2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 04:54:01 +08:00
linux-next/include/linux/virtio.h
Rusty Russell c45a6816c1 virtio: explicit advertisement of driver features
A recent proposed feature addition to the virtio block driver revealed
some flaws in the API: in particular, we assume that feature
negotiation is complete once a driver's probe function returns.

There is nothing in the API to require this, however, and even I
didn't notice when it was violated.

So instead, we require the driver to specify what features it supports
in a table, we can then move the feature negotiation into the virtio
core.  The intersection of device and driver features are presented in
a new 'features' bitmap in the struct virtio_device.

Note that this highlights the difference between Linux unsigned-long
bitmaps where each unsigned long is in native endian, and a
straight-forward little-endian array of bytes.

Drivers can still remove feature bits in their probe routine if they
really have to.

API changes:
- dev->config->feature() no longer gets and acks a feature.
- drivers should advertise their features in the 'feature_table' field
- use virtio_has_feature() for extra sanity when checking feature bits

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2008-05-02 21:50:50 +10:00

121 lines
4.2 KiB
C

#ifndef _LINUX_VIRTIO_H
#define _LINUX_VIRTIO_H
/* Everything a virtio driver needs to work with any particular virtio
* implementation. */
#include <linux/types.h>
#include <linux/scatterlist.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/mod_devicetable.h>
/**
* virtqueue - a queue to register buffers for sending or receiving.
* @callback: the function to call when buffers are consumed (can be NULL).
* @vdev: the virtio device this queue was created for.
* @vq_ops: the operations for this virtqueue (see below).
* @priv: a pointer for the virtqueue implementation to use.
*/
struct virtqueue
{
void (*callback)(struct virtqueue *vq);
struct virtio_device *vdev;
struct virtqueue_ops *vq_ops;
void *priv;
};
/**
* virtqueue_ops - operations for virtqueue abstraction layer
* @add_buf: expose buffer to other end
* vq: the struct virtqueue we're talking about.
* sg: the description of the buffer(s).
* out_num: the number of sg readable by other side
* in_num: the number of sg which are writable (after readable ones)
* data: the token identifying the buffer.
* Returns 0 or an error.
* @kick: update after add_buf
* vq: the struct virtqueue
* After one or more add_buf calls, invoke this to kick the other side.
* @get_buf: get the next used buffer
* vq: the struct virtqueue we're talking about.
* len: the length written into the buffer
* Returns NULL or the "data" token handed to add_buf.
* @disable_cb: disable callbacks
* vq: the struct virtqueue we're talking about.
* Note that this is not necessarily synchronous, hence unreliable and only
* useful as an optimization.
* @enable_cb: restart callbacks after disable_cb.
* vq: the struct virtqueue we're talking about.
* This re-enables callbacks; it returns "false" if there are pending
* buffers in the queue, to detect a possible race between the driver
* checking for more work, and enabling callbacks.
*
* Locking rules are straightforward: the driver is responsible for
* locking. No two operations may be invoked simultaneously, with the exception
* of @disable_cb.
*
* All operations can be called in any context.
*/
struct virtqueue_ops {
int (*add_buf)(struct virtqueue *vq,
struct scatterlist sg[],
unsigned int out_num,
unsigned int in_num,
void *data);
void (*kick)(struct virtqueue *vq);
void *(*get_buf)(struct virtqueue *vq, unsigned int *len);
void (*disable_cb)(struct virtqueue *vq);
bool (*enable_cb)(struct virtqueue *vq);
};
/**
* virtio_device - representation of a device using virtio
* @index: unique position on the virtio bus
* @dev: underlying device.
* @id: the device type identification (used to match it with a driver).
* @config: the configuration ops for this device.
* @features: the features supported by both driver and device.
* @priv: private pointer for the driver's use.
*/
struct virtio_device
{
int index;
struct device dev;
struct virtio_device_id id;
struct virtio_config_ops *config;
/* Note that this is a Linux set_bit-style bitmap. */
unsigned long features[1];
void *priv;
};
int register_virtio_device(struct virtio_device *dev);
void unregister_virtio_device(struct virtio_device *dev);
/**
* virtio_driver - operations for a virtio I/O driver
* @driver: underlying device driver (populate name and owner).
* @id_table: the ids serviced by this driver.
* @feature_table: an array of feature numbers supported by this device.
* @feature_table_size: number of entries in the feature table array.
* @probe: the function to call when a device is found. Returns a token for
* remove, or PTR_ERR().
* @remove: the function when a device is removed.
* @config_changed: optional function to call when the device configuration
* changes; may be called in interrupt context.
*/
struct virtio_driver {
struct device_driver driver;
const struct virtio_device_id *id_table;
const unsigned int *feature_table;
unsigned int feature_table_size;
int (*probe)(struct virtio_device *dev);
void (*remove)(struct virtio_device *dev);
void (*config_changed)(struct virtio_device *dev);
};
int register_virtio_driver(struct virtio_driver *drv);
void unregister_virtio_driver(struct virtio_driver *drv);
#endif /* _LINUX_VIRTIO_H */