mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 11:44:01 +08:00
9de94dbb90
There's a completely unnecessary inclusion of linux/ioport.h near the end of the asm/e820/api.h file. Remove it and fix up unrelated code that learned to rely on this spurious inclusion of a generic header. No change in functionality. Cc: Alex Thorlton <athorlton@sgi.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Huang, Ying <ying.huang@intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Jackson <pj@sgi.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@sisk.pl> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
1141 lines
28 KiB
C
1141 lines
28 KiB
C
/*
|
|
* Handle caching attributes in page tables (PAT)
|
|
*
|
|
* Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
|
* Suresh B Siddha <suresh.b.siddha@intel.com>
|
|
*
|
|
* Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
|
|
*/
|
|
|
|
#include <linux/seq_file.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/rbtree.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/x86_init.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/fcntl.h>
|
|
#include <asm/e820/api.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/page.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/pat.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "pat_internal.h"
|
|
#include "mm_internal.h"
|
|
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) "" fmt
|
|
|
|
static bool boot_cpu_done;
|
|
|
|
static int __read_mostly __pat_enabled = IS_ENABLED(CONFIG_X86_PAT);
|
|
static void init_cache_modes(void);
|
|
|
|
void pat_disable(const char *reason)
|
|
{
|
|
if (!__pat_enabled)
|
|
return;
|
|
|
|
if (boot_cpu_done) {
|
|
WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
|
|
return;
|
|
}
|
|
|
|
__pat_enabled = 0;
|
|
pr_info("x86/PAT: %s\n", reason);
|
|
|
|
init_cache_modes();
|
|
}
|
|
|
|
static int __init nopat(char *str)
|
|
{
|
|
pat_disable("PAT support disabled.");
|
|
return 0;
|
|
}
|
|
early_param("nopat", nopat);
|
|
|
|
bool pat_enabled(void)
|
|
{
|
|
return !!__pat_enabled;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pat_enabled);
|
|
|
|
int pat_debug_enable;
|
|
|
|
static int __init pat_debug_setup(char *str)
|
|
{
|
|
pat_debug_enable = 1;
|
|
return 0;
|
|
}
|
|
__setup("debugpat", pat_debug_setup);
|
|
|
|
#ifdef CONFIG_X86_PAT
|
|
/*
|
|
* X86 PAT uses page flags arch_1 and uncached together to keep track of
|
|
* memory type of pages that have backing page struct.
|
|
*
|
|
* X86 PAT supports 4 different memory types:
|
|
* - _PAGE_CACHE_MODE_WB
|
|
* - _PAGE_CACHE_MODE_WC
|
|
* - _PAGE_CACHE_MODE_UC_MINUS
|
|
* - _PAGE_CACHE_MODE_WT
|
|
*
|
|
* _PAGE_CACHE_MODE_WB is the default type.
|
|
*/
|
|
|
|
#define _PGMT_WB 0
|
|
#define _PGMT_WC (1UL << PG_arch_1)
|
|
#define _PGMT_UC_MINUS (1UL << PG_uncached)
|
|
#define _PGMT_WT (1UL << PG_uncached | 1UL << PG_arch_1)
|
|
#define _PGMT_MASK (1UL << PG_uncached | 1UL << PG_arch_1)
|
|
#define _PGMT_CLEAR_MASK (~_PGMT_MASK)
|
|
|
|
static inline enum page_cache_mode get_page_memtype(struct page *pg)
|
|
{
|
|
unsigned long pg_flags = pg->flags & _PGMT_MASK;
|
|
|
|
if (pg_flags == _PGMT_WB)
|
|
return _PAGE_CACHE_MODE_WB;
|
|
else if (pg_flags == _PGMT_WC)
|
|
return _PAGE_CACHE_MODE_WC;
|
|
else if (pg_flags == _PGMT_UC_MINUS)
|
|
return _PAGE_CACHE_MODE_UC_MINUS;
|
|
else
|
|
return _PAGE_CACHE_MODE_WT;
|
|
}
|
|
|
|
static inline void set_page_memtype(struct page *pg,
|
|
enum page_cache_mode memtype)
|
|
{
|
|
unsigned long memtype_flags;
|
|
unsigned long old_flags;
|
|
unsigned long new_flags;
|
|
|
|
switch (memtype) {
|
|
case _PAGE_CACHE_MODE_WC:
|
|
memtype_flags = _PGMT_WC;
|
|
break;
|
|
case _PAGE_CACHE_MODE_UC_MINUS:
|
|
memtype_flags = _PGMT_UC_MINUS;
|
|
break;
|
|
case _PAGE_CACHE_MODE_WT:
|
|
memtype_flags = _PGMT_WT;
|
|
break;
|
|
case _PAGE_CACHE_MODE_WB:
|
|
default:
|
|
memtype_flags = _PGMT_WB;
|
|
break;
|
|
}
|
|
|
|
do {
|
|
old_flags = pg->flags;
|
|
new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
|
|
} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
|
|
}
|
|
#else
|
|
static inline enum page_cache_mode get_page_memtype(struct page *pg)
|
|
{
|
|
return -1;
|
|
}
|
|
static inline void set_page_memtype(struct page *pg,
|
|
enum page_cache_mode memtype)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
enum {
|
|
PAT_UC = 0, /* uncached */
|
|
PAT_WC = 1, /* Write combining */
|
|
PAT_WT = 4, /* Write Through */
|
|
PAT_WP = 5, /* Write Protected */
|
|
PAT_WB = 6, /* Write Back (default) */
|
|
PAT_UC_MINUS = 7, /* UC, but can be overridden by MTRR */
|
|
};
|
|
|
|
#define CM(c) (_PAGE_CACHE_MODE_ ## c)
|
|
|
|
static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
|
|
{
|
|
enum page_cache_mode cache;
|
|
char *cache_mode;
|
|
|
|
switch (pat_val) {
|
|
case PAT_UC: cache = CM(UC); cache_mode = "UC "; break;
|
|
case PAT_WC: cache = CM(WC); cache_mode = "WC "; break;
|
|
case PAT_WT: cache = CM(WT); cache_mode = "WT "; break;
|
|
case PAT_WP: cache = CM(WP); cache_mode = "WP "; break;
|
|
case PAT_WB: cache = CM(WB); cache_mode = "WB "; break;
|
|
case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
|
|
default: cache = CM(WB); cache_mode = "WB "; break;
|
|
}
|
|
|
|
memcpy(msg, cache_mode, 4);
|
|
|
|
return cache;
|
|
}
|
|
|
|
#undef CM
|
|
|
|
/*
|
|
* Update the cache mode to pgprot translation tables according to PAT
|
|
* configuration.
|
|
* Using lower indices is preferred, so we start with highest index.
|
|
*/
|
|
static void __init_cache_modes(u64 pat)
|
|
{
|
|
enum page_cache_mode cache;
|
|
char pat_msg[33];
|
|
int i;
|
|
|
|
pat_msg[32] = 0;
|
|
for (i = 7; i >= 0; i--) {
|
|
cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
|
|
pat_msg + 4 * i);
|
|
update_cache_mode_entry(i, cache);
|
|
}
|
|
pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
|
|
}
|
|
|
|
#define PAT(x, y) ((u64)PAT_ ## y << ((x)*8))
|
|
|
|
static void pat_bsp_init(u64 pat)
|
|
{
|
|
u64 tmp_pat;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PAT)) {
|
|
pat_disable("PAT not supported by CPU.");
|
|
return;
|
|
}
|
|
|
|
rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
|
|
if (!tmp_pat) {
|
|
pat_disable("PAT MSR is 0, disabled.");
|
|
return;
|
|
}
|
|
|
|
wrmsrl(MSR_IA32_CR_PAT, pat);
|
|
|
|
__init_cache_modes(pat);
|
|
}
|
|
|
|
static void pat_ap_init(u64 pat)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_PAT)) {
|
|
/*
|
|
* If this happens we are on a secondary CPU, but switched to
|
|
* PAT on the boot CPU. We have no way to undo PAT.
|
|
*/
|
|
panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
|
|
}
|
|
|
|
wrmsrl(MSR_IA32_CR_PAT, pat);
|
|
}
|
|
|
|
static void init_cache_modes(void)
|
|
{
|
|
u64 pat = 0;
|
|
static int init_cm_done;
|
|
|
|
if (init_cm_done)
|
|
return;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PAT)) {
|
|
/*
|
|
* CPU supports PAT. Set PAT table to be consistent with
|
|
* PAT MSR. This case supports "nopat" boot option, and
|
|
* virtual machine environments which support PAT without
|
|
* MTRRs. In specific, Xen has unique setup to PAT MSR.
|
|
*
|
|
* If PAT MSR returns 0, it is considered invalid and emulates
|
|
* as No PAT.
|
|
*/
|
|
rdmsrl(MSR_IA32_CR_PAT, pat);
|
|
}
|
|
|
|
if (!pat) {
|
|
/*
|
|
* No PAT. Emulate the PAT table that corresponds to the two
|
|
* cache bits, PWT (Write Through) and PCD (Cache Disable).
|
|
* This setup is also the same as the BIOS default setup.
|
|
*
|
|
* PTE encoding:
|
|
*
|
|
* PCD
|
|
* |PWT PAT
|
|
* || slot
|
|
* 00 0 WB : _PAGE_CACHE_MODE_WB
|
|
* 01 1 WT : _PAGE_CACHE_MODE_WT
|
|
* 10 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
|
|
* 11 3 UC : _PAGE_CACHE_MODE_UC
|
|
*
|
|
* NOTE: When WC or WP is used, it is redirected to UC- per
|
|
* the default setup in __cachemode2pte_tbl[].
|
|
*/
|
|
pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
|
|
PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
|
|
}
|
|
|
|
__init_cache_modes(pat);
|
|
|
|
init_cm_done = 1;
|
|
}
|
|
|
|
/**
|
|
* pat_init - Initialize PAT MSR and PAT table
|
|
*
|
|
* This function initializes PAT MSR and PAT table with an OS-defined value
|
|
* to enable additional cache attributes, WC and WT.
|
|
*
|
|
* This function must be called on all CPUs using the specific sequence of
|
|
* operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
|
|
* procedure for PAT.
|
|
*/
|
|
void pat_init(void)
|
|
{
|
|
u64 pat;
|
|
struct cpuinfo_x86 *c = &boot_cpu_data;
|
|
|
|
if (!pat_enabled()) {
|
|
init_cache_modes();
|
|
return;
|
|
}
|
|
|
|
if ((c->x86_vendor == X86_VENDOR_INTEL) &&
|
|
(((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
|
|
((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
|
|
/*
|
|
* PAT support with the lower four entries. Intel Pentium 2,
|
|
* 3, M, and 4 are affected by PAT errata, which makes the
|
|
* upper four entries unusable. To be on the safe side, we don't
|
|
* use those.
|
|
*
|
|
* PTE encoding:
|
|
* PAT
|
|
* |PCD
|
|
* ||PWT PAT
|
|
* ||| slot
|
|
* 000 0 WB : _PAGE_CACHE_MODE_WB
|
|
* 001 1 WC : _PAGE_CACHE_MODE_WC
|
|
* 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
|
|
* 011 3 UC : _PAGE_CACHE_MODE_UC
|
|
* PAT bit unused
|
|
*
|
|
* NOTE: When WT or WP is used, it is redirected to UC- per
|
|
* the default setup in __cachemode2pte_tbl[].
|
|
*/
|
|
pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
|
|
PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
|
|
} else {
|
|
/*
|
|
* Full PAT support. We put WT in slot 7 to improve
|
|
* robustness in the presence of errata that might cause
|
|
* the high PAT bit to be ignored. This way, a buggy slot 7
|
|
* access will hit slot 3, and slot 3 is UC, so at worst
|
|
* we lose performance without causing a correctness issue.
|
|
* Pentium 4 erratum N46 is an example for such an erratum,
|
|
* although we try not to use PAT at all on affected CPUs.
|
|
*
|
|
* PTE encoding:
|
|
* PAT
|
|
* |PCD
|
|
* ||PWT PAT
|
|
* ||| slot
|
|
* 000 0 WB : _PAGE_CACHE_MODE_WB
|
|
* 001 1 WC : _PAGE_CACHE_MODE_WC
|
|
* 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
|
|
* 011 3 UC : _PAGE_CACHE_MODE_UC
|
|
* 100 4 WB : Reserved
|
|
* 101 5 WC : Reserved
|
|
* 110 6 UC-: Reserved
|
|
* 111 7 WT : _PAGE_CACHE_MODE_WT
|
|
*
|
|
* The reserved slots are unused, but mapped to their
|
|
* corresponding types in the presence of PAT errata.
|
|
*/
|
|
pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
|
|
PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, WT);
|
|
}
|
|
|
|
if (!boot_cpu_done) {
|
|
pat_bsp_init(pat);
|
|
boot_cpu_done = true;
|
|
} else {
|
|
pat_ap_init(pat);
|
|
}
|
|
}
|
|
|
|
#undef PAT
|
|
|
|
static DEFINE_SPINLOCK(memtype_lock); /* protects memtype accesses */
|
|
|
|
/*
|
|
* Does intersection of PAT memory type and MTRR memory type and returns
|
|
* the resulting memory type as PAT understands it.
|
|
* (Type in pat and mtrr will not have same value)
|
|
* The intersection is based on "Effective Memory Type" tables in IA-32
|
|
* SDM vol 3a
|
|
*/
|
|
static unsigned long pat_x_mtrr_type(u64 start, u64 end,
|
|
enum page_cache_mode req_type)
|
|
{
|
|
/*
|
|
* Look for MTRR hint to get the effective type in case where PAT
|
|
* request is for WB.
|
|
*/
|
|
if (req_type == _PAGE_CACHE_MODE_WB) {
|
|
u8 mtrr_type, uniform;
|
|
|
|
mtrr_type = mtrr_type_lookup(start, end, &uniform);
|
|
if (mtrr_type != MTRR_TYPE_WRBACK)
|
|
return _PAGE_CACHE_MODE_UC_MINUS;
|
|
|
|
return _PAGE_CACHE_MODE_WB;
|
|
}
|
|
|
|
return req_type;
|
|
}
|
|
|
|
struct pagerange_state {
|
|
unsigned long cur_pfn;
|
|
int ram;
|
|
int not_ram;
|
|
};
|
|
|
|
static int
|
|
pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
|
|
{
|
|
struct pagerange_state *state = arg;
|
|
|
|
state->not_ram |= initial_pfn > state->cur_pfn;
|
|
state->ram |= total_nr_pages > 0;
|
|
state->cur_pfn = initial_pfn + total_nr_pages;
|
|
|
|
return state->ram && state->not_ram;
|
|
}
|
|
|
|
static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
|
|
{
|
|
int ret = 0;
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
struct pagerange_state state = {start_pfn, 0, 0};
|
|
|
|
/*
|
|
* For legacy reasons, physical address range in the legacy ISA
|
|
* region is tracked as non-RAM. This will allow users of
|
|
* /dev/mem to map portions of legacy ISA region, even when
|
|
* some of those portions are listed(or not even listed) with
|
|
* different e820 types(RAM/reserved/..)
|
|
*/
|
|
if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
|
|
start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
|
|
|
|
if (start_pfn < end_pfn) {
|
|
ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
|
|
&state, pagerange_is_ram_callback);
|
|
}
|
|
|
|
return (ret > 0) ? -1 : (state.ram ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* For RAM pages, we use page flags to mark the pages with appropriate type.
|
|
* The page flags are limited to four types, WB (default), WC, WT and UC-.
|
|
* WP request fails with -EINVAL, and UC gets redirected to UC-. Setting
|
|
* a new memory type is only allowed for a page mapped with the default WB
|
|
* type.
|
|
*
|
|
* Here we do two passes:
|
|
* - Find the memtype of all the pages in the range, look for any conflicts.
|
|
* - In case of no conflicts, set the new memtype for pages in the range.
|
|
*/
|
|
static int reserve_ram_pages_type(u64 start, u64 end,
|
|
enum page_cache_mode req_type,
|
|
enum page_cache_mode *new_type)
|
|
{
|
|
struct page *page;
|
|
u64 pfn;
|
|
|
|
if (req_type == _PAGE_CACHE_MODE_WP) {
|
|
if (new_type)
|
|
*new_type = _PAGE_CACHE_MODE_UC_MINUS;
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (req_type == _PAGE_CACHE_MODE_UC) {
|
|
/* We do not support strong UC */
|
|
WARN_ON_ONCE(1);
|
|
req_type = _PAGE_CACHE_MODE_UC_MINUS;
|
|
}
|
|
|
|
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
|
|
enum page_cache_mode type;
|
|
|
|
page = pfn_to_page(pfn);
|
|
type = get_page_memtype(page);
|
|
if (type != _PAGE_CACHE_MODE_WB) {
|
|
pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
|
|
start, end - 1, type, req_type);
|
|
if (new_type)
|
|
*new_type = type;
|
|
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
if (new_type)
|
|
*new_type = req_type;
|
|
|
|
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
|
|
page = pfn_to_page(pfn);
|
|
set_page_memtype(page, req_type);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int free_ram_pages_type(u64 start, u64 end)
|
|
{
|
|
struct page *page;
|
|
u64 pfn;
|
|
|
|
for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
|
|
page = pfn_to_page(pfn);
|
|
set_page_memtype(page, _PAGE_CACHE_MODE_WB);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* req_type typically has one of the:
|
|
* - _PAGE_CACHE_MODE_WB
|
|
* - _PAGE_CACHE_MODE_WC
|
|
* - _PAGE_CACHE_MODE_UC_MINUS
|
|
* - _PAGE_CACHE_MODE_UC
|
|
* - _PAGE_CACHE_MODE_WT
|
|
*
|
|
* If new_type is NULL, function will return an error if it cannot reserve the
|
|
* region with req_type. If new_type is non-NULL, function will return
|
|
* available type in new_type in case of no error. In case of any error
|
|
* it will return a negative return value.
|
|
*/
|
|
int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
|
|
enum page_cache_mode *new_type)
|
|
{
|
|
struct memtype *new;
|
|
enum page_cache_mode actual_type;
|
|
int is_range_ram;
|
|
int err = 0;
|
|
|
|
BUG_ON(start >= end); /* end is exclusive */
|
|
|
|
if (!pat_enabled()) {
|
|
/* This is identical to page table setting without PAT */
|
|
if (new_type)
|
|
*new_type = req_type;
|
|
return 0;
|
|
}
|
|
|
|
/* Low ISA region is always mapped WB in page table. No need to track */
|
|
if (x86_platform.is_untracked_pat_range(start, end)) {
|
|
if (new_type)
|
|
*new_type = _PAGE_CACHE_MODE_WB;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Call mtrr_lookup to get the type hint. This is an
|
|
* optimization for /dev/mem mmap'ers into WB memory (BIOS
|
|
* tools and ACPI tools). Use WB request for WB memory and use
|
|
* UC_MINUS otherwise.
|
|
*/
|
|
actual_type = pat_x_mtrr_type(start, end, req_type);
|
|
|
|
if (new_type)
|
|
*new_type = actual_type;
|
|
|
|
is_range_ram = pat_pagerange_is_ram(start, end);
|
|
if (is_range_ram == 1) {
|
|
|
|
err = reserve_ram_pages_type(start, end, req_type, new_type);
|
|
|
|
return err;
|
|
} else if (is_range_ram < 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
new->start = start;
|
|
new->end = end;
|
|
new->type = actual_type;
|
|
|
|
spin_lock(&memtype_lock);
|
|
|
|
err = rbt_memtype_check_insert(new, new_type);
|
|
if (err) {
|
|
pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
|
|
start, end - 1,
|
|
cattr_name(new->type), cattr_name(req_type));
|
|
kfree(new);
|
|
spin_unlock(&memtype_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
spin_unlock(&memtype_lock);
|
|
|
|
dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
|
|
start, end - 1, cattr_name(new->type), cattr_name(req_type),
|
|
new_type ? cattr_name(*new_type) : "-");
|
|
|
|
return err;
|
|
}
|
|
|
|
int free_memtype(u64 start, u64 end)
|
|
{
|
|
int err = -EINVAL;
|
|
int is_range_ram;
|
|
struct memtype *entry;
|
|
|
|
if (!pat_enabled())
|
|
return 0;
|
|
|
|
/* Low ISA region is always mapped WB. No need to track */
|
|
if (x86_platform.is_untracked_pat_range(start, end))
|
|
return 0;
|
|
|
|
is_range_ram = pat_pagerange_is_ram(start, end);
|
|
if (is_range_ram == 1) {
|
|
|
|
err = free_ram_pages_type(start, end);
|
|
|
|
return err;
|
|
} else if (is_range_ram < 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock(&memtype_lock);
|
|
entry = rbt_memtype_erase(start, end);
|
|
spin_unlock(&memtype_lock);
|
|
|
|
if (IS_ERR(entry)) {
|
|
pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
|
|
current->comm, current->pid, start, end - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
kfree(entry);
|
|
|
|
dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* lookup_memtype - Looksup the memory type for a physical address
|
|
* @paddr: physical address of which memory type needs to be looked up
|
|
*
|
|
* Only to be called when PAT is enabled
|
|
*
|
|
* Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
|
|
* or _PAGE_CACHE_MODE_WT.
|
|
*/
|
|
static enum page_cache_mode lookup_memtype(u64 paddr)
|
|
{
|
|
enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
|
|
struct memtype *entry;
|
|
|
|
if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
|
|
return rettype;
|
|
|
|
if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
|
|
struct page *page;
|
|
|
|
page = pfn_to_page(paddr >> PAGE_SHIFT);
|
|
return get_page_memtype(page);
|
|
}
|
|
|
|
spin_lock(&memtype_lock);
|
|
|
|
entry = rbt_memtype_lookup(paddr);
|
|
if (entry != NULL)
|
|
rettype = entry->type;
|
|
else
|
|
rettype = _PAGE_CACHE_MODE_UC_MINUS;
|
|
|
|
spin_unlock(&memtype_lock);
|
|
return rettype;
|
|
}
|
|
|
|
/**
|
|
* io_reserve_memtype - Request a memory type mapping for a region of memory
|
|
* @start: start (physical address) of the region
|
|
* @end: end (physical address) of the region
|
|
* @type: A pointer to memtype, with requested type. On success, requested
|
|
* or any other compatible type that was available for the region is returned
|
|
*
|
|
* On success, returns 0
|
|
* On failure, returns non-zero
|
|
*/
|
|
int io_reserve_memtype(resource_size_t start, resource_size_t end,
|
|
enum page_cache_mode *type)
|
|
{
|
|
resource_size_t size = end - start;
|
|
enum page_cache_mode req_type = *type;
|
|
enum page_cache_mode new_type;
|
|
int ret;
|
|
|
|
WARN_ON_ONCE(iomem_map_sanity_check(start, size));
|
|
|
|
ret = reserve_memtype(start, end, req_type, &new_type);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
if (!is_new_memtype_allowed(start, size, req_type, new_type))
|
|
goto out_free;
|
|
|
|
if (kernel_map_sync_memtype(start, size, new_type) < 0)
|
|
goto out_free;
|
|
|
|
*type = new_type;
|
|
return 0;
|
|
|
|
out_free:
|
|
free_memtype(start, end);
|
|
ret = -EBUSY;
|
|
out_err:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* io_free_memtype - Release a memory type mapping for a region of memory
|
|
* @start: start (physical address) of the region
|
|
* @end: end (physical address) of the region
|
|
*/
|
|
void io_free_memtype(resource_size_t start, resource_size_t end)
|
|
{
|
|
free_memtype(start, end);
|
|
}
|
|
|
|
int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
|
|
{
|
|
enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
|
|
|
|
return io_reserve_memtype(start, start + size, &type);
|
|
}
|
|
EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
|
|
|
|
void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
|
|
{
|
|
io_free_memtype(start, start + size);
|
|
}
|
|
EXPORT_SYMBOL(arch_io_free_memtype_wc);
|
|
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
return vma_prot;
|
|
}
|
|
|
|
#ifdef CONFIG_STRICT_DEVMEM
|
|
/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
|
|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
|
|
{
|
|
return 1;
|
|
}
|
|
#else
|
|
/* This check is needed to avoid cache aliasing when PAT is enabled */
|
|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
|
|
{
|
|
u64 from = ((u64)pfn) << PAGE_SHIFT;
|
|
u64 to = from + size;
|
|
u64 cursor = from;
|
|
|
|
if (!pat_enabled())
|
|
return 1;
|
|
|
|
while (cursor < to) {
|
|
if (!devmem_is_allowed(pfn))
|
|
return 0;
|
|
cursor += PAGE_SIZE;
|
|
pfn++;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_STRICT_DEVMEM */
|
|
|
|
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t *vma_prot)
|
|
{
|
|
enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
|
|
|
|
if (!range_is_allowed(pfn, size))
|
|
return 0;
|
|
|
|
if (file->f_flags & O_DSYNC)
|
|
pcm = _PAGE_CACHE_MODE_UC_MINUS;
|
|
|
|
*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
|
|
cachemode2protval(pcm));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Change the memory type for the physial address range in kernel identity
|
|
* mapping space if that range is a part of identity map.
|
|
*/
|
|
int kernel_map_sync_memtype(u64 base, unsigned long size,
|
|
enum page_cache_mode pcm)
|
|
{
|
|
unsigned long id_sz;
|
|
|
|
if (base > __pa(high_memory-1))
|
|
return 0;
|
|
|
|
/*
|
|
* some areas in the middle of the kernel identity range
|
|
* are not mapped, like the PCI space.
|
|
*/
|
|
if (!page_is_ram(base >> PAGE_SHIFT))
|
|
return 0;
|
|
|
|
id_sz = (__pa(high_memory-1) <= base + size) ?
|
|
__pa(high_memory) - base :
|
|
size;
|
|
|
|
if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
|
|
pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
|
|
current->comm, current->pid,
|
|
cattr_name(pcm),
|
|
base, (unsigned long long)(base + size-1));
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Internal interface to reserve a range of physical memory with prot.
|
|
* Reserved non RAM regions only and after successful reserve_memtype,
|
|
* this func also keeps identity mapping (if any) in sync with this new prot.
|
|
*/
|
|
static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
|
|
int strict_prot)
|
|
{
|
|
int is_ram = 0;
|
|
int ret;
|
|
enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
|
|
enum page_cache_mode pcm = want_pcm;
|
|
|
|
is_ram = pat_pagerange_is_ram(paddr, paddr + size);
|
|
|
|
/*
|
|
* reserve_pfn_range() for RAM pages. We do not refcount to keep
|
|
* track of number of mappings of RAM pages. We can assert that
|
|
* the type requested matches the type of first page in the range.
|
|
*/
|
|
if (is_ram) {
|
|
if (!pat_enabled())
|
|
return 0;
|
|
|
|
pcm = lookup_memtype(paddr);
|
|
if (want_pcm != pcm) {
|
|
pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
|
|
current->comm, current->pid,
|
|
cattr_name(want_pcm),
|
|
(unsigned long long)paddr,
|
|
(unsigned long long)(paddr + size - 1),
|
|
cattr_name(pcm));
|
|
*vma_prot = __pgprot((pgprot_val(*vma_prot) &
|
|
(~_PAGE_CACHE_MASK)) |
|
|
cachemode2protval(pcm));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (pcm != want_pcm) {
|
|
if (strict_prot ||
|
|
!is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
|
|
free_memtype(paddr, paddr + size);
|
|
pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
|
|
current->comm, current->pid,
|
|
cattr_name(want_pcm),
|
|
(unsigned long long)paddr,
|
|
(unsigned long long)(paddr + size - 1),
|
|
cattr_name(pcm));
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* We allow returning different type than the one requested in
|
|
* non strict case.
|
|
*/
|
|
*vma_prot = __pgprot((pgprot_val(*vma_prot) &
|
|
(~_PAGE_CACHE_MASK)) |
|
|
cachemode2protval(pcm));
|
|
}
|
|
|
|
if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
|
|
free_memtype(paddr, paddr + size);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Internal interface to free a range of physical memory.
|
|
* Frees non RAM regions only.
|
|
*/
|
|
static void free_pfn_range(u64 paddr, unsigned long size)
|
|
{
|
|
int is_ram;
|
|
|
|
is_ram = pat_pagerange_is_ram(paddr, paddr + size);
|
|
if (is_ram == 0)
|
|
free_memtype(paddr, paddr + size);
|
|
}
|
|
|
|
/*
|
|
* track_pfn_copy is called when vma that is covering the pfnmap gets
|
|
* copied through copy_page_range().
|
|
*
|
|
* If the vma has a linear pfn mapping for the entire range, we get the prot
|
|
* from pte and reserve the entire vma range with single reserve_pfn_range call.
|
|
*/
|
|
int track_pfn_copy(struct vm_area_struct *vma)
|
|
{
|
|
resource_size_t paddr;
|
|
unsigned long prot;
|
|
unsigned long vma_size = vma->vm_end - vma->vm_start;
|
|
pgprot_t pgprot;
|
|
|
|
if (vma->vm_flags & VM_PAT) {
|
|
/*
|
|
* reserve the whole chunk covered by vma. We need the
|
|
* starting address and protection from pte.
|
|
*/
|
|
if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
pgprot = __pgprot(prot);
|
|
return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* prot is passed in as a parameter for the new mapping. If the vma has
|
|
* a linear pfn mapping for the entire range, or no vma is provided,
|
|
* reserve the entire pfn + size range with single reserve_pfn_range
|
|
* call.
|
|
*/
|
|
int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn, unsigned long addr, unsigned long size)
|
|
{
|
|
resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
|
|
enum page_cache_mode pcm;
|
|
|
|
/* reserve the whole chunk starting from paddr */
|
|
if (!vma || (addr == vma->vm_start
|
|
&& size == (vma->vm_end - vma->vm_start))) {
|
|
int ret;
|
|
|
|
ret = reserve_pfn_range(paddr, size, prot, 0);
|
|
if (ret == 0 && vma)
|
|
vma->vm_flags |= VM_PAT;
|
|
return ret;
|
|
}
|
|
|
|
if (!pat_enabled())
|
|
return 0;
|
|
|
|
/*
|
|
* For anything smaller than the vma size we set prot based on the
|
|
* lookup.
|
|
*/
|
|
pcm = lookup_memtype(paddr);
|
|
|
|
/* Check memtype for the remaining pages */
|
|
while (size > PAGE_SIZE) {
|
|
size -= PAGE_SIZE;
|
|
paddr += PAGE_SIZE;
|
|
if (pcm != lookup_memtype(paddr))
|
|
return -EINVAL;
|
|
}
|
|
|
|
*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
|
|
cachemode2protval(pcm));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
|
|
{
|
|
enum page_cache_mode pcm;
|
|
|
|
if (!pat_enabled())
|
|
return;
|
|
|
|
/* Set prot based on lookup */
|
|
pcm = lookup_memtype(pfn_t_to_phys(pfn));
|
|
*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
|
|
cachemode2protval(pcm));
|
|
}
|
|
|
|
/*
|
|
* untrack_pfn is called while unmapping a pfnmap for a region.
|
|
* untrack can be called for a specific region indicated by pfn and size or
|
|
* can be for the entire vma (in which case pfn, size are zero).
|
|
*/
|
|
void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
|
|
unsigned long size)
|
|
{
|
|
resource_size_t paddr;
|
|
unsigned long prot;
|
|
|
|
if (vma && !(vma->vm_flags & VM_PAT))
|
|
return;
|
|
|
|
/* free the chunk starting from pfn or the whole chunk */
|
|
paddr = (resource_size_t)pfn << PAGE_SHIFT;
|
|
if (!paddr && !size) {
|
|
if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
|
|
WARN_ON_ONCE(1);
|
|
return;
|
|
}
|
|
|
|
size = vma->vm_end - vma->vm_start;
|
|
}
|
|
free_pfn_range(paddr, size);
|
|
if (vma)
|
|
vma->vm_flags &= ~VM_PAT;
|
|
}
|
|
|
|
/*
|
|
* untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
|
|
* with the old vma after its pfnmap page table has been removed. The new
|
|
* vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
|
|
*/
|
|
void untrack_pfn_moved(struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_flags &= ~VM_PAT;
|
|
}
|
|
|
|
pgprot_t pgprot_writecombine(pgprot_t prot)
|
|
{
|
|
return __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_WC));
|
|
}
|
|
EXPORT_SYMBOL_GPL(pgprot_writecombine);
|
|
|
|
pgprot_t pgprot_writethrough(pgprot_t prot)
|
|
{
|
|
return __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_WT));
|
|
}
|
|
EXPORT_SYMBOL_GPL(pgprot_writethrough);
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
|
|
|
|
static struct memtype *memtype_get_idx(loff_t pos)
|
|
{
|
|
struct memtype *print_entry;
|
|
int ret;
|
|
|
|
print_entry = kzalloc(sizeof(struct memtype), GFP_KERNEL);
|
|
if (!print_entry)
|
|
return NULL;
|
|
|
|
spin_lock(&memtype_lock);
|
|
ret = rbt_memtype_copy_nth_element(print_entry, pos);
|
|
spin_unlock(&memtype_lock);
|
|
|
|
if (!ret) {
|
|
return print_entry;
|
|
} else {
|
|
kfree(print_entry);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
if (*pos == 0) {
|
|
++*pos;
|
|
seq_puts(seq, "PAT memtype list:\n");
|
|
}
|
|
|
|
return memtype_get_idx(*pos);
|
|
}
|
|
|
|
static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return memtype_get_idx(*pos);
|
|
}
|
|
|
|
static void memtype_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
}
|
|
|
|
static int memtype_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
struct memtype *print_entry = (struct memtype *)v;
|
|
|
|
seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
|
|
print_entry->start, print_entry->end);
|
|
kfree(print_entry);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations memtype_seq_ops = {
|
|
.start = memtype_seq_start,
|
|
.next = memtype_seq_next,
|
|
.stop = memtype_seq_stop,
|
|
.show = memtype_seq_show,
|
|
};
|
|
|
|
static int memtype_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &memtype_seq_ops);
|
|
}
|
|
|
|
static const struct file_operations memtype_fops = {
|
|
.open = memtype_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static int __init pat_memtype_list_init(void)
|
|
{
|
|
if (pat_enabled()) {
|
|
debugfs_create_file("pat_memtype_list", S_IRUSR,
|
|
arch_debugfs_dir, NULL, &memtype_fops);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(pat_memtype_list_init);
|
|
|
|
#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
|