aligned 8-bit */
#define DPI_BPP_RGB888 (0 << 0)
#define DPI_BPP_RGB666 (1 << 0)
#define DPI_BPP_RGB565 (2 << 0)
/* Video Path */
#define VPCTRL0 0x0450
#define OPXLFMT_RGB666 (0 << 8)
#define OPXLFMT_RGB888 (1 << 8)
#define FRMSYNC_DISABLED (0 << 4) /* Video Timing Gen Disabled */
#define FRMSYNC_ENABLED (1 << 4) /* Video Timing Gen Enabled */
#define MSF_DISABLED (0 << 0) /* Magic Square FRC disabled */
#define MSF_ENABLED (1 << 0) /* Magic Square FRC enabled */
#define HTIM01 0x0454
#define HTIM02 0x0458
#define VTIM01 0x045c
#define VTIM02 0x0460
#define VFUEN0 0x0464
#define VFUEN BIT(0) /* Video Frame Timing Upload */
/* System */
#define TC_IDREG 0x0500
#define SYSCTRL 0x0510
#define DP0_AUDSRC_NO_INPUT (0 << 3)
#define DP0_AUDSRC_I2S_RX (1 << 3)
#define DP0_VIDSRC_NO_INPUT (0 << 0)
#define DP0_VIDSRC_DSI_RX (1 << 0)
#define DP0_VIDSRC_DPI_RX (2 << 0)
#define DP0_VIDSRC_COLOR_BAR (3 << 0)
/* Control */
#define DP0CTL 0x0600
#define VID_MN_GEN BIT(6) /* Auto-generate M/N values */
#define EF_EN BIT(5) /* Enable Enhanced Framing */
#define VID_EN BIT(1) /* Video transmission enable */
#define DP_EN BIT(0) /* Enable DPTX function */
/* Clocks */
#define DP0_VIDMNGEN0 0x0610
#define DP0_VIDMNGEN1 0x0614
#define DP0_VMNGENSTATUS 0x0618
/* Main Channel */
#define DP0_SECSAMPLE 0x0640
#define DP0_VIDSYNCDELAY 0x0644
#define DP0_TOTALVAL 0x0648
#define DP0_STARTVAL 0x064c
#define DP0_ACTIVEVAL 0x0650
#define DP0_SYNCVAL 0x0654
#define DP0_MISC 0x0658
#define TU_SIZE_RECOMMENDED (0x3f << 16) /* LSCLK cycles per TU */
#define BPC_6 (0 << 5)
#define BPC_8 (1 << 5)
/* AUX channel */
#define DP0_AUXCFG0 0x0660
#define DP0_AUXCFG1 0x0664
#define AUX_RX_FILTER_EN BIT(16)
#define DP0_AUXADDR 0x0668
#define DP0_AUXWDATA(i) (0x066c + (i) * 4)
#define DP0_AUXRDATA(i) (0x067c + (i) * 4)
#define DP0_AUXSTATUS 0x068c
#define AUX_STATUS_MASK 0xf0
#define AUX_STATUS_SHIFT 4
#define AUX_TIMEOUT BIT(1)
#define AUX_BUSY BIT(0)
#define DP0_AUXI2CADR 0x0698
/* Link Training */
#define DP0_SRCCTRL 0x06a0
#define DP0_SRCCTRL_SCRMBLDIS BIT(13)
#define DP0_SRCCTRL_EN810B BIT(12)
#define DP0_SRCCTRL_NOTP (0 << 8)
#define DP0_SRCCTRL_TP1 (1 << 8)
#define DP0_SRCCTRL_TP2 (2 << 8)
#define DP0_SRCCTRL_LANESKEW BIT(7)
#define DP0_SRCCTRL_SSCG BIT(3)
#define DP0_SRCCTRL_LANES_1 (0 << 2)
#define DP0_SRCCTRL_LANES_2 (1 << 2)
#define DP0_SRCCTRL_BW27 (1 << 1)
#define DP0_SRCCTRL_BW162 (0 << 1)
#define DP0_SRCCTRL_AUTOCORRECT BIT(0)
#define DP0_LTSTAT 0x06d0
#define LT_LOOPDONE BIT(13)
#define LT_STATUS_MASK (0x1f << 8)
#define LT_CHANNEL1_EQ_BITS (DP_CHANNEL_EQ_BITS << 4)
#define LT_INTERLANE_ALIGN_DONE BIT(3)
#define LT_CHANNEL0_EQ_BITS (DP_CHANNEL_EQ_BITS)
#define DP0_SNKLTCHGREQ 0x06d4
#define DP0_LTLOOPCTRL 0x06d8
#define DP0_SNKLTCTRL 0x06e4
/* PHY */
#define DP_PHY_CTRL 0x0800
#define DP_PHY_RST BIT(28) /* DP PHY Global Soft Reset */
#define BGREN BIT(25) /* AUX PHY BGR Enable */
#define PWR_SW_EN BIT(24) /* PHY Power Switch Enable */
#define PHY_M1_RST BIT(12) /* Reset PHY1 Main Channel */
#define PHY_RDY BIT(16) /* PHY Main Channels Ready */
#define PHY_M0_RST BIT(8) /* Reset PHY0 Main Channel */
#define PHY_A0_EN BIT(1) /* PHY Aux Channel0 Enable */
#define PHY_M0_EN BIT(0) /* PHY Main Channel0 Enable */
/* PLL */
#define DP0_PLLCTRL 0x0900
#define DP1_PLLCTRL 0x0904 /* not defined in DS */
#define PXL_PLLCTRL 0x0908
#define PLLUPDATE BIT(2)
#define PLLBYP BIT(1)
#define PLLEN BIT(0)
#define PXL_PLLPARAM 0x0914
#define IN_SEL_REFCLK (0 << 14)
#define SYS_PLLPARAM 0x0918
#define REF_FREQ_38M4 (0 << 8) /* 38.4 MHz */
#define REF_FREQ_19M2 (1 << 8) /* 19.2 MHz */
#define REF_FREQ_26M (2 << 8) /* 26 MHz */
#define REF_FREQ_13M (3 << 8) /* 13 MHz */
#define SYSCLK_SEL_LSCLK (0 << 4)
#define LSCLK_DIV_1 (0 << 0)
#define LSCLK_DIV_2 (1 << 0)
/* Test & Debug */
#define TSTCTL 0x0a00
#define PLL_DBG 0x0a04
static bool tc_test_pattern;
module_param_named(test, tc_test_pattern, bool, 0644);
struct tc_edp_link {
struct drm_dp_link base;
u8 assr;
int scrambler_dis;
int spread;
int coding8b10b;
u8 swing;
u8 preemp;
};
struct tc_data {
struct device *dev;
struct regmap *regmap;
struct drm_dp_aux aux;
struct drm_bridge bridge;
struct drm_connector connector;
struct drm_panel *panel;
/* link settings */
struct tc_edp_link link;
/* display edid */
struct edid *edid;
/* current mode */
struct drm_display_mode *mode;
u32 rev;
u8 assr;
struct gpio_desc *sd_gpio;
struct gpio_desc *reset_gpio;
struct clk *refclk;
};
static inline struct tc_data *aux_to_tc(struct drm_dp_aux *a)
{
return container_of(a, struct tc_data, aux);
}
static inline struct tc_data *bridge_to_tc(struct drm_bridge *b)
{
return container_of(b, struct tc_data, bridge);
}
static inline struct tc_data *connector_to_tc(struct drm_connector *c)
{
return container_of(c, struct tc_data, connector);
}
/* Simple macros to avoid repeated error checks */
#define tc_write(reg, var) \
do { \
ret = regmap_write(tc->regmap, reg, var); \
if (ret) \
goto err; \
} while (0)
#define tc_read(reg, var) \
do { \
ret = regmap_read(tc->regmap, reg, var); \
if (ret) \
goto err; \
} while (0)
static inline int tc_poll_timeout(struct regmap *map, unsigned int addr,
unsigned int cond_mask,
unsigned int cond_value,
unsigned long sleep_us, u64 timeout_us)
{
ktime_t timeout = ktime_add_us(ktime_get(), timeout_us);
unsigned int val;
int ret;
for (;;) {
ret = regmap_read(map, addr, &val);
if (ret)
break;
if ((val & cond_mask) == cond_value)
break;
if (timeout_us && ktime_compare(ktime_get(), timeout) > 0) {
ret = regmap_read(map, addr, &val);
break;
}
if (sleep_us)
usleep_range((sleep_us >> 2) + 1, sleep_us);
}
return ret ?: (((val & cond_mask) == cond_value) ? 0 : -ETIMEDOUT);
}
static int tc_aux_wait_busy(struct tc_data *tc, unsigned int timeout_ms)
{
return tc_poll_timeout(tc->regmap, DP0_AUXSTATUS, AUX_BUSY, 0,
1000, 1000 * timeout_ms);
}
static int tc_aux_get_status(struct tc_data *tc, u8 *reply)
{
int ret;
u32 value;
ret = regmap_read(tc->regmap, DP0_AUXSTATUS, &value);
if (ret < 0)
return ret;
if (value & AUX_BUSY) {
if (value & AUX_TIMEOUT) {
dev_err(tc->dev, "i2c access timeout!\n");
return -ETIMEDOUT;
}
return -EBUSY;
}
*reply = (value & AUX_STATUS_MASK) >> AUX_STATUS_SHIFT;
return 0;
}
static ssize_t tc_aux_transfer(struct drm_dp_aux *aux,
struct drm_dp_aux_msg *msg)
{
struct tc_data *tc = aux_to_tc(aux);
size_t size = min_t(size_t, 8, msg->size);
u8 request = msg->request & ~DP_AUX_I2C_MOT;
u8 *buf = msg->buffer;
u32 tmp = 0;
int i = 0;
int ret;
if (size == 0)
return 0;
ret = tc_aux_wait_busy(tc, 100);
if (ret)
goto err;
if (request == DP_AUX_I2C_WRITE || request == DP_AUX_NATIVE_WRITE) {
/* Store data */
while (i < size) {
if (request == DP_AUX_NATIVE_WRITE)
tmp = tmp | (buf[i] << (8 * (i & 0x3)));
else
tmp = (tmp << 8) | buf[i];
i++;
if (((i % 4) == 0) || (i == size)) {
tc_write(DP0_AUXWDATA(i >> 2), tmp);
tmp = 0;
}
}
} else if (request != DP_AUX_I2C_READ &&
request != DP_AUX_NATIVE_READ) {
return -EINVAL;
}
/* Store address */
tc_write(DP0_AUXADDR, msg->address);
/* Start transfer */
tc_write(DP0_AUXCFG0, ((size - 1) << 8) | request);
ret = tc_aux_wait_busy(tc, 100);
if (ret)
goto err;
ret = tc_aux_get_status(tc, &msg->reply);
if (ret)
goto err;
if (request == DP_AUX_I2C_READ || request == DP_AUX_NATIVE_READ) {
/* Read data */
while (i < size) {
if ((i % 4) == 0)
tc_read(DP0_AUXRDATA(i >> 2), &tmp);
buf[i] = tmp & 0xff;
tmp = tmp >> 8;
i++;
}
}
return size;
err:
return ret;
}
static const char * const training_pattern1_errors[] = {
"No errors",
"Aux write error",
"Aux read error",
"Max voltage reached error",
"Loop counter expired error",
"res", "res", "res"
};
static const char * const training_pattern2_errors[] = {
"No errors",
"Aux write error",
"Aux read error",
"Clock recovery failed error",
"Loop counter expired error",
"res", "res", "res"
};
static u32 tc_srcctrl(struct tc_data *tc)
{
/*
* No training pattern, skew lane 1 data by two LSCLK cycles with
* respect to lane 0 data, AutoCorrect Mode = 0
*/
u32 reg = DP0_SRCCTRL_NOTP | DP0_SRCCTRL_LANESKEW;
if (tc->link.scrambler_dis)
reg |= DP0_SRCCTRL_SCRMBLDIS; /* Scrambler Disabled */
if (tc->link.coding8b10b)
/* Enable 8/10B Encoder (TxData[19:16] not used) */
reg |= DP0_SRCCTRL_EN810B;
if (tc->link.spread)
reg |= DP0_SRCCTRL_SSCG; /* Spread Spectrum Enable */
if (tc->link.base.num_lanes == 2)
reg |= DP0_SRCCTRL_LANES_2; /* Two Main Channel Lanes */
if (tc->link.base.rate != 162000)
reg |= DP0_SRCCTRL_BW27; /* 2.7 Gbps link */
return reg;
}
static void tc_wait_pll_lock(struct tc_data *tc)
{
/* Wait for PLL to lock: up to 2.09 ms, depending on refclk */
usleep_range(3000, 6000);
}
static int tc_pxl_pll_en(struct tc_data *tc, u32 refclk, u32 pixelclock)
{
int ret;
int i_pre, best_pre = 1;
int i_post, best_post = 1;
int div, best_div = 1;
int mul, best_mul = 1;
int delta, best_delta;
int ext_div[] = {1, 2, 3, 5, 7};
int best_pixelclock = 0;
int vco_hi = 0;
dev_dbg(tc->dev, "PLL: requested %d pixelclock, ref %d\n", pixelclock,
refclk);
best_delta = pixelclock;
/* Loop over all possible ext_divs, skipping invalid configurations */
for (i_pre = 0; i_pre < ARRAY_SIZE(ext_div); i_pre++) {
/*
* refclk / ext_pre_div should be in the 1 to 200 MHz range.
* We don't allow any refclk > 200 MHz, only check lower bounds.
*/
if (refclk / ext_div[i_pre] < 1000000)
continue;
for (i_post = 0; i_post < ARRAY_SIZE(ext_div); i_post++) {
for (div = 1; div <= 16; div++) {
u32 clk;
u64 tmp;
tmp = pixelclock * ext_div[i_pre] *
ext_div[i_post] * div;
do_div(tmp, refclk);
mul = tmp;
/* Check limits */
if ((mul < 1) || (mul > 128))
continue;
clk = (refclk / ext_div[i_pre] / div) * mul;
/*
* refclk * mul / (ext_pre_div * pre_div)
* should be in the 150 to 650 MHz range
*/
if ((clk > 650000000) || (clk < 150000000))
continue;
clk = clk / ext_div[i_post];
delta = clk - pixelclock;
if (abs(delta) < abs(best_delta)) {
best_pre = i_pre;
best_post = i_post;
best_div = div;
best_mul = mul;
best_delta = delta;
best_pixelclock = clk;
}
}
}
}
if (best_pixelclock == 0) {
dev_err(tc->dev, "Failed to calc clock for %d pixelclock\n",
pixelclock);
return -EINVAL;
}
dev_dbg(tc->dev, "PLL: got %d, delta %d\n", best_pixelclock,
best_delta);
dev_dbg(tc->dev, "PLL: %d / %d / %d * %d / %d\n", refclk,
ext_div[best_pre], best_div, best_mul, ext_div[best_post]);
/* if VCO >= 300 MHz */
if (refclk / ext_div[best_pre] / best_div * best_mul >= 300000000)
vco_hi = 1;
/* see DS */
if (best_div == 16)
best_div = 0;
if (best_mul == 128)
best_mul = 0;
/* Power up PLL and switch to bypass */
tc_write(PXL_PLLCTRL, PLLBYP | PLLEN);
tc_write(PXL_PLLPARAM,
(vco_hi << 24) | /* For PLL VCO >= 300 MHz = 1 */
(ext_div[best_pre] << 20) | /* External Pre-divider */
(ext_div[best_post] << 16) | /* External Post-divider */
IN_SEL_REFCLK | /* Use RefClk as PLL input */
(best_div << 8) | /* Divider for PLL RefClk */
(best_mul << 0)); /* Multiplier for PLL */
/* Force PLL parameter update and disable bypass */
tc_write(PXL_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
return 0;
err:
return ret;
}
static int tc_pxl_pll_dis(struct tc_data *tc)
{
/* Enable PLL bypass, power down PLL */
return regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP);
}
static int tc_stream_clock_calc(struct tc_data *tc)
{
int ret;
/*
* If the Stream clock and Link Symbol clock are
* asynchronous with each other, the value of M changes over
* time. This way of generating link clock and stream
* clock is called Asynchronous Clock mode. The value M
* must change while the value N stays constant. The
* value of N in this Asynchronous Clock mode must be set
* to 2^15 or 32,768.
*
* LSCLK = 1/10 of high speed link clock
*
* f_STRMCLK = M/N * f_LSCLK
* M/N = f_STRMCLK / f_LSCLK
*
*/
tc_write(DP0_VIDMNGEN1, 32768);
return 0;
err:
return ret;
}
static int tc_aux_link_setup(struct tc_data *tc)
{
unsigned long rate;
u32 value;
int ret;
rate = clk_get_rate(tc->refclk);
switch (rate) {
case 38400000:
value = REF_FREQ_38M4;
break;
case 26000000:
value = REF_FREQ_26M;
break;
case 19200000:
value = REF_FREQ_19M2;
break;
case 13000000:
value = REF_FREQ_13M;
break;
default:
dev_err(tc->dev, "Invalid refclk rate: %lu Hz\n", rate);
return -EINVAL;
}
/* Setup DP-PHY / PLL */
value |= SYSCLK_SEL_LSCLK | LSCLK_DIV_2;
tc_write(SYS_PLLPARAM, value);
tc_write(DP_PHY_CTRL, BGREN | PWR_SW_EN | BIT(2) | PHY_A0_EN);
/*
* Initially PLLs are in bypass. Force PLL parameter update,
* disable PLL bypass, enable PLL
*/
tc_write(DP0_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
tc_write(DP1_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
ret = tc_poll_timeout(tc->regmap, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 1,
1000);
if (ret == -ETIMEDOUT) {
dev_err(tc->dev, "Timeout waiting for PHY to become ready");
return ret;
} else if (ret)
goto err;
/* Setup AUX link */
tc_write(DP0_AUXCFG1, AUX_RX_FILTER_EN |
(0x06 << 8) | /* Aux Bit Period Calculator Threshold */
(0x3f << 0)); /* Aux Response Timeout Timer */
return 0;
err:
dev_err(tc->dev, "tc_aux_link_setup failed: %d\n", ret);
return ret;
}
static int tc_get_display_props(struct tc_data *tc)
{
int ret;
/* temp buffer */
u8 tmp[8];
/* Read DP Rx Link Capability */
ret = drm_dp_link_probe(&tc->aux, &tc->link.base);
if (ret < 0)
goto err_dpcd_read;
if ((tc->link.base.rate != 162000) && (tc->link.base.rate != 270000))
goto err_dpcd_inval;
ret = drm_dp_dpcd_readb(&tc->aux, DP_MAX_DOWNSPREAD, tmp);
if (ret < 0)
goto err_dpcd_read;
tc->link.spread = tmp[0] & BIT(0); /* 0.5% down spread */
ret = drm_dp_dpcd_readb(&tc->aux, DP_MAIN_LINK_CHANNEL_CODING, tmp);
if (ret < 0)
goto err_dpcd_read;
tc->link.coding8b10b = tmp[0] & BIT(0);
tc->link.scrambler_dis = 0;
/* read assr */
ret = drm_dp_dpcd_readb(&tc->aux, DP_EDP_CONFIGURATION_SET, tmp);
if (ret < 0)
goto err_dpcd_read;
tc->link.assr = tmp[0] & DP_ALTERNATE_SCRAMBLER_RESET_ENABLE;
dev_dbg(tc->dev, "DPCD rev: %d.%d, rate: %s, lanes: %d, framing: %s\n",
tc->link.base.revision >> 4, tc->link.base.revision & 0x0f,
(tc->link.base.rate == 162000) ? "1.62Gbps" : "2.7Gbps",
tc->link.base.num_lanes,
(tc->link.base.capabilities & DP_LINK_CAP_ENHANCED_FRAMING) ?
"enhanced" : "non-enhanced");
dev_dbg(tc->dev, "ANSI 8B/10B: %d\n", tc->link.coding8b10b);
dev_dbg(tc->dev, "Display ASSR: %d, TC358767 ASSR: %d\n",
tc->link.assr, tc->assr);
return 0;
err_dpcd_read:
dev_err(tc->dev, "failed to read DPCD: %d\n", ret);
return ret;
err_dpcd_inval:
dev_err(tc->dev, "invalid DPCD\n");
return -EINVAL;
}
static int tc_set_video_mode(struct tc_data *tc, struct drm_display_mode *mode)
{
int ret;
int vid_sync_dly;
int max_tu_symbol;
int left_margin = mode->htotal - mode->hsync_end;
int right_margin = mode->hsync_start - mode->hdisplay;
int hsync_len = mode->hsync_end - mode->hsync_start;
int upper_margin = mode->vtotal - mode->vsync_end;
int lower_margin = mode->vsync_start - mode->vdisplay;
int vsync_len = mode->vsync_end - mode->vsync_start;
dev_dbg(tc->dev, "set mode %dx%d\n",
mode->hdisplay, mode->vdisplay);
dev_dbg(tc->dev, "H margin %d,%d sync %d\n",
left_margin, right_margin, hsync_len);
dev_dbg(tc->dev, "V margin %d,%d sync %d\n",
upper_margin, lower_margin, vsync_len);
dev_dbg(tc->dev, "total: %dx%d\n", mode->htotal, mode->vtotal);
/* LCD Ctl Frame Size */
tc_write(VPCTRL0, (0x40 << 20) /* VSDELAY */ |
OPXLFMT_RGB888 | FRMSYNC_DISABLED | MSF_DISABLED);
tc_write(HTIM01, (left_margin << 16) | /* H back porch */
(hsync_len << 0)); /* Hsync */
tc_write(HTIM02, (right_margin << 16) | /* H front porch */
(mode->hdisplay << 0)); /* width */
tc_write(VTIM01, (upper_margin << 16) | /* V back porch */
(vsync_len << 0)); /* Vsync */
tc_write(VTIM02, (lower_margin << 16) | /* V front porch */
(mode->vdisplay << 0)); /* height */
tc_write(VFUEN0, VFUEN); /* update settings */
/* Test pattern settings */
tc_write(TSTCTL,
(120 << 24) | /* Red Color component value */
(20 << 16) | /* Green Color component value */
(99 << 8) | /* Blue Color component value */
(1 << 4) | /* Enable I2C Filter */
(2 << 0) | /* Color bar Mode */
0);
/* DP Main Stream Attributes */
vid_sync_dly = hsync_len + left_margin + mode->hdisplay;
tc_write(DP0_VIDSYNCDELAY,
(0x003e << 16) | /* thresh_dly */
(vid_sync_dly << 0));
tc_write(DP0_TOTALVAL, (mode->vtotal << 16) | (mode->htotal));
tc_write(DP0_STARTVAL,
((upper_margin + vsync_len) << 16) |
((left_margin + hsync_len) << 0));
tc_write(DP0_ACTIVEVAL, (mode->vdisplay << 16) | (mode->hdisplay));
tc_write(DP0_SYNCVAL, (vsync_len << 16) | (hsync_len << 0));
tc_write(DPIPXLFMT, VS_POL_ACTIVE_LOW | HS_POL_ACTIVE_LOW |
DE_POL_ACTIVE_HIGH | SUB_CFG_TYPE_CONFIG1 | DPI_BPP_RGB888);
/*
* Recommended maximum number of symbols transferred in a transfer unit:
* DIV_ROUND_UP((input active video bandwidth in bytes) * tu_size,
* (output active video bandwidth in bytes))
* Must be less than tu_size.
*/
max_tu_symbol = TU_SIZE_RECOMMENDED - 1;
tc_write(DP0_MISC, (max_tu_symbol << 23) | TU_SIZE_RECOMMENDED | BPC_8);
return 0;
err:
return ret;
}
static int tc_link_training(struct tc_data *tc, int pattern)
{
const char * const *errors;
u32 srcctrl = tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS |
DP0_SRCCTRL_AUTOCORRECT;
int timeout;
int retry;
u32 value;
int ret;
if (pattern == DP_TRAINING_PATTERN_1) {
srcctrl |= DP0_SRCCTRL_TP1;
errors = training_pattern1_errors;
} else {
srcctrl |= DP0_SRCCTRL_TP2;
errors = training_pattern2_errors;
}
/* Set DPCD 0x102 for Training Part 1 or 2 */
tc_write(DP0_SNKLTCTRL, DP_LINK_SCRAMBLING_DISABLE | pattern);
tc_write(DP0_LTLOOPCTRL,
(0x0f << 28) | /* Defer Iteration Count */
(0x0f << 24) | /* Loop Iteration Count */
(0x0d << 0)); /* Loop Timer Delay */
retry = 5;
do {
/* Set DP0 Training Pattern */
tc_write(DP0_SRCCTRL, srcctrl);
/* Enable DP0 to start Link Training */
tc_write(DP0CTL, DP_EN);
/* wait */
timeout = 1000;
do {
tc_read(DP0_LTSTAT, &value);
udelay(1);
} while ((!(value & LT_LOOPDONE)) && (--timeout));
if (timeout == 0) {
dev_err(tc->dev, "Link training timeout!\n");
} else {
int pattern = (value >> 11) & 0x3;
int error = (value >> 8) & 0x7;
dev_dbg(tc->dev,
"Link training phase %d done after %d uS: %s\n",
pattern, 1000 - timeout, errors[error]);
if (pattern == DP_TRAINING_PATTERN_1 && error == 0)
break;
if (pattern == DP_TRAINING_PATTERN_2) {
value &= LT_CHANNEL1_EQ_BITS |
LT_INTERLANE_ALIGN_DONE |
LT_CHANNEL0_EQ_BITS;
/* in case of two lanes */
if ((tc->link.base.num_lanes == 2) &&
(value == (LT_CHANNEL1_EQ_BITS |
LT_INTERLANE_ALIGN_DONE |
LT_CHANNEL0_EQ_BITS)))
break;
/* in case of one line */
if ((tc->link.base.num_lanes == 1) &&
(value == (LT_INTERLANE_ALIGN_DONE |
LT_CHANNEL0_EQ_BITS)))
break;
}
}
/* restart */
tc_write(DP0CTL, 0);
usleep_range(10, 20);
} while (--retry);
if (retry == 0) {
dev_err(tc->dev, "Failed to finish training phase %d\n",
pattern);
}
return 0;
err:
return ret;
}
static int tc_main_link_setup(struct tc_data *tc)
{
struct drm_dp_aux *aux = &tc->aux;
struct device *dev = tc->dev;
unsigned int rate;
u32 dp_phy_ctrl;
int timeout;
bool aligned;
bool ready;
u32 value;
int ret;
u8 tmp[8];
/* display mode should be set at this point */
if (!tc->mode)
return -EINVAL;
/* from excel file - DP0_SrcCtrl */
tc_write(DP0_SRCCTRL, DP0_SRCCTRL_SCRMBLDIS | DP0_SRCCTRL_EN810B |
DP0_SRCCTRL_LANESKEW | DP0_SRCCTRL_LANES_2 |
DP0_SRCCTRL_BW27 | DP0_SRCCTRL_AUTOCORRECT);
/* from excel file - DP1_SrcCtrl */
tc_write(0x07a0, 0x00003083);
rate = clk_get_rate(tc->refclk);
switch (rate) {
case 38400000:
value = REF_FREQ_38M4;
break;
case 26000000:
value = REF_FREQ_26M;
break;
case 19200000:
value = REF_FREQ_19M2;
break;
case 13000000:
value = REF_FREQ_13M;
break;
default:
return -EINVAL;
}
value |= SYSCLK_SEL_LSCLK | LSCLK_DIV_2;
tc_write(SYS_PLLPARAM, value);
/* Setup Main Link */
dp_phy_ctrl = BGREN | PWR_SW_EN | BIT(2) | PHY_A0_EN | PHY_M0_EN;
tc_write(DP_PHY_CTRL, dp_phy_ctrl);
msleep(100);
/* PLL setup */
tc_write(DP0_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
tc_write(DP1_PLLCTRL, PLLUPDATE | PLLEN);
tc_wait_pll_lock(tc);
/* PXL PLL setup */
if (tc_test_pattern) {
ret = tc_pxl_pll_en(tc, clk_get_rate(tc->refclk),
1000 * tc->mode->clock);
if (ret)
goto err;
}
/* Reset/Enable Main Links */
dp_phy_ctrl |= DP_PHY_RST | PHY_M1_RST | PHY_M0_RST;
tc_write(DP_PHY_CTRL, dp_phy_ctrl);
usleep_range(100, 200);
dp_phy_ctrl &= ~(DP_PHY_RST | PHY_M1_RST | PHY_M0_RST);
tc_write(DP_PHY_CTRL, dp_phy_ctrl);
timeout = 1000;
do {
tc_read(DP_PHY_CTRL, &value);
udelay(1);
} while ((!(value & PHY_RDY)) && (--timeout));
if (timeout == 0) {
dev_err(dev, "timeout waiting for phy become ready");
return -ETIMEDOUT;
}
/* Set misc: 8 bits per color */
ret = regmap_update_bits(tc->regmap, DP0_MISC, BPC_8, BPC_8);
if (ret)
goto err;
/*
* ASSR mode
* on TC358767 side ASSR configured through strap pin
* seems there is no way to change this setting from SW
*
* check is tc configured for same mode
*/
if (tc->assr != tc->link.assr) {
dev_dbg(dev, "Trying to set display to ASSR: %d\n",
tc->assr);
/* try to set ASSR on display side */
tmp[0] = tc->assr;
ret = drm_dp_dpcd_writeb(aux, DP_EDP_CONFIGURATION_SET, tmp[0]);
if (ret < 0)
goto err_dpcd_read;
/* read back */
ret = drm_dp_dpcd_readb(aux, DP_EDP_CONFIGURATION_SET, tmp);
if (ret < 0)
goto err_dpcd_read;
if (tmp[0] != tc->assr) {
dev_dbg(dev, "Failed to switch display ASSR to %d, falling back to unscrambled mode\n",
tc->assr);
/* trying with disabled scrambler */
tc->link.scrambler_dis = 1;
}
}
/* Setup Link & DPRx Config for Training */
ret = drm_dp_link_configure(aux, &tc->link.base);
if (ret < 0)
goto err_dpcd_write;
/* DOWNSPREAD_CTRL */
tmp[0] = tc->link.spread ? DP_SPREAD_AMP_0_5 : 0x00;
/* MAIN_LINK_CHANNEL_CODING_SET */
tmp[1] = tc->link.coding8b10b ? DP_SET_ANSI_8B10B : 0x00;
ret = drm_dp_dpcd_write(aux, DP_DOWNSPREAD_CTRL, tmp, 2);
if (ret < 0)
goto err_dpcd_write;
ret = tc_link_training(tc, DP_TRAINING_PATTERN_1);
if (ret)
goto err;
ret = tc_link_training(tc, DP_TRAINING_PATTERN_2);
if (ret)
goto err;
/* Clear DPCD 0x102 */
/* Note: Can Not use DP0_SNKLTCTRL (0x06E4) short cut */
tmp[0] = tc->link.scrambler_dis ? DP_LINK_SCRAMBLING_DISABLE : 0x00;
ret = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET, tmp[0]);
if (ret < 0)
goto err_dpcd_write;
/* Clear Training Pattern, set AutoCorrect Mode = 1 */
tc_write(DP0_SRCCTRL, tc_srcctrl(tc) | DP0_SRCCTRL_AUTOCORRECT);
/* Wait */
timeout = 100;
do {
udelay(1);
/* Read DPCD 0x202-0x207 */
ret = drm_dp_dpcd_read_link_status(aux, tmp + 2);
if (ret < 0)
goto err_dpcd_read;
ready = (tmp[2] == ((DP_CHANNEL_EQ_BITS << 4) | /* Lane1 */
DP_CHANNEL_EQ_BITS)); /* Lane0 */
aligned = tmp[4] & DP_INTERLANE_ALIGN_DONE;
} while ((--timeout) && !(ready && aligned));
if (timeout == 0) {
/* Read DPCD 0x200-0x201 */
ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT, tmp, 2);
if (ret < 0)
goto err_dpcd_read;
dev_info(dev, "0x0200 SINK_COUNT: 0x%02x\n", tmp[0]);
dev_info(dev, "0x0201 DEVICE_SERVICE_IRQ_VECTOR: 0x%02x\n",
tmp[1]);
dev_info(dev, "0x0202 LANE0_1_STATUS: 0x%02x\n", tmp[2]);
dev_info(dev, "0x0204 LANE_ALIGN_STATUS_UPDATED: 0x%02x\n",
tmp[4]);
dev_info(dev, "0x0205 SINK_STATUS: 0x%02x\n", tmp[5]);
dev_info(dev, "0x0206 ADJUST_REQUEST_LANE0_1: 0x%02x\n",
tmp[6]);
if (!ready)
dev_err(dev, "Lane0/1 not ready\n");
if (!aligned)
dev_err(dev, "Lane0/1 not aligned\n");
return -EAGAIN;
}
ret = tc_set_video_mode(tc, tc->mode);
if (ret)
goto err;
/* Set M/N */
ret = tc_stream_clock_calc(tc);
if (ret)
goto err;
return 0;
err_dpcd_read:
dev_err(tc->dev, "Failed to read DPCD: %d\n", ret);
return ret;
err_dpcd_write:
dev_err(tc->dev, "Failed to write DPCD: %d\n", ret);
err:
return ret;
}
static int tc_main_link_stream(struct tc_data *tc, int state)
{
int ret;
u32 value;
dev_dbg(tc->dev, "stream: %d\n", state);
if (state) {
value = VID_MN_GEN | DP_EN;
if (tc->link.base.capabilities & DP_LINK_CAP_ENHANCED_FRAMING)
value |= EF_EN;
tc_write(DP0CTL, value);
/*
* VID_EN assertion should be delayed by at least N * LSCLK
* cycles from the time VID_MN_GEN is enabled in order to
* generate stable values for VID_M. LSCLK is 270 MHz or
* 162 MHz, VID_N is set to 32768 in tc_stream_clock_calc(),
* so a delay of at least 203 us should suffice.
*/
usleep_range(500, 1000);
value |= VID_EN;
tc_write(DP0CTL, value);
/* Set input interface */
value = DP0_AUDSRC_NO_INPUT;
if (tc_test_pattern)
value |= DP0_VIDSRC_COLOR_BAR;
else
value |= DP0_VIDSRC_DPI_RX;
tc_write(SYSCTRL, value);
} else {
tc_write(DP0CTL, 0);
}
return 0;
err:
return ret;
}
static void tc_bridge_pre_enable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
drm_panel_prepare(tc->panel);
}
static void tc_bridge_enable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
ret = tc_main_link_setup(tc);
if (ret < 0) {
dev_err(tc->dev, "main link setup error: %d\n", ret);
return;
}
ret = tc_main_link_stream(tc, 1);
if (ret < 0) {
dev_err(tc->dev, "main link stream start error: %d\n", ret);
return;
}
drm_panel_enable(tc->panel);
}
static void tc_bridge_disable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
int ret;
drm_panel_disable(tc->panel);
ret = tc_main_link_stream(tc, 0);
if (ret < 0)
dev_err(tc->dev, "main link stream stop error: %d\n", ret);
}
static void tc_bridge_post_disable(struct drm_bridge *bridge)
{
struct tc_data *tc = bridge_to_tc(bridge);
drm_panel_unprepare(tc->panel);
}
static bool tc_bridge_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adj)
{
/* Fixup sync polarities, both hsync and vsync are active low */
adj->flags = mode->flags;
adj->flags |= (DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
adj->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
return true;
}
static int tc_connector_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
/* Accept any mode */
return MODE_OK;
}
static void tc_bridge_mode_set(struct drm_bridge *bridge,
struct drm_display_mode *mode,
struct drm_display_mode *adj)
{
struct tc_data *tc = bridge_to_tc(bridge);
tc->mode = mode;
}
static int tc_connector_get_modes(struct drm_connector *connector)
{
struct tc_data *tc = connector_to_tc(connector);
struct edid *edid;
unsigned int count;
if (tc->panel && tc->panel->funcs && tc->panel->funcs->get_modes) {
count = tc->panel->funcs->get_modes(tc->panel);
if (count > 0)
return count;
}
edid = drm_get_edid(connector, &tc->aux.ddc);
kfree(tc->edid);
tc->edid = edid;
if (!edid)
return 0;
drm_mode_connector_update_edid_property(connector, edid);
count = drm_add_edid_modes(connector, edid);
return count;
}
static void tc_connector_set_polling(struct tc_data *tc,
struct drm_connector *connector)
{
/* TODO: add support for HPD */
connector->polled = DRM_CONNECTOR_POLL_CONNECT |
DRM_CONNECTOR_POLL_DISCONNECT;
}
static struct drm_encoder *
tc_connector_best_encoder(struct drm_connector *connector)
{
struct tc_data *tc = connector_to_tc(connector);
return tc->bridge.encoder;
}
static const struct drm_connector_helper_funcs tc_connector_helper_funcs = {
.get_modes = tc_connector_get_modes,
.mode_valid = tc_connector_mode_valid,
.best_encoder = tc_connector_best_encoder,
};
static const struct drm_connector_funcs tc_connector_funcs = {
.dpms = drm_atomic_helper_connector_dpms,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static int tc_bridge_attach(struct drm_bridge *bridge)
{
u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24;
struct tc_data *tc = bridge_to_tc(bridge);
struct drm_device *drm = bridge->dev;
int ret;
/* Create eDP connector */
drm_connector_helper_add(&tc->connector, &tc_connector_helper_funcs);
ret = drm_connector_init(drm, &tc->connector, &tc_connector_funcs,
DRM_MODE_CONNECTOR_eDP);
if (ret)
return ret;
if (tc->panel)
drm_panel_attach(tc->panel, &tc->connector);
drm_display_info_set_bus_formats(&tc->connector.display_info,
&bus_format, 1);
drm_mode_connector_attach_encoder(&tc->connector, tc->bridge.encoder);
return 0;
}
static const struct drm_bridge_funcs tc_bridge_funcs = {
.attach = tc_bridge_attach,
.mode_set = tc_bridge_mode_set,
.pre_enable = tc_bridge_pre_enable,
.enable = tc_bridge_enable,
.disable = tc_bridge_disable,
.post_disable = tc_bridge_post_disable,
.mode_fixup = tc_bridge_mode_fixup,
};
static bool tc_readable_reg(struct device *dev, unsigned int reg)
{
return reg != SYSCTRL;
}
static const struct regmap_range tc_volatile_ranges[] = {
regmap_reg_range(DP0_AUXWDATA(0), DP0_AUXSTATUS),
regmap_reg_range(DP0_LTSTAT, DP0_SNKLTCHGREQ),
regmap_reg_range(DP_PHY_CTRL, DP_PHY_CTRL),
regmap_reg_range(DP0_PLLCTRL, PXL_PLLCTRL),
regmap_reg_range(VFUEN0, VFUEN0),
};
static const struct regmap_access_table tc_volatile_table = {
.yes_ranges = tc_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(tc_volatile_ranges),
};
static bool tc_writeable_reg(struct device *dev, unsigned int reg)
{
return (reg != TC_IDREG) &&
(reg != DP0_LTSTAT) &&
(reg != DP0_SNKLTCHGREQ);
}
static const struct regmap_config tc_regmap_config = {
.name = "tc358767",
.reg_bits = 16,
.val_bits = 32,
.reg_stride = 4,
.max_register = PLL_DBG,
.cache_type = REGCACHE_RBTREE,
.readable_reg = tc_readable_reg,
.volatile_table = &tc_volatile_table,
.writeable_reg = tc_writeable_reg,
.reg_format_endian = REGMAP_ENDIAN_BIG,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static int tc_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct tc_data *tc;
int ret;
tc = devm_kzalloc(dev, sizeof(*tc), GFP_KERNEL);
if (!tc)
return -ENOMEM;
tc->dev = dev;
/* port@2 is the output port */
ret = drm_of_find_panel_or_bridge(dev->of_node, 2, 0, &tc->panel, NULL);
if (ret && ret != -ENODEV)
return ret;
/* Shut down GPIO is optional */
tc->sd_gpio = devm_gpiod_get_optional(dev, "shutdown", GPIOD_OUT_HIGH);
if (IS_ERR(tc->sd_gpio))
return PTR_ERR(tc->sd_gpio);
if (tc->sd_gpio) {
gpiod_set_value_cansleep(tc->sd_gpio, 0);
usleep_range(5000, 10000);
}
/* Reset GPIO is optional */
tc->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(tc->reset_gpio))
return PTR_ERR(tc->reset_gpio);
if (tc->reset_gpio) {
gpiod_set_value_cansleep(tc->reset_gpio, 1);
usleep_range(5000, 10000);
}
tc->refclk = devm_clk_get(dev, "ref");
if (IS_ERR(tc->refclk)) {
ret = PTR_ERR(tc->refclk);
dev_err(dev, "Failed to get refclk: %d\n", ret);
return ret;
}
tc->regmap = devm_regmap_init_i2c(client, &tc_regmap_config);
if (IS_ERR(tc->regmap)) {
ret = PTR_ERR(tc->regmap);
dev_err(dev, "Failed to initialize regmap: %d\n", ret);
return ret;
}
ret = regmap_read(tc->regmap, TC_IDREG, &tc->rev);
if (ret) {
dev_err(tc->dev, "can not read device ID: %d\n", ret);
return ret;
}
if ((tc->rev != 0x6601) && (tc->rev != 0x6603)) {
dev_err(tc->dev, "invalid device ID: 0x%08x\n", tc->rev);
return -EINVAL;
}
tc->assr = (tc->rev == 0x6601); /* Enable ASSR for eDP panels */
ret = tc_aux_link_setup(tc);
if (ret)
return ret;
/* Register DP AUX channel */
tc->aux.name = "TC358767 AUX i2c adapter";
tc->aux.dev = tc->dev;
tc->aux.transfer = tc_aux_transfer;
ret = drm_dp_aux_register(&tc->aux);
if (ret)
return ret;
ret = tc_get_display_props(tc);
if (ret)
goto err_unregister_aux;
tc_connector_set_polling(tc, &tc->connector);
tc->bridge.funcs = &tc_bridge_funcs;
tc->bridge.of_node = dev->of_node;
ret = drm_bridge_add(&tc->bridge);
if (ret) {
dev_err(dev, "Failed to add drm_bridge: %d\n", ret);
goto err_unregister_aux;
}
i2c_set_clientdata(client, tc);
return 0;
err_unregister_aux:
drm_dp_aux_unregister(&tc->aux);
return ret;
}
static int tc_remove(struct i2c_client *client)
{
struct tc_data *tc = i2c_get_clientdata(client);
drm_bridge_remove(&tc->bridge);
drm_dp_aux_unregister(&tc->aux);
tc_pxl_pll_dis(tc);
return 0;
}
static const struct i2c_device_id tc358767_i2c_ids[] = {
{ "tc358767", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tc358767_i2c_ids);
static const struct of_device_id tc358767_of_ids[] = {
{ .compatible = "toshiba,tc358767", },
{ }
};
MODULE_DEVICE_TABLE(of, tc358767_of_ids);
static struct i2c_driver tc358767_driver = {
.driver = {
.name = "tc358767",
.of_match_table = tc358767_of_ids,
},
.id_table = tc358767_i2c_ids,
.probe = tc_probe,
.remove = tc_remove,
};
module_i2c_driver(tc358767_driver);
MODULE_AUTHOR("Andrey Gusakov <andrey.gusakov@cogentembedded.com>");
MODULE_DESCRIPTION("tc358767 eDP encoder driver");
MODULE_LICENSE("GPL");