mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-06 12:44:14 +08:00
5c83511bdb
Instead of using six globally visible paravirt ops structures combine them in a single structure, keeping the original structures as sub-structures. This avoids the need to assemble struct paravirt_patch_template at runtime on the stack each time apply_paravirt() is being called (i.e. when loading a module). [ tglx: Made the struct and the initializer tabular for readability sake ] Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: xen-devel@lists.xenproject.org Cc: virtualization@lists.linux-foundation.org Cc: akataria@vmware.com Cc: rusty@rustcorp.com.au Cc: boris.ostrovsky@oracle.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180828074026.820-9-jgross@suse.com
328 lines
8.7 KiB
C
328 lines
8.7 KiB
C
/* KVM paravirtual clock driver. A clocksource implementation
|
|
Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <linux/clocksource.h>
|
|
#include <linux/kvm_para.h>
|
|
#include <asm/pvclock.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/apic.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/mem_encrypt.h>
|
|
#include <asm/x86_init.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/kvmclock.h>
|
|
|
|
static int kvmclock __initdata = 1;
|
|
static int kvmclock_vsyscall __initdata = 1;
|
|
static int msr_kvm_system_time __ro_after_init = MSR_KVM_SYSTEM_TIME;
|
|
static int msr_kvm_wall_clock __ro_after_init = MSR_KVM_WALL_CLOCK;
|
|
static u64 kvm_sched_clock_offset __ro_after_init;
|
|
|
|
static int __init parse_no_kvmclock(char *arg)
|
|
{
|
|
kvmclock = 0;
|
|
return 0;
|
|
}
|
|
early_param("no-kvmclock", parse_no_kvmclock);
|
|
|
|
static int __init parse_no_kvmclock_vsyscall(char *arg)
|
|
{
|
|
kvmclock_vsyscall = 0;
|
|
return 0;
|
|
}
|
|
early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
|
|
|
|
/* Aligned to page sizes to match whats mapped via vsyscalls to userspace */
|
|
#define HV_CLOCK_SIZE (sizeof(struct pvclock_vsyscall_time_info) * NR_CPUS)
|
|
#define HVC_BOOT_ARRAY_SIZE \
|
|
(PAGE_SIZE / sizeof(struct pvclock_vsyscall_time_info))
|
|
|
|
static struct pvclock_vsyscall_time_info
|
|
hv_clock_boot[HVC_BOOT_ARRAY_SIZE] __aligned(PAGE_SIZE);
|
|
static struct pvclock_wall_clock wall_clock;
|
|
static DEFINE_PER_CPU(struct pvclock_vsyscall_time_info *, hv_clock_per_cpu);
|
|
|
|
static inline struct pvclock_vcpu_time_info *this_cpu_pvti(void)
|
|
{
|
|
return &this_cpu_read(hv_clock_per_cpu)->pvti;
|
|
}
|
|
|
|
static inline struct pvclock_vsyscall_time_info *this_cpu_hvclock(void)
|
|
{
|
|
return this_cpu_read(hv_clock_per_cpu);
|
|
}
|
|
|
|
/*
|
|
* The wallclock is the time of day when we booted. Since then, some time may
|
|
* have elapsed since the hypervisor wrote the data. So we try to account for
|
|
* that with system time
|
|
*/
|
|
static void kvm_get_wallclock(struct timespec64 *now)
|
|
{
|
|
wrmsrl(msr_kvm_wall_clock, slow_virt_to_phys(&wall_clock));
|
|
preempt_disable();
|
|
pvclock_read_wallclock(&wall_clock, this_cpu_pvti(), now);
|
|
preempt_enable();
|
|
}
|
|
|
|
static int kvm_set_wallclock(const struct timespec64 *now)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static u64 kvm_clock_read(void)
|
|
{
|
|
u64 ret;
|
|
|
|
preempt_disable_notrace();
|
|
ret = pvclock_clocksource_read(this_cpu_pvti());
|
|
preempt_enable_notrace();
|
|
return ret;
|
|
}
|
|
|
|
static u64 kvm_clock_get_cycles(struct clocksource *cs)
|
|
{
|
|
return kvm_clock_read();
|
|
}
|
|
|
|
static u64 kvm_sched_clock_read(void)
|
|
{
|
|
return kvm_clock_read() - kvm_sched_clock_offset;
|
|
}
|
|
|
|
static inline void kvm_sched_clock_init(bool stable)
|
|
{
|
|
if (!stable) {
|
|
pv_ops.time.sched_clock = kvm_clock_read;
|
|
clear_sched_clock_stable();
|
|
return;
|
|
}
|
|
|
|
kvm_sched_clock_offset = kvm_clock_read();
|
|
pv_ops.time.sched_clock = kvm_sched_clock_read;
|
|
|
|
pr_info("kvm-clock: using sched offset of %llu cycles",
|
|
kvm_sched_clock_offset);
|
|
|
|
BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
|
|
sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
|
|
}
|
|
|
|
/*
|
|
* If we don't do that, there is the possibility that the guest
|
|
* will calibrate under heavy load - thus, getting a lower lpj -
|
|
* and execute the delays themselves without load. This is wrong,
|
|
* because no delay loop can finish beforehand.
|
|
* Any heuristics is subject to fail, because ultimately, a large
|
|
* poll of guests can be running and trouble each other. So we preset
|
|
* lpj here
|
|
*/
|
|
static unsigned long kvm_get_tsc_khz(void)
|
|
{
|
|
setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
|
|
return pvclock_tsc_khz(this_cpu_pvti());
|
|
}
|
|
|
|
static void __init kvm_get_preset_lpj(void)
|
|
{
|
|
unsigned long khz;
|
|
u64 lpj;
|
|
|
|
khz = kvm_get_tsc_khz();
|
|
|
|
lpj = ((u64)khz * 1000);
|
|
do_div(lpj, HZ);
|
|
preset_lpj = lpj;
|
|
}
|
|
|
|
bool kvm_check_and_clear_guest_paused(void)
|
|
{
|
|
struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
|
|
bool ret = false;
|
|
|
|
if (!src)
|
|
return ret;
|
|
|
|
if ((src->pvti.flags & PVCLOCK_GUEST_STOPPED) != 0) {
|
|
src->pvti.flags &= ~PVCLOCK_GUEST_STOPPED;
|
|
pvclock_touch_watchdogs();
|
|
ret = true;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
struct clocksource kvm_clock = {
|
|
.name = "kvm-clock",
|
|
.read = kvm_clock_get_cycles,
|
|
.rating = 400,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
|
};
|
|
EXPORT_SYMBOL_GPL(kvm_clock);
|
|
|
|
static void kvm_register_clock(char *txt)
|
|
{
|
|
struct pvclock_vsyscall_time_info *src = this_cpu_hvclock();
|
|
u64 pa;
|
|
|
|
if (!src)
|
|
return;
|
|
|
|
pa = slow_virt_to_phys(&src->pvti) | 0x01ULL;
|
|
wrmsrl(msr_kvm_system_time, pa);
|
|
pr_info("kvm-clock: cpu %d, msr %llx, %s", smp_processor_id(), pa, txt);
|
|
}
|
|
|
|
static void kvm_save_sched_clock_state(void)
|
|
{
|
|
}
|
|
|
|
static void kvm_restore_sched_clock_state(void)
|
|
{
|
|
kvm_register_clock("primary cpu clock, resume");
|
|
}
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
static void kvm_setup_secondary_clock(void)
|
|
{
|
|
kvm_register_clock("secondary cpu clock");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* After the clock is registered, the host will keep writing to the
|
|
* registered memory location. If the guest happens to shutdown, this memory
|
|
* won't be valid. In cases like kexec, in which you install a new kernel, this
|
|
* means a random memory location will be kept being written. So before any
|
|
* kind of shutdown from our side, we unregister the clock by writing anything
|
|
* that does not have the 'enable' bit set in the msr
|
|
*/
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
static void kvm_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
native_write_msr(msr_kvm_system_time, 0, 0);
|
|
kvm_disable_steal_time();
|
|
native_machine_crash_shutdown(regs);
|
|
}
|
|
#endif
|
|
|
|
static void kvm_shutdown(void)
|
|
{
|
|
native_write_msr(msr_kvm_system_time, 0, 0);
|
|
kvm_disable_steal_time();
|
|
native_machine_shutdown();
|
|
}
|
|
|
|
static int __init kvm_setup_vsyscall_timeinfo(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
u8 flags;
|
|
|
|
if (!per_cpu(hv_clock_per_cpu, 0) || !kvmclock_vsyscall)
|
|
return 0;
|
|
|
|
flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
|
|
if (!(flags & PVCLOCK_TSC_STABLE_BIT))
|
|
return 0;
|
|
|
|
kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
|
|
#endif
|
|
return 0;
|
|
}
|
|
early_initcall(kvm_setup_vsyscall_timeinfo);
|
|
|
|
static int kvmclock_setup_percpu(unsigned int cpu)
|
|
{
|
|
struct pvclock_vsyscall_time_info *p = per_cpu(hv_clock_per_cpu, cpu);
|
|
|
|
/*
|
|
* The per cpu area setup replicates CPU0 data to all cpu
|
|
* pointers. So carefully check. CPU0 has been set up in init
|
|
* already.
|
|
*/
|
|
if (!cpu || (p && p != per_cpu(hv_clock_per_cpu, 0)))
|
|
return 0;
|
|
|
|
/* Use the static page for the first CPUs, allocate otherwise */
|
|
if (cpu < HVC_BOOT_ARRAY_SIZE)
|
|
p = &hv_clock_boot[cpu];
|
|
else
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
|
|
per_cpu(hv_clock_per_cpu, cpu) = p;
|
|
return p ? 0 : -ENOMEM;
|
|
}
|
|
|
|
void __init kvmclock_init(void)
|
|
{
|
|
u8 flags;
|
|
|
|
if (!kvm_para_available() || !kvmclock)
|
|
return;
|
|
|
|
if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
|
|
msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
|
|
msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
|
|
} else if (!kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)) {
|
|
return;
|
|
}
|
|
|
|
if (cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "kvmclock:setup_percpu",
|
|
kvmclock_setup_percpu, NULL) < 0) {
|
|
return;
|
|
}
|
|
|
|
pr_info("kvm-clock: Using msrs %x and %x",
|
|
msr_kvm_system_time, msr_kvm_wall_clock);
|
|
|
|
this_cpu_write(hv_clock_per_cpu, &hv_clock_boot[0]);
|
|
kvm_register_clock("primary cpu clock");
|
|
pvclock_set_pvti_cpu0_va(hv_clock_boot);
|
|
|
|
if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
|
|
pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
|
|
|
|
flags = pvclock_read_flags(&hv_clock_boot[0].pvti);
|
|
kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
|
|
|
|
x86_platform.calibrate_tsc = kvm_get_tsc_khz;
|
|
x86_platform.calibrate_cpu = kvm_get_tsc_khz;
|
|
x86_platform.get_wallclock = kvm_get_wallclock;
|
|
x86_platform.set_wallclock = kvm_set_wallclock;
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
x86_cpuinit.early_percpu_clock_init = kvm_setup_secondary_clock;
|
|
#endif
|
|
x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
|
|
x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
|
|
machine_ops.shutdown = kvm_shutdown;
|
|
#ifdef CONFIG_KEXEC_CORE
|
|
machine_ops.crash_shutdown = kvm_crash_shutdown;
|
|
#endif
|
|
kvm_get_preset_lpj();
|
|
clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
|
|
pv_info.name = "KVM";
|
|
}
|