2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 01:24:08 +08:00
linux-next/crypto/Kconfig
Alexander A. Klimov 9332a9e739 crypto: Replace HTTP links with HTTPS ones
Rationale:
Reduces attack surface on kernel devs opening the links for MITM
as HTTPS traffic is much harder to manipulate.

Deterministic algorithm:
For each file:
  If not .svg:
    For each line:
      If doesn't contain `\bxmlns\b`:
        For each link, `\bhttp://[^# \t\r\n]*(?:\w|/)`:
	  If neither `\bgnu\.org/license`, nor `\bmozilla\.org/MPL\b`:
            If both the HTTP and HTTPS versions
            return 200 OK and serve the same content:
              Replace HTTP with HTTPS.

Signed-off-by: Alexander A. Klimov <grandmaster@al2klimov.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-07-23 17:34:20 +10:00

1905 lines
55 KiB
Plaintext

# SPDX-License-Identifier: GPL-2.0
#
# Generic algorithms support
#
config XOR_BLOCKS
tristate
#
# async_tx api: hardware offloaded memory transfer/transform support
#
source "crypto/async_tx/Kconfig"
#
# Cryptographic API Configuration
#
menuconfig CRYPTO
tristate "Cryptographic API"
help
This option provides the core Cryptographic API.
if CRYPTO
comment "Crypto core or helper"
config CRYPTO_FIPS
bool "FIPS 200 compliance"
depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
depends on (MODULE_SIG || !MODULES)
help
This option enables the fips boot option which is
required if you want the system to operate in a FIPS 200
certification. You should say no unless you know what
this is.
config CRYPTO_ALGAPI
tristate
select CRYPTO_ALGAPI2
help
This option provides the API for cryptographic algorithms.
config CRYPTO_ALGAPI2
tristate
config CRYPTO_AEAD
tristate
select CRYPTO_AEAD2
select CRYPTO_ALGAPI
config CRYPTO_AEAD2
tristate
select CRYPTO_ALGAPI2
select CRYPTO_NULL2
select CRYPTO_RNG2
config CRYPTO_SKCIPHER
tristate
select CRYPTO_SKCIPHER2
select CRYPTO_ALGAPI
config CRYPTO_SKCIPHER2
tristate
select CRYPTO_ALGAPI2
select CRYPTO_RNG2
config CRYPTO_HASH
tristate
select CRYPTO_HASH2
select CRYPTO_ALGAPI
config CRYPTO_HASH2
tristate
select CRYPTO_ALGAPI2
config CRYPTO_RNG
tristate
select CRYPTO_RNG2
select CRYPTO_ALGAPI
config CRYPTO_RNG2
tristate
select CRYPTO_ALGAPI2
config CRYPTO_RNG_DEFAULT
tristate
select CRYPTO_DRBG_MENU
config CRYPTO_AKCIPHER2
tristate
select CRYPTO_ALGAPI2
config CRYPTO_AKCIPHER
tristate
select CRYPTO_AKCIPHER2
select CRYPTO_ALGAPI
config CRYPTO_KPP2
tristate
select CRYPTO_ALGAPI2
config CRYPTO_KPP
tristate
select CRYPTO_ALGAPI
select CRYPTO_KPP2
config CRYPTO_ACOMP2
tristate
select CRYPTO_ALGAPI2
select SGL_ALLOC
config CRYPTO_ACOMP
tristate
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
config CRYPTO_MANAGER
tristate "Cryptographic algorithm manager"
select CRYPTO_MANAGER2
help
Create default cryptographic template instantiations such as
cbc(aes).
config CRYPTO_MANAGER2
def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
select CRYPTO_AEAD2
select CRYPTO_HASH2
select CRYPTO_SKCIPHER2
select CRYPTO_AKCIPHER2
select CRYPTO_KPP2
select CRYPTO_ACOMP2
config CRYPTO_USER
tristate "Userspace cryptographic algorithm configuration"
depends on NET
select CRYPTO_MANAGER
help
Userspace configuration for cryptographic instantiations such as
cbc(aes).
config CRYPTO_MANAGER_DISABLE_TESTS
bool "Disable run-time self tests"
default y
help
Disable run-time self tests that normally take place at
algorithm registration.
config CRYPTO_MANAGER_EXTRA_TESTS
bool "Enable extra run-time crypto self tests"
depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
help
Enable extra run-time self tests of registered crypto algorithms,
including randomized fuzz tests.
This is intended for developer use only, as these tests take much
longer to run than the normal self tests.
config CRYPTO_GF128MUL
tristate
config CRYPTO_NULL
tristate "Null algorithms"
select CRYPTO_NULL2
help
These are 'Null' algorithms, used by IPsec, which do nothing.
config CRYPTO_NULL2
tristate
select CRYPTO_ALGAPI2
select CRYPTO_SKCIPHER2
select CRYPTO_HASH2
config CRYPTO_PCRYPT
tristate "Parallel crypto engine"
depends on SMP
select PADATA
select CRYPTO_MANAGER
select CRYPTO_AEAD
help
This converts an arbitrary crypto algorithm into a parallel
algorithm that executes in kernel threads.
config CRYPTO_CRYPTD
tristate "Software async crypto daemon"
select CRYPTO_SKCIPHER
select CRYPTO_HASH
select CRYPTO_MANAGER
help
This is a generic software asynchronous crypto daemon that
converts an arbitrary synchronous software crypto algorithm
into an asynchronous algorithm that executes in a kernel thread.
config CRYPTO_AUTHENC
tristate "Authenc support"
select CRYPTO_AEAD
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
select CRYPTO_HASH
select CRYPTO_NULL
help
Authenc: Combined mode wrapper for IPsec.
This is required for IPSec.
config CRYPTO_TEST
tristate "Testing module"
depends on m
select CRYPTO_MANAGER
help
Quick & dirty crypto test module.
config CRYPTO_SIMD
tristate
select CRYPTO_CRYPTD
config CRYPTO_GLUE_HELPER_X86
tristate
depends on X86
select CRYPTO_SKCIPHER
config CRYPTO_ENGINE
tristate
comment "Public-key cryptography"
config CRYPTO_RSA
tristate "RSA algorithm"
select CRYPTO_AKCIPHER
select CRYPTO_MANAGER
select MPILIB
select ASN1
help
Generic implementation of the RSA public key algorithm.
config CRYPTO_DH
tristate "Diffie-Hellman algorithm"
select CRYPTO_KPP
select MPILIB
help
Generic implementation of the Diffie-Hellman algorithm.
config CRYPTO_ECC
tristate
config CRYPTO_ECDH
tristate "ECDH algorithm"
select CRYPTO_ECC
select CRYPTO_KPP
select CRYPTO_RNG_DEFAULT
help
Generic implementation of the ECDH algorithm
config CRYPTO_ECRDSA
tristate "EC-RDSA (GOST 34.10) algorithm"
select CRYPTO_ECC
select CRYPTO_AKCIPHER
select CRYPTO_STREEBOG
select OID_REGISTRY
select ASN1
help
Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
standard algorithms (called GOST algorithms). Only signature verification
is implemented.
config CRYPTO_CURVE25519
tristate "Curve25519 algorithm"
select CRYPTO_KPP
select CRYPTO_LIB_CURVE25519_GENERIC
config CRYPTO_CURVE25519_X86
tristate "x86_64 accelerated Curve25519 scalar multiplication library"
depends on X86 && 64BIT
select CRYPTO_LIB_CURVE25519_GENERIC
select CRYPTO_ARCH_HAVE_LIB_CURVE25519
comment "Authenticated Encryption with Associated Data"
config CRYPTO_CCM
tristate "CCM support"
select CRYPTO_CTR
select CRYPTO_HASH
select CRYPTO_AEAD
select CRYPTO_MANAGER
help
Support for Counter with CBC MAC. Required for IPsec.
config CRYPTO_GCM
tristate "GCM/GMAC support"
select CRYPTO_CTR
select CRYPTO_AEAD
select CRYPTO_GHASH
select CRYPTO_NULL
select CRYPTO_MANAGER
help
Support for Galois/Counter Mode (GCM) and Galois Message
Authentication Code (GMAC). Required for IPSec.
config CRYPTO_CHACHA20POLY1305
tristate "ChaCha20-Poly1305 AEAD support"
select CRYPTO_CHACHA20
select CRYPTO_POLY1305
select CRYPTO_AEAD
select CRYPTO_MANAGER
help
ChaCha20-Poly1305 AEAD support, RFC7539.
Support for the AEAD wrapper using the ChaCha20 stream cipher combined
with the Poly1305 authenticator. It is defined in RFC7539 for use in
IETF protocols.
config CRYPTO_AEGIS128
tristate "AEGIS-128 AEAD algorithm"
select CRYPTO_AEAD
select CRYPTO_AES # for AES S-box tables
help
Support for the AEGIS-128 dedicated AEAD algorithm.
config CRYPTO_AEGIS128_SIMD
bool "Support SIMD acceleration for AEGIS-128"
depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
default y
config CRYPTO_AEGIS128_AESNI_SSE2
tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
depends on X86 && 64BIT
select CRYPTO_AEAD
select CRYPTO_SIMD
help
AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
config CRYPTO_SEQIV
tristate "Sequence Number IV Generator"
select CRYPTO_AEAD
select CRYPTO_SKCIPHER
select CRYPTO_NULL
select CRYPTO_RNG_DEFAULT
select CRYPTO_MANAGER
help
This IV generator generates an IV based on a sequence number by
xoring it with a salt. This algorithm is mainly useful for CTR
config CRYPTO_ECHAINIV
tristate "Encrypted Chain IV Generator"
select CRYPTO_AEAD
select CRYPTO_NULL
select CRYPTO_RNG_DEFAULT
select CRYPTO_MANAGER
help
This IV generator generates an IV based on the encryption of
a sequence number xored with a salt. This is the default
algorithm for CBC.
comment "Block modes"
config CRYPTO_CBC
tristate "CBC support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
help
CBC: Cipher Block Chaining mode
This block cipher algorithm is required for IPSec.
config CRYPTO_CFB
tristate "CFB support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
help
CFB: Cipher FeedBack mode
This block cipher algorithm is required for TPM2 Cryptography.
config CRYPTO_CTR
tristate "CTR support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
help
CTR: Counter mode
This block cipher algorithm is required for IPSec.
config CRYPTO_CTS
tristate "CTS support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
help
CTS: Cipher Text Stealing
This is the Cipher Text Stealing mode as described by
Section 8 of rfc2040 and referenced by rfc3962
(rfc3962 includes errata information in its Appendix A) or
CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
This mode is required for Kerberos gss mechanism support
for AES encryption.
See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
config CRYPTO_ECB
tristate "ECB support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
help
ECB: Electronic CodeBook mode
This is the simplest block cipher algorithm. It simply encrypts
the input block by block.
config CRYPTO_LRW
tristate "LRW support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
select CRYPTO_GF128MUL
help
LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
narrow block cipher mode for dm-crypt. Use it with cipher
specification string aes-lrw-benbi, the key must be 256, 320 or 384.
The first 128, 192 or 256 bits in the key are used for AES and the
rest is used to tie each cipher block to its logical position.
config CRYPTO_OFB
tristate "OFB support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
help
OFB: the Output Feedback mode makes a block cipher into a synchronous
stream cipher. It generates keystream blocks, which are then XORed
with the plaintext blocks to get the ciphertext. Flipping a bit in the
ciphertext produces a flipped bit in the plaintext at the same
location. This property allows many error correcting codes to function
normally even when applied before encryption.
config CRYPTO_PCBC
tristate "PCBC support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
help
PCBC: Propagating Cipher Block Chaining mode
This block cipher algorithm is required for RxRPC.
config CRYPTO_XTS
tristate "XTS support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
select CRYPTO_ECB
help
XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
key size 256, 384 or 512 bits. This implementation currently
can't handle a sectorsize which is not a multiple of 16 bytes.
config CRYPTO_KEYWRAP
tristate "Key wrapping support"
select CRYPTO_SKCIPHER
select CRYPTO_MANAGER
help
Support for key wrapping (NIST SP800-38F / RFC3394) without
padding.
config CRYPTO_NHPOLY1305
tristate
select CRYPTO_HASH
select CRYPTO_LIB_POLY1305_GENERIC
config CRYPTO_NHPOLY1305_SSE2
tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
depends on X86 && 64BIT
select CRYPTO_NHPOLY1305
help
SSE2 optimized implementation of the hash function used by the
Adiantum encryption mode.
config CRYPTO_NHPOLY1305_AVX2
tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
depends on X86 && 64BIT
select CRYPTO_NHPOLY1305
help
AVX2 optimized implementation of the hash function used by the
Adiantum encryption mode.
config CRYPTO_ADIANTUM
tristate "Adiantum support"
select CRYPTO_CHACHA20
select CRYPTO_LIB_POLY1305_GENERIC
select CRYPTO_NHPOLY1305
select CRYPTO_MANAGER
help
Adiantum is a tweakable, length-preserving encryption mode
designed for fast and secure disk encryption, especially on
CPUs without dedicated crypto instructions. It encrypts
each sector using the XChaCha12 stream cipher, two passes of
an ε-almost-∆-universal hash function, and an invocation of
the AES-256 block cipher on a single 16-byte block. On CPUs
without AES instructions, Adiantum is much faster than
AES-XTS.
Adiantum's security is provably reducible to that of its
underlying stream and block ciphers, subject to a security
bound. Unlike XTS, Adiantum is a true wide-block encryption
mode, so it actually provides an even stronger notion of
security than XTS, subject to the security bound.
If unsure, say N.
config CRYPTO_ESSIV
tristate "ESSIV support for block encryption"
select CRYPTO_AUTHENC
help
Encrypted salt-sector initialization vector (ESSIV) is an IV
generation method that is used in some cases by fscrypt and/or
dm-crypt. It uses the hash of the block encryption key as the
symmetric key for a block encryption pass applied to the input
IV, making low entropy IV sources more suitable for block
encryption.
This driver implements a crypto API template that can be
instantiated either as an skcipher or as an AEAD (depending on the
type of the first template argument), and which defers encryption
and decryption requests to the encapsulated cipher after applying
ESSIV to the input IV. Note that in the AEAD case, it is assumed
that the keys are presented in the same format used by the authenc
template, and that the IV appears at the end of the authenticated
associated data (AAD) region (which is how dm-crypt uses it.)
Note that the use of ESSIV is not recommended for new deployments,
and so this only needs to be enabled when interoperability with
existing encrypted volumes of filesystems is required, or when
building for a particular system that requires it (e.g., when
the SoC in question has accelerated CBC but not XTS, making CBC
combined with ESSIV the only feasible mode for h/w accelerated
block encryption)
comment "Hash modes"
config CRYPTO_CMAC
tristate "CMAC support"
select CRYPTO_HASH
select CRYPTO_MANAGER
help
Cipher-based Message Authentication Code (CMAC) specified by
The National Institute of Standards and Technology (NIST).
https://tools.ietf.org/html/rfc4493
http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
config CRYPTO_HMAC
tristate "HMAC support"
select CRYPTO_HASH
select CRYPTO_MANAGER
help
HMAC: Keyed-Hashing for Message Authentication (RFC2104).
This is required for IPSec.
config CRYPTO_XCBC
tristate "XCBC support"
select CRYPTO_HASH
select CRYPTO_MANAGER
help
XCBC: Keyed-Hashing with encryption algorithm
https://www.ietf.org/rfc/rfc3566.txt
http://csrc.nist.gov/encryption/modes/proposedmodes/
xcbc-mac/xcbc-mac-spec.pdf
config CRYPTO_VMAC
tristate "VMAC support"
select CRYPTO_HASH
select CRYPTO_MANAGER
help
VMAC is a message authentication algorithm designed for
very high speed on 64-bit architectures.
See also:
<https://fastcrypto.org/vmac>
comment "Digest"
config CRYPTO_CRC32C
tristate "CRC32c CRC algorithm"
select CRYPTO_HASH
select CRC32
help
Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
by iSCSI for header and data digests and by others.
See Castagnoli93. Module will be crc32c.
config CRYPTO_CRC32C_INTEL
tristate "CRC32c INTEL hardware acceleration"
depends on X86
select CRYPTO_HASH
help
In Intel processor with SSE4.2 supported, the processor will
support CRC32C implementation using hardware accelerated CRC32
instruction. This option will create 'crc32c-intel' module,
which will enable any routine to use the CRC32 instruction to
gain performance compared with software implementation.
Module will be crc32c-intel.
config CRYPTO_CRC32C_VPMSUM
tristate "CRC32c CRC algorithm (powerpc64)"
depends on PPC64 && ALTIVEC
select CRYPTO_HASH
select CRC32
help
CRC32c algorithm implemented using vector polynomial multiply-sum
(vpmsum) instructions, introduced in POWER8. Enable on POWER8
and newer processors for improved performance.
config CRYPTO_CRC32C_SPARC64
tristate "CRC32c CRC algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_HASH
select CRC32
help
CRC32c CRC algorithm implemented using sparc64 crypto instructions,
when available.
config CRYPTO_CRC32
tristate "CRC32 CRC algorithm"
select CRYPTO_HASH
select CRC32
help
CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
Shash crypto api wrappers to crc32_le function.
config CRYPTO_CRC32_PCLMUL
tristate "CRC32 PCLMULQDQ hardware acceleration"
depends on X86
select CRYPTO_HASH
select CRC32
help
From Intel Westmere and AMD Bulldozer processor with SSE4.2
and PCLMULQDQ supported, the processor will support
CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
instruction. This option will create 'crc32-pclmul' module,
which will enable any routine to use the CRC-32-IEEE 802.3 checksum
and gain better performance as compared with the table implementation.
config CRYPTO_CRC32_MIPS
tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
depends on MIPS_CRC_SUPPORT
select CRYPTO_HASH
help
CRC32c and CRC32 CRC algorithms implemented using mips crypto
instructions, when available.
config CRYPTO_XXHASH
tristate "xxHash hash algorithm"
select CRYPTO_HASH
select XXHASH
help
xxHash non-cryptographic hash algorithm. Extremely fast, working at
speeds close to RAM limits.
config CRYPTO_BLAKE2B
tristate "BLAKE2b digest algorithm"
select CRYPTO_HASH
help
Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
optimized for 64bit platforms and can produce digests of any size
between 1 to 64. The keyed hash is also implemented.
This module provides the following algorithms:
- blake2b-160
- blake2b-256
- blake2b-384
- blake2b-512
See https://blake2.net for further information.
config CRYPTO_BLAKE2S
tristate "BLAKE2s digest algorithm"
select CRYPTO_LIB_BLAKE2S_GENERIC
select CRYPTO_HASH
help
Implementation of cryptographic hash function BLAKE2s
optimized for 8-32bit platforms and can produce digests of any size
between 1 to 32. The keyed hash is also implemented.
This module provides the following algorithms:
- blake2s-128
- blake2s-160
- blake2s-224
- blake2s-256
See https://blake2.net for further information.
config CRYPTO_BLAKE2S_X86
tristate "BLAKE2s digest algorithm (x86 accelerated version)"
depends on X86 && 64BIT
select CRYPTO_LIB_BLAKE2S_GENERIC
select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
config CRYPTO_CRCT10DIF
tristate "CRCT10DIF algorithm"
select CRYPTO_HASH
help
CRC T10 Data Integrity Field computation is being cast as
a crypto transform. This allows for faster crc t10 diff
transforms to be used if they are available.
config CRYPTO_CRCT10DIF_PCLMUL
tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
depends on X86 && 64BIT && CRC_T10DIF
select CRYPTO_HASH
help
For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
CRC T10 DIF PCLMULQDQ computation can be hardware
accelerated PCLMULQDQ instruction. This option will create
'crct10dif-pclmul' module, which is faster when computing the
crct10dif checksum as compared with the generic table implementation.
config CRYPTO_CRCT10DIF_VPMSUM
tristate "CRC32T10DIF powerpc64 hardware acceleration"
depends on PPC64 && ALTIVEC && CRC_T10DIF
select CRYPTO_HASH
help
CRC10T10DIF algorithm implemented using vector polynomial
multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
POWER8 and newer processors for improved performance.
config CRYPTO_VPMSUM_TESTER
tristate "Powerpc64 vpmsum hardware acceleration tester"
depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
help
Stress test for CRC32c and CRC-T10DIF algorithms implemented with
POWER8 vpmsum instructions.
Unless you are testing these algorithms, you don't need this.
config CRYPTO_GHASH
tristate "GHASH hash function"
select CRYPTO_GF128MUL
select CRYPTO_HASH
help
GHASH is the hash function used in GCM (Galois/Counter Mode).
It is not a general-purpose cryptographic hash function.
config CRYPTO_POLY1305
tristate "Poly1305 authenticator algorithm"
select CRYPTO_HASH
select CRYPTO_LIB_POLY1305_GENERIC
help
Poly1305 authenticator algorithm, RFC7539.
Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
in IETF protocols. This is the portable C implementation of Poly1305.
config CRYPTO_POLY1305_X86_64
tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
depends on X86 && 64BIT
select CRYPTO_LIB_POLY1305_GENERIC
select CRYPTO_ARCH_HAVE_LIB_POLY1305
help
Poly1305 authenticator algorithm, RFC7539.
Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
in IETF protocols. This is the x86_64 assembler implementation using SIMD
instructions.
config CRYPTO_POLY1305_MIPS
tristate "Poly1305 authenticator algorithm (MIPS optimized)"
depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
select CRYPTO_ARCH_HAVE_LIB_POLY1305
config CRYPTO_MD4
tristate "MD4 digest algorithm"
select CRYPTO_HASH
help
MD4 message digest algorithm (RFC1320).
config CRYPTO_MD5
tristate "MD5 digest algorithm"
select CRYPTO_HASH
help
MD5 message digest algorithm (RFC1321).
config CRYPTO_MD5_OCTEON
tristate "MD5 digest algorithm (OCTEON)"
depends on CPU_CAVIUM_OCTEON
select CRYPTO_MD5
select CRYPTO_HASH
help
MD5 message digest algorithm (RFC1321) implemented
using OCTEON crypto instructions, when available.
config CRYPTO_MD5_PPC
tristate "MD5 digest algorithm (PPC)"
depends on PPC
select CRYPTO_HASH
help
MD5 message digest algorithm (RFC1321) implemented
in PPC assembler.
config CRYPTO_MD5_SPARC64
tristate "MD5 digest algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_MD5
select CRYPTO_HASH
help
MD5 message digest algorithm (RFC1321) implemented
using sparc64 crypto instructions, when available.
config CRYPTO_MICHAEL_MIC
tristate "Michael MIC keyed digest algorithm"
select CRYPTO_HASH
help
Michael MIC is used for message integrity protection in TKIP
(IEEE 802.11i). This algorithm is required for TKIP, but it
should not be used for other purposes because of the weakness
of the algorithm.
config CRYPTO_RMD128
tristate "RIPEMD-128 digest algorithm"
select CRYPTO_HASH
help
RIPEMD-128 (ISO/IEC 10118-3:2004).
RIPEMD-128 is a 128-bit cryptographic hash function. It should only
be used as a secure replacement for RIPEMD. For other use cases,
RIPEMD-160 should be used.
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
config CRYPTO_RMD160
tristate "RIPEMD-160 digest algorithm"
select CRYPTO_HASH
help
RIPEMD-160 (ISO/IEC 10118-3:2004).
RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
to be used as a secure replacement for the 128-bit hash functions
MD4, MD5 and it's predecessor RIPEMD
(not to be confused with RIPEMD-128).
It's speed is comparable to SHA1 and there are no known attacks
against RIPEMD-160.
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
config CRYPTO_RMD256
tristate "RIPEMD-256 digest algorithm"
select CRYPTO_HASH
help
RIPEMD-256 is an optional extension of RIPEMD-128 with a
256 bit hash. It is intended for applications that require
longer hash-results, without needing a larger security level
(than RIPEMD-128).
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
config CRYPTO_RMD320
tristate "RIPEMD-320 digest algorithm"
select CRYPTO_HASH
help
RIPEMD-320 is an optional extension of RIPEMD-160 with a
320 bit hash. It is intended for applications that require
longer hash-results, without needing a larger security level
(than RIPEMD-160).
Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
config CRYPTO_SHA1
tristate "SHA1 digest algorithm"
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
config CRYPTO_SHA1_SSSE3
tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
depends on X86 && 64BIT
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
when available.
config CRYPTO_SHA256_SSSE3
tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
depends on X86 && 64BIT
select CRYPTO_SHA256
select CRYPTO_HASH
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
Extensions version 1 (AVX1), or Advanced Vector Extensions
version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
Instructions) when available.
config CRYPTO_SHA512_SSSE3
tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
depends on X86 && 64BIT
select CRYPTO_SHA512
select CRYPTO_HASH
help
SHA-512 secure hash standard (DFIPS 180-2) implemented
using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
Extensions version 1 (AVX1), or Advanced Vector Extensions
version 2 (AVX2) instructions, when available.
config CRYPTO_SHA1_OCTEON
tristate "SHA1 digest algorithm (OCTEON)"
depends on CPU_CAVIUM_OCTEON
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using OCTEON crypto instructions, when available.
config CRYPTO_SHA1_SPARC64
tristate "SHA1 digest algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_SHA1
select CRYPTO_HASH
help
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
using sparc64 crypto instructions, when available.
config CRYPTO_SHA1_PPC
tristate "SHA1 digest algorithm (powerpc)"
depends on PPC
help
This is the powerpc hardware accelerated implementation of the
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
config CRYPTO_SHA1_PPC_SPE
tristate "SHA1 digest algorithm (PPC SPE)"
depends on PPC && SPE
help
SHA-1 secure hash standard (DFIPS 180-4) implemented
using powerpc SPE SIMD instruction set.
config CRYPTO_SHA256
tristate "SHA224 and SHA256 digest algorithm"
select CRYPTO_HASH
select CRYPTO_LIB_SHA256
help
SHA256 secure hash standard (DFIPS 180-2).
This version of SHA implements a 256 bit hash with 128 bits of
security against collision attacks.
This code also includes SHA-224, a 224 bit hash with 112 bits
of security against collision attacks.
config CRYPTO_SHA256_PPC_SPE
tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
depends on PPC && SPE
select CRYPTO_SHA256
select CRYPTO_HASH
help
SHA224 and SHA256 secure hash standard (DFIPS 180-2)
implemented using powerpc SPE SIMD instruction set.
config CRYPTO_SHA256_OCTEON
tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
depends on CPU_CAVIUM_OCTEON
select CRYPTO_SHA256
select CRYPTO_HASH
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using OCTEON crypto instructions, when available.
config CRYPTO_SHA256_SPARC64
tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_SHA256
select CRYPTO_HASH
help
SHA-256 secure hash standard (DFIPS 180-2) implemented
using sparc64 crypto instructions, when available.
config CRYPTO_SHA512
tristate "SHA384 and SHA512 digest algorithms"
select CRYPTO_HASH
help
SHA512 secure hash standard (DFIPS 180-2).
This version of SHA implements a 512 bit hash with 256 bits of
security against collision attacks.
This code also includes SHA-384, a 384 bit hash with 192 bits
of security against collision attacks.
config CRYPTO_SHA512_OCTEON
tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
depends on CPU_CAVIUM_OCTEON
select CRYPTO_SHA512
select CRYPTO_HASH
help
SHA-512 secure hash standard (DFIPS 180-2) implemented
using OCTEON crypto instructions, when available.
config CRYPTO_SHA512_SPARC64
tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
depends on SPARC64
select CRYPTO_SHA512
select CRYPTO_HASH
help
SHA-512 secure hash standard (DFIPS 180-2) implemented
using sparc64 crypto instructions, when available.
config CRYPTO_SHA3
tristate "SHA3 digest algorithm"
select CRYPTO_HASH
help
SHA-3 secure hash standard (DFIPS 202). It's based on
cryptographic sponge function family called Keccak.
References:
http://keccak.noekeon.org/
config CRYPTO_SM3
tristate "SM3 digest algorithm"
select CRYPTO_HASH
help
SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
It is part of the Chinese Commercial Cryptography suite.
References:
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
config CRYPTO_STREEBOG
tristate "Streebog Hash Function"
select CRYPTO_HASH
help
Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
cryptographic standard algorithms (called GOST algorithms).
This setting enables two hash algorithms with 256 and 512 bits output.
References:
https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
https://tools.ietf.org/html/rfc6986
config CRYPTO_TGR192
tristate "Tiger digest algorithms"
select CRYPTO_HASH
help
Tiger hash algorithm 192, 160 and 128-bit hashes
Tiger is a hash function optimized for 64-bit processors while
still having decent performance on 32-bit processors.
Tiger was developed by Ross Anderson and Eli Biham.
See also:
<https://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
config CRYPTO_WP512
tristate "Whirlpool digest algorithms"
select CRYPTO_HASH
help
Whirlpool hash algorithm 512, 384 and 256-bit hashes
Whirlpool-512 is part of the NESSIE cryptographic primitives.
Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
See also:
<http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
config CRYPTO_GHASH_CLMUL_NI_INTEL
tristate "GHASH hash function (CLMUL-NI accelerated)"
depends on X86 && 64BIT
select CRYPTO_CRYPTD
help
This is the x86_64 CLMUL-NI accelerated implementation of
GHASH, the hash function used in GCM (Galois/Counter mode).
comment "Ciphers"
config CRYPTO_AES
tristate "AES cipher algorithms"
select CRYPTO_ALGAPI
select CRYPTO_LIB_AES
help
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
config CRYPTO_AES_TI
tristate "Fixed time AES cipher"
select CRYPTO_ALGAPI
select CRYPTO_LIB_AES
help
This is a generic implementation of AES that attempts to eliminate
data dependent latencies as much as possible without affecting
performance too much. It is intended for use by the generic CCM
and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
solely on encryption (although decryption is supported as well, but
with a more dramatic performance hit)
Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
8 for decryption), this implementation only uses just two S-boxes of
256 bytes each, and attempts to eliminate data dependent latencies by
prefetching the entire table into the cache at the start of each
block. Interrupts are also disabled to avoid races where cachelines
are evicted when the CPU is interrupted to do something else.
config CRYPTO_AES_NI_INTEL
tristate "AES cipher algorithms (AES-NI)"
depends on X86
select CRYPTO_AEAD
select CRYPTO_LIB_AES
select CRYPTO_ALGAPI
select CRYPTO_SKCIPHER
select CRYPTO_GLUE_HELPER_X86 if 64BIT
select CRYPTO_SIMD
help
Use Intel AES-NI instructions for AES algorithm.
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/encryption/aes/> for more information.
In addition to AES cipher algorithm support, the acceleration
for some popular block cipher mode is supported too, including
ECB, CBC, LRW, XTS. The 64 bit version has additional
acceleration for CTR.
config CRYPTO_AES_SPARC64
tristate "AES cipher algorithms (SPARC64)"
depends on SPARC64
select CRYPTO_SKCIPHER
help
Use SPARC64 crypto opcodes for AES algorithm.
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
The AES specifies three key sizes: 128, 192 and 256 bits
See <http://csrc.nist.gov/encryption/aes/> for more information.
In addition to AES cipher algorithm support, the acceleration
for some popular block cipher mode is supported too, including
ECB and CBC.
config CRYPTO_AES_PPC_SPE
tristate "AES cipher algorithms (PPC SPE)"
depends on PPC && SPE
select CRYPTO_SKCIPHER
help
AES cipher algorithms (FIPS-197). Additionally the acceleration
for popular block cipher modes ECB, CBC, CTR and XTS is supported.
This module should only be used for low power (router) devices
without hardware AES acceleration (e.g. caam crypto). It reduces the
size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
timining attacks. Nevertheless it might be not as secure as other
architecture specific assembler implementations that work on 1KB
tables or 256 bytes S-boxes.
config CRYPTO_ANUBIS
tristate "Anubis cipher algorithm"
select CRYPTO_ALGAPI
help
Anubis cipher algorithm.
Anubis is a variable key length cipher which can use keys from
128 bits to 320 bits in length. It was evaluated as a entrant
in the NESSIE competition.
See also:
<https://www.cosic.esat.kuleuven.be/nessie/reports/>
<http://www.larc.usp.br/~pbarreto/AnubisPage.html>
config CRYPTO_ARC4
tristate "ARC4 cipher algorithm"
select CRYPTO_SKCIPHER
select CRYPTO_LIB_ARC4
help
ARC4 cipher algorithm.
ARC4 is a stream cipher using keys ranging from 8 bits to 2048
bits in length. This algorithm is required for driver-based
WEP, but it should not be for other purposes because of the
weakness of the algorithm.
config CRYPTO_BLOWFISH
tristate "Blowfish cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_BLOWFISH_COMMON
help
Blowfish cipher algorithm, by Bruce Schneier.
This is a variable key length cipher which can use keys from 32
bits to 448 bits in length. It's fast, simple and specifically
designed for use on "large microprocessors".
See also:
<https://www.schneier.com/blowfish.html>
config CRYPTO_BLOWFISH_COMMON
tristate
help
Common parts of the Blowfish cipher algorithm shared by the
generic c and the assembler implementations.
See also:
<https://www.schneier.com/blowfish.html>
config CRYPTO_BLOWFISH_X86_64
tristate "Blowfish cipher algorithm (x86_64)"
depends on X86 && 64BIT
select CRYPTO_SKCIPHER
select CRYPTO_BLOWFISH_COMMON
help
Blowfish cipher algorithm (x86_64), by Bruce Schneier.
This is a variable key length cipher which can use keys from 32
bits to 448 bits in length. It's fast, simple and specifically
designed for use on "large microprocessors".
See also:
<https://www.schneier.com/blowfish.html>
config CRYPTO_CAMELLIA
tristate "Camellia cipher algorithms"
depends on CRYPTO
select CRYPTO_ALGAPI
help
Camellia cipher algorithms module.
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAMELLIA_X86_64
tristate "Camellia cipher algorithm (x86_64)"
depends on X86 && 64BIT
depends on CRYPTO
select CRYPTO_SKCIPHER
select CRYPTO_GLUE_HELPER_X86
help
Camellia cipher algorithm module (x86_64).
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
depends on X86 && 64BIT
depends on CRYPTO
select CRYPTO_SKCIPHER
select CRYPTO_CAMELLIA_X86_64
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SIMD
select CRYPTO_XTS
help
Camellia cipher algorithm module (x86_64/AES-NI/AVX).
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
depends on X86 && 64BIT
depends on CRYPTO
select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
help
Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAMELLIA_SPARC64
tristate "Camellia cipher algorithm (SPARC64)"
depends on SPARC64
depends on CRYPTO
select CRYPTO_ALGAPI
select CRYPTO_SKCIPHER
help
Camellia cipher algorithm module (SPARC64).
Camellia is a symmetric key block cipher developed jointly
at NTT and Mitsubishi Electric Corporation.
The Camellia specifies three key sizes: 128, 192 and 256 bits.
See also:
<https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
config CRYPTO_CAST_COMMON
tristate
help
Common parts of the CAST cipher algorithms shared by the
generic c and the assembler implementations.
config CRYPTO_CAST5
tristate "CAST5 (CAST-128) cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_CAST_COMMON
help
The CAST5 encryption algorithm (synonymous with CAST-128) is
described in RFC2144.
config CRYPTO_CAST5_AVX_X86_64
tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
depends on X86 && 64BIT
select CRYPTO_SKCIPHER
select CRYPTO_CAST5
select CRYPTO_CAST_COMMON
select CRYPTO_SIMD
help
The CAST5 encryption algorithm (synonymous with CAST-128) is
described in RFC2144.
This module provides the Cast5 cipher algorithm that processes
sixteen blocks parallel using the AVX instruction set.
config CRYPTO_CAST6
tristate "CAST6 (CAST-256) cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_CAST_COMMON
help
The CAST6 encryption algorithm (synonymous with CAST-256) is
described in RFC2612.
config CRYPTO_CAST6_AVX_X86_64
tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
depends on X86 && 64BIT
select CRYPTO_SKCIPHER
select CRYPTO_CAST6
select CRYPTO_CAST_COMMON
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SIMD
select CRYPTO_XTS
help
The CAST6 encryption algorithm (synonymous with CAST-256) is
described in RFC2612.
This module provides the Cast6 cipher algorithm that processes
eight blocks parallel using the AVX instruction set.
config CRYPTO_DES
tristate "DES and Triple DES EDE cipher algorithms"
select CRYPTO_ALGAPI
select CRYPTO_LIB_DES
help
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
config CRYPTO_DES_SPARC64
tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
depends on SPARC64
select CRYPTO_ALGAPI
select CRYPTO_LIB_DES
select CRYPTO_SKCIPHER
help
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
optimized using SPARC64 crypto opcodes.
config CRYPTO_DES3_EDE_X86_64
tristate "Triple DES EDE cipher algorithm (x86-64)"
depends on X86 && 64BIT
select CRYPTO_SKCIPHER
select CRYPTO_LIB_DES
help
Triple DES EDE (FIPS 46-3) algorithm.
This module provides implementation of the Triple DES EDE cipher
algorithm that is optimized for x86-64 processors. Two versions of
algorithm are provided; regular processing one input block and
one that processes three blocks parallel.
config CRYPTO_FCRYPT
tristate "FCrypt cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_SKCIPHER
help
FCrypt algorithm used by RxRPC.
config CRYPTO_KHAZAD
tristate "Khazad cipher algorithm"
select CRYPTO_ALGAPI
help
Khazad cipher algorithm.
Khazad was a finalist in the initial NESSIE competition. It is
an algorithm optimized for 64-bit processors with good performance
on 32-bit processors. Khazad uses an 128 bit key size.
See also:
<http://www.larc.usp.br/~pbarreto/KhazadPage.html>
config CRYPTO_SALSA20
tristate "Salsa20 stream cipher algorithm"
select CRYPTO_SKCIPHER
help
Salsa20 stream cipher algorithm.
Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/>
The Salsa20 stream cipher algorithm is designed by Daniel J.
Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html>
config CRYPTO_CHACHA20
tristate "ChaCha stream cipher algorithms"
select CRYPTO_LIB_CHACHA_GENERIC
select CRYPTO_SKCIPHER
help
The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
Bernstein and further specified in RFC7539 for use in IETF protocols.
This is the portable C implementation of ChaCha20. See also:
<https://cr.yp.to/chacha/chacha-20080128.pdf>
XChaCha20 is the application of the XSalsa20 construction to ChaCha20
rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
while provably retaining ChaCha20's security. See also:
<https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
reduced security margin but increased performance. It can be needed
in some performance-sensitive scenarios.
config CRYPTO_CHACHA20_X86_64
tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
depends on X86 && 64BIT
select CRYPTO_SKCIPHER
select CRYPTO_LIB_CHACHA_GENERIC
select CRYPTO_ARCH_HAVE_LIB_CHACHA
help
SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
XChaCha20, and XChaCha12 stream ciphers.
config CRYPTO_CHACHA_MIPS
tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
depends on CPU_MIPS32_R2
select CRYPTO_SKCIPHER
select CRYPTO_ARCH_HAVE_LIB_CHACHA
config CRYPTO_SEED
tristate "SEED cipher algorithm"
select CRYPTO_ALGAPI
help
SEED cipher algorithm (RFC4269).
SEED is a 128-bit symmetric key block cipher that has been
developed by KISA (Korea Information Security Agency) as a
national standard encryption algorithm of the Republic of Korea.
It is a 16 round block cipher with the key size of 128 bit.
See also:
<http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
config CRYPTO_SERPENT
tristate "Serpent cipher algorithm"
select CRYPTO_ALGAPI
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
variant of Serpent for compatibility with old kerneli.org code.
See also:
<https://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SERPENT_SSE2_X86_64
tristate "Serpent cipher algorithm (x86_64/SSE2)"
depends on X86 && 64BIT
select CRYPTO_SKCIPHER
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SERPENT
select CRYPTO_SIMD
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits.
This module provides Serpent cipher algorithm that processes eight
blocks parallel using SSE2 instruction set.
See also:
<https://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SERPENT_SSE2_586
tristate "Serpent cipher algorithm (i586/SSE2)"
depends on X86 && !64BIT
select CRYPTO_SKCIPHER
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SERPENT
select CRYPTO_SIMD
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits.
This module provides Serpent cipher algorithm that processes four
blocks parallel using SSE2 instruction set.
See also:
<https://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SERPENT_AVX_X86_64
tristate "Serpent cipher algorithm (x86_64/AVX)"
depends on X86 && 64BIT
select CRYPTO_SKCIPHER
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SERPENT
select CRYPTO_SIMD
select CRYPTO_XTS
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits.
This module provides the Serpent cipher algorithm that processes
eight blocks parallel using the AVX instruction set.
See also:
<https://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SERPENT_AVX2_X86_64
tristate "Serpent cipher algorithm (x86_64/AVX2)"
depends on X86 && 64BIT
select CRYPTO_SERPENT_AVX_X86_64
help
Serpent cipher algorithm, by Anderson, Biham & Knudsen.
Keys are allowed to be from 0 to 256 bits in length, in steps
of 8 bits.
This module provides Serpent cipher algorithm that processes 16
blocks parallel using AVX2 instruction set.
See also:
<https://www.cl.cam.ac.uk/~rja14/serpent.html>
config CRYPTO_SM4
tristate "SM4 cipher algorithm"
select CRYPTO_ALGAPI
help
SM4 cipher algorithms (OSCCA GB/T 32907-2016).
SM4 (GBT.32907-2016) is a cryptographic standard issued by the
Organization of State Commercial Administration of China (OSCCA)
as an authorized cryptographic algorithms for the use within China.
SMS4 was originally created for use in protecting wireless
networks, and is mandated in the Chinese National Standard for
Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
(GB.15629.11-2003).
The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
standardized through TC 260 of the Standardization Administration
of the People's Republic of China (SAC).
The input, output, and key of SMS4 are each 128 bits.
See also: <https://eprint.iacr.org/2008/329.pdf>
If unsure, say N.
config CRYPTO_TEA
tristate "TEA, XTEA and XETA cipher algorithms"
select CRYPTO_ALGAPI
help
TEA cipher algorithm.
Tiny Encryption Algorithm is a simple cipher that uses
many rounds for security. It is very fast and uses
little memory.
Xtendend Tiny Encryption Algorithm is a modification to
the TEA algorithm to address a potential key weakness
in the TEA algorithm.
Xtendend Encryption Tiny Algorithm is a mis-implementation
of the XTEA algorithm for compatibility purposes.
config CRYPTO_TWOFISH
tristate "Twofish cipher algorithm"
select CRYPTO_ALGAPI
select CRYPTO_TWOFISH_COMMON
help
Twofish cipher algorithm.
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
See also:
<https://www.schneier.com/twofish.html>
config CRYPTO_TWOFISH_COMMON
tristate
help
Common parts of the Twofish cipher algorithm shared by the
generic c and the assembler implementations.
config CRYPTO_TWOFISH_586
tristate "Twofish cipher algorithms (i586)"
depends on (X86 || UML_X86) && !64BIT
select CRYPTO_ALGAPI
select CRYPTO_TWOFISH_COMMON
help
Twofish cipher algorithm.
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
See also:
<https://www.schneier.com/twofish.html>
config CRYPTO_TWOFISH_X86_64
tristate "Twofish cipher algorithm (x86_64)"
depends on (X86 || UML_X86) && 64BIT
select CRYPTO_ALGAPI
select CRYPTO_TWOFISH_COMMON
help
Twofish cipher algorithm (x86_64).
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
See also:
<https://www.schneier.com/twofish.html>
config CRYPTO_TWOFISH_X86_64_3WAY
tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
depends on X86 && 64BIT
select CRYPTO_SKCIPHER
select CRYPTO_TWOFISH_COMMON
select CRYPTO_TWOFISH_X86_64
select CRYPTO_GLUE_HELPER_X86
help
Twofish cipher algorithm (x86_64, 3-way parallel).
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
This module provides Twofish cipher algorithm that processes three
blocks parallel, utilizing resources of out-of-order CPUs better.
See also:
<https://www.schneier.com/twofish.html>
config CRYPTO_TWOFISH_AVX_X86_64
tristate "Twofish cipher algorithm (x86_64/AVX)"
depends on X86 && 64BIT
select CRYPTO_SKCIPHER
select CRYPTO_GLUE_HELPER_X86
select CRYPTO_SIMD
select CRYPTO_TWOFISH_COMMON
select CRYPTO_TWOFISH_X86_64
select CRYPTO_TWOFISH_X86_64_3WAY
help
Twofish cipher algorithm (x86_64/AVX).
Twofish was submitted as an AES (Advanced Encryption Standard)
candidate cipher by researchers at CounterPane Systems. It is a
16 round block cipher supporting key sizes of 128, 192, and 256
bits.
This module provides the Twofish cipher algorithm that processes
eight blocks parallel using the AVX Instruction Set.
See also:
<https://www.schneier.com/twofish.html>
comment "Compression"
config CRYPTO_DEFLATE
tristate "Deflate compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select ZLIB_INFLATE
select ZLIB_DEFLATE
help
This is the Deflate algorithm (RFC1951), specified for use in
IPSec with the IPCOMP protocol (RFC3173, RFC2394).
You will most probably want this if using IPSec.
config CRYPTO_LZO
tristate "LZO compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select LZO_COMPRESS
select LZO_DECOMPRESS
help
This is the LZO algorithm.
config CRYPTO_842
tristate "842 compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select 842_COMPRESS
select 842_DECOMPRESS
help
This is the 842 algorithm.
config CRYPTO_LZ4
tristate "LZ4 compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select LZ4_COMPRESS
select LZ4_DECOMPRESS
help
This is the LZ4 algorithm.
config CRYPTO_LZ4HC
tristate "LZ4HC compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select LZ4HC_COMPRESS
select LZ4_DECOMPRESS
help
This is the LZ4 high compression mode algorithm.
config CRYPTO_ZSTD
tristate "Zstd compression algorithm"
select CRYPTO_ALGAPI
select CRYPTO_ACOMP2
select ZSTD_COMPRESS
select ZSTD_DECOMPRESS
help
This is the zstd algorithm.
comment "Random Number Generation"
config CRYPTO_ANSI_CPRNG
tristate "Pseudo Random Number Generation for Cryptographic modules"
select CRYPTO_AES
select CRYPTO_RNG
help
This option enables the generic pseudo random number generator
for cryptographic modules. Uses the Algorithm specified in
ANSI X9.31 A.2.4. Note that this option must be enabled if
CRYPTO_FIPS is selected
menuconfig CRYPTO_DRBG_MENU
tristate "NIST SP800-90A DRBG"
help
NIST SP800-90A compliant DRBG. In the following submenu, one or
more of the DRBG types must be selected.
if CRYPTO_DRBG_MENU
config CRYPTO_DRBG_HMAC
bool
default y
select CRYPTO_HMAC
select CRYPTO_SHA256
config CRYPTO_DRBG_HASH
bool "Enable Hash DRBG"
select CRYPTO_SHA256
help
Enable the Hash DRBG variant as defined in NIST SP800-90A.
config CRYPTO_DRBG_CTR
bool "Enable CTR DRBG"
select CRYPTO_AES
select CRYPTO_CTR
help
Enable the CTR DRBG variant as defined in NIST SP800-90A.
config CRYPTO_DRBG
tristate
default CRYPTO_DRBG_MENU
select CRYPTO_RNG
select CRYPTO_JITTERENTROPY
endif # if CRYPTO_DRBG_MENU
config CRYPTO_JITTERENTROPY
tristate "Jitterentropy Non-Deterministic Random Number Generator"
select CRYPTO_RNG
help
The Jitterentropy RNG is a noise that is intended
to provide seed to another RNG. The RNG does not
perform any cryptographic whitening of the generated
random numbers. This Jitterentropy RNG registers with
the kernel crypto API and can be used by any caller.
config CRYPTO_USER_API
tristate
config CRYPTO_USER_API_HASH
tristate "User-space interface for hash algorithms"
depends on NET
select CRYPTO_HASH
select CRYPTO_USER_API
help
This option enables the user-spaces interface for hash
algorithms.
config CRYPTO_USER_API_SKCIPHER
tristate "User-space interface for symmetric key cipher algorithms"
depends on NET
select CRYPTO_SKCIPHER
select CRYPTO_USER_API
help
This option enables the user-spaces interface for symmetric
key cipher algorithms.
config CRYPTO_USER_API_RNG
tristate "User-space interface for random number generator algorithms"
depends on NET
select CRYPTO_RNG
select CRYPTO_USER_API
help
This option enables the user-spaces interface for random
number generator algorithms.
config CRYPTO_USER_API_AEAD
tristate "User-space interface for AEAD cipher algorithms"
depends on NET
select CRYPTO_AEAD
select CRYPTO_SKCIPHER
select CRYPTO_NULL
select CRYPTO_USER_API
help
This option enables the user-spaces interface for AEAD
cipher algorithms.
config CRYPTO_STATS
bool "Crypto usage statistics for User-space"
depends on CRYPTO_USER
help
This option enables the gathering of crypto stats.
This will collect:
- encrypt/decrypt size and numbers of symmeric operations
- compress/decompress size and numbers of compress operations
- size and numbers of hash operations
- encrypt/decrypt/sign/verify numbers for asymmetric operations
- generate/seed numbers for rng operations
config CRYPTO_HASH_INFO
bool
source "lib/crypto/Kconfig"
source "drivers/crypto/Kconfig"
source "crypto/asymmetric_keys/Kconfig"
source "certs/Kconfig"
endif # if CRYPTO