2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-14 00:24:15 +08:00
linux-next/arch/arm64/kernel/acpi.c
Linus Torvalds 0d51ce9ca1 Power management and ACPI updates for v4.4-rc1
- ACPICA update to upstream revision 20150930 (Bob Moore, Lv Zheng).
 
    The most significant change is to allow the AML debugger to be
    built into the kernel.  On top of that there is an update related
    to the NFIT table (the ACPI persistent memory interface)
    and a few fixes and cleanups.
 
  - ACPI CPPC2 (Collaborative Processor Performance Control v2)
    support along with a cpufreq frontend (Ashwin Chaugule).
 
    This can only be enabled on ARM64 at this point.
 
  - New ACPI infrastructure for the early probing of IRQ chips and
    clock sources (Marc Zyngier).
 
  - Support for a new hierarchical properties extension of the ACPI
    _DSD (Device Specific Data) device configuration object allowing
    the kernel to handle hierarchical properties (provided by the
    platform firmware this way) automatically and make them available
    to device drivers via the generic device properties interface
    (Rafael Wysocki).
 
  - Generic device properties API extension to obtain an index of
    certain string value in an array of strings, along the lines of
    of_property_match_string(), but working for all of the supported
    firmware node types, and support for the "dma-names" device
    property based on it (Mika Westerberg).
 
  - ACPI core fix to parse the MADT (Multiple APIC Description Table)
    entries in the order expected by platform firmware (and mandated
    by the specification) to avoid confusion on systems with more than
    255 logical CPUs (Lukasz Anaczkowski).
 
  - Consolidation of the ACPI-based handling of PCI host bridges
    on x86 and ia64 (Jiang Liu).
 
  - ACPI core fixes to ensure that the correct IRQ number is used to
    represent the SCI (System Control Interrupt) in the cases when
    it has been re-mapped (Chen Yu).
 
  - New ACPI backlight quirk for Lenovo IdeaPad S405 (Hans de Goede).
 
  - ACPI EC driver fixes (Lv Zheng).
 
  - Assorted ACPI fixes and cleanups (Dan Carpenter, Insu Yun, Jiri
    Kosina, Rami Rosen, Rasmus Villemoes).
 
  - New mechanism in the PM core allowing drivers to check if the
    platform firmware is going to be involved in the upcoming system
    suspend or if it has been involved in the suspend the system is
    resuming from at the moment (Rafael Wysocki).
 
    This should allow drivers to optimize their suspend/resume
    handling in some cases and the changes include a couple of users
    of it (the i8042 input driver, PCI PM).
 
  - PCI PM fix to prevent runtime-suspended devices with PME enabled
    from being resumed during system suspend even if they aren't
    configured to wake up the system from sleep (Rafael Wysocki).
 
  - New mechanism to report the number of a wakeup IRQ that woke up
    the system from sleep last time (Alexandra Yates).
 
  - Removal of unused interfaces from the generic power domains
    framework and fixes related to latency measurements in that
    code (Ulf Hansson, Daniel Lezcano).
 
  - cpufreq core sysfs interface rework to make it handle CPUs that
    share performance scaling settings (represented by a common
    cpufreq policy object) more symmetrically (Viresh Kumar).
 
    This should help to simplify the CPU offline/online handling among
    other things.
 
  - cpufreq core fixes and cleanups (Viresh Kumar).
 
  - intel_pstate fixes related to the Turbo Activation Ratio (TAR)
    mechanism on client platforms which causes the turbo P-states
    range to vary depending on platform firmware settings (Srinivas
    Pandruvada).
 
  - intel_pstate sysfs interface fix (Prarit Bhargava).
 
  - Assorted cpufreq driver (imx, tegra20, powernv, integrator) fixes
    and cleanups (Bai Ping, Bartlomiej Zolnierkiewicz, Shilpasri G
    Bhat, Luis de Bethencourt).
 
  - cpuidle mvebu driver cleanups (Russell King).
 
  - OPP (Operating Performance Points) framework code reorganization
    to make it more maintainable (Viresh Kumar).
 
  - Intel Broxton support for the RAPL (Running Average Power Limits)
    power capping driver (Amy Wiles).
 
  - Assorted power management code fixes and cleanups (Dan Carpenter,
    Geert Uytterhoeven, Geliang Tang, Luis de Bethencourt, Rasmus
    Villemoes).
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJWOC9oAAoJEILEb/54YlRx/c8P/joflwoFsISwJccG62YTQMuc
 bMQKM4Kw0vl5La8+pkLpe5t6+mW7l81UFtYF6Dzd8LOKlD9sszD34z1lHmCeT/oR
 wn0uZpHagRyLMUfoyiEtlU/VRU6WQNNtS3EgjwUi7xgFz9Q0pjcCZ9OQ6vKov1j5
 +6j40ODif5sgo+2vl+rztJiV0SIMkYdkgNqgfN1FE9bdLA2Zkk+PxxJbtGQORuDu
 O/K+XhQT2xWquVWi/1p+VtQxs5glBS1oKm0kogV5bElCvNTRNIVABUNcjogITQwo
 QSAKgoCKIoaIl5jtDT6u5dc0y67q/dMtqOY9fOCcOz1Z7jbWQzR8D7mpFWIsJUPK
 K2LClI3t85ynpN6Jref246A6+C9nwB8JMAiAR11oBw7WbBlkd6tbRgcT5B+iz8UE
 FuCCif7pha/Fs+Jt1YRazscIqteQ2bAhhxikuIPMfw2M6M67MNfVNeKA1bAoSM34
 dH7JsilblitvV7shrwJHwXPXCOF2jEPoK8I4/q2+TR5qUxEpRJjelQxXGSaQScMZ
 iNnjeTgv8H8q+rY5Yjzsl4pxP0Fvf7IuqkptWOJbgepg4cQc9pS87wOpY3uEeQzr
 H7ruaQJFCnLO4aXbPNClsiJARhrBk+qMlsh4vBEyCJ2T0ucb+nIUcN4BTi8t85yl
 X97BfHHUiDoUrnIsNids
 =1gaH
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-4.4-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management and ACPI updates from Rafael Wysocki:
 "Quite a new features are included this time.

  First off, the Collaborative Processor Performance Control interface
  (version 2) defined by ACPI will now be supported on ARM64 along with
  a cpufreq frontend for CPU performance scaling.

  Second, ACPI gets a new infrastructure for the early probing of IRQ
  chips and clock sources (along the lines of the existing similar
  mechanism for DT).

  Next, the ACPI core and the generic device properties API will now
  support a recently introduced hierarchical properties extension of the
  _DSD (Device Specific Data) ACPI device configuration object.  If the
  ACPI platform firmware uses that extension to organize device
  properties in a hierarchical way, the kernel will automatically handle
  it and make those properties available to device drivers via the
  generic device properties API.

  It also will be possible to build the ACPICA's AML interpreter
  debugger into the kernel now and use that to diagnose AML-related
  problems more efficiently.  In the future, this should make it
  possible to single-step AML execution and do similar things.
  Interesting stuff, although somewhat experimental at this point.

  Finally, the PM core gets a new mechanism that can be used by device
  drivers to distinguish between suspend-to-RAM (based on platform
  firmware support) and suspend-to-idle (or other variants of system
  suspend the platform firmware is not involved in) and possibly
  optimize their device suspend/resume handling accordingly.

  In addition to that, some existing features are re-organized quite
  substantially.

  First, the ACPI-based handling of PCI host bridges on x86 and ia64 is
  unified and the common code goes into the ACPI core (so as to reduce
  code duplication and eliminate non-essential differences between the
  two architectures in that area).

  Second, the Operating Performance Points (OPP) framework is
  reorganized to make the code easier to find and follow.

  Next, the cpufreq core's sysfs interface is reorganized to get rid of
  the "primary CPU" concept for configurations in which the same
  performance scaling settings are shared between multiple CPUs.

  Finally, some interfaces that aren't necessary any more are dropped
  from the generic power domains framework.

  On top of the above we have some minor extensions, cleanups and bug
  fixes in multiple places, as usual.

  Specifics:

   - ACPICA update to upstream revision 20150930 (Bob Moore, Lv Zheng).

     The most significant change is to allow the AML debugger to be
     built into the kernel.  On top of that there is an update related
     to the NFIT table (the ACPI persistent memory interface) and a few
     fixes and cleanups.

   - ACPI CPPC2 (Collaborative Processor Performance Control v2) support
     along with a cpufreq frontend (Ashwin Chaugule).

     This can only be enabled on ARM64 at this point.

   - New ACPI infrastructure for the early probing of IRQ chips and
     clock sources (Marc Zyngier).

   - Support for a new hierarchical properties extension of the ACPI
     _DSD (Device Specific Data) device configuration object allowing
     the kernel to handle hierarchical properties (provided by the
     platform firmware this way) automatically and make them available
     to device drivers via the generic device properties interface
     (Rafael Wysocki).

   - Generic device properties API extension to obtain an index of
     certain string value in an array of strings, along the lines of
     of_property_match_string(), but working for all of the supported
     firmware node types, and support for the "dma-names" device
     property based on it (Mika Westerberg).

   - ACPI core fix to parse the MADT (Multiple APIC Description Table)
     entries in the order expected by platform firmware (and mandated by
     the specification) to avoid confusion on systems with more than 255
     logical CPUs (Lukasz Anaczkowski).

   - Consolidation of the ACPI-based handling of PCI host bridges on x86
     and ia64 (Jiang Liu).

   - ACPI core fixes to ensure that the correct IRQ number is used to
     represent the SCI (System Control Interrupt) in the cases when it
     has been re-mapped (Chen Yu).

   - New ACPI backlight quirk for Lenovo IdeaPad S405 (Hans de Goede).

   - ACPI EC driver fixes (Lv Zheng).

   - Assorted ACPI fixes and cleanups (Dan Carpenter, Insu Yun, Jiri
     Kosina, Rami Rosen, Rasmus Villemoes).

   - New mechanism in the PM core allowing drivers to check if the
     platform firmware is going to be involved in the upcoming system
     suspend or if it has been involved in the suspend the system is
     resuming from at the moment (Rafael Wysocki).

     This should allow drivers to optimize their suspend/resume handling
     in some cases and the changes include a couple of users of it (the
     i8042 input driver, PCI PM).

   - PCI PM fix to prevent runtime-suspended devices with PME enabled
     from being resumed during system suspend even if they aren't
     configured to wake up the system from sleep (Rafael Wysocki).

   - New mechanism to report the number of a wakeup IRQ that woke up the
     system from sleep last time (Alexandra Yates).

   - Removal of unused interfaces from the generic power domains
     framework and fixes related to latency measurements in that code
     (Ulf Hansson, Daniel Lezcano).

   - cpufreq core sysfs interface rework to make it handle CPUs that
     share performance scaling settings (represented by a common cpufreq
     policy object) more symmetrically (Viresh Kumar).

     This should help to simplify the CPU offline/online handling among
     other things.

   - cpufreq core fixes and cleanups (Viresh Kumar).

   - intel_pstate fixes related to the Turbo Activation Ratio (TAR)
     mechanism on client platforms which causes the turbo P-states range
     to vary depending on platform firmware settings (Srinivas
     Pandruvada).

   - intel_pstate sysfs interface fix (Prarit Bhargava).

   - Assorted cpufreq driver (imx, tegra20, powernv, integrator) fixes
     and cleanups (Bai Ping, Bartlomiej Zolnierkiewicz, Shilpasri G
     Bhat, Luis de Bethencourt).

   - cpuidle mvebu driver cleanups (Russell King).

   - OPP (Operating Performance Points) framework code reorganization to
     make it more maintainable (Viresh Kumar).

   - Intel Broxton support for the RAPL (Running Average Power Limits)
     power capping driver (Amy Wiles).

   - Assorted power management code fixes and cleanups (Dan Carpenter,
     Geert Uytterhoeven, Geliang Tang, Luis de Bethencourt, Rasmus
     Villemoes)"

* tag 'pm+acpi-4.4-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (108 commits)
  cpufreq: postfix policy directory with the first CPU in related_cpus
  cpufreq: create cpu/cpufreq/policyX directories
  cpufreq: remove cpufreq_sysfs_{create|remove}_file()
  cpufreq: create cpu/cpufreq at boot time
  cpufreq: Use cpumask_copy instead of cpumask_or to copy a mask
  cpufreq: ondemand: Drop unnecessary locks from update_sampling_rate()
  PM / Domains: Merge measurements for PM QoS device latencies
  PM / Domains: Don't measure ->start|stop() latency in system PM callbacks
  PM / clk: Fix broken build due to non-matching code and header #ifdefs
  ACPI / Documentation: add copy_dsdt to ACPI format options
  ACPI / sysfs: correctly check failing memory allocation
  ACPI / video: Add a quirk to force native backlight on Lenovo IdeaPad S405
  ACPI / CPPC: Fix potential memory leak
  ACPI / CPPC: signedness bug in register_pcc_channel()
  ACPI / PAD: power_saving_thread() is not freezable
  ACPI / PM: Fix incorrect wakeup IRQ setting during suspend-to-idle
  ACPI: Using correct irq when waiting for events
  ACPI: Use correct IRQ when uninstalling ACPI interrupt handler
  cpuidle: mvebu: disable the bind/unbind attributes and use builtin_platform_driver
  cpuidle: mvebu: clean up multiple platform drivers
  ...
2015-11-04 18:10:13 -08:00

237 lines
6.3 KiB
C

/*
* ARM64 Specific Low-Level ACPI Boot Support
*
* Copyright (C) 2013-2014, Linaro Ltd.
* Author: Al Stone <al.stone@linaro.org>
* Author: Graeme Gregory <graeme.gregory@linaro.org>
* Author: Hanjun Guo <hanjun.guo@linaro.org>
* Author: Tomasz Nowicki <tomasz.nowicki@linaro.org>
* Author: Naresh Bhat <naresh.bhat@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) "ACPI: " fmt
#include <linux/acpi.h>
#include <linux/bootmem.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/memblock.h>
#include <linux/of_fdt.h>
#include <linux/smp.h>
#include <asm/cputype.h>
#include <asm/cpu_ops.h>
#include <asm/smp_plat.h>
#ifdef CONFIG_ACPI_APEI
# include <linux/efi.h>
# include <asm/pgtable.h>
#endif
int acpi_noirq = 1; /* skip ACPI IRQ initialization */
int acpi_disabled = 1;
EXPORT_SYMBOL(acpi_disabled);
int acpi_pci_disabled = 1; /* skip ACPI PCI scan and IRQ initialization */
EXPORT_SYMBOL(acpi_pci_disabled);
static bool param_acpi_off __initdata;
static bool param_acpi_force __initdata;
static int __init parse_acpi(char *arg)
{
if (!arg)
return -EINVAL;
/* "acpi=off" disables both ACPI table parsing and interpreter */
if (strcmp(arg, "off") == 0)
param_acpi_off = true;
else if (strcmp(arg, "force") == 0) /* force ACPI to be enabled */
param_acpi_force = true;
else
return -EINVAL; /* Core will print when we return error */
return 0;
}
early_param("acpi", parse_acpi);
static int __init dt_scan_depth1_nodes(unsigned long node,
const char *uname, int depth,
void *data)
{
/*
* Return 1 as soon as we encounter a node at depth 1 that is
* not the /chosen node.
*/
if (depth == 1 && (strcmp(uname, "chosen") != 0))
return 1;
return 0;
}
/*
* __acpi_map_table() will be called before page_init(), so early_ioremap()
* or early_memremap() should be called here to for ACPI table mapping.
*/
char *__init __acpi_map_table(unsigned long phys, unsigned long size)
{
if (!size)
return NULL;
return early_memremap(phys, size);
}
void __init __acpi_unmap_table(char *map, unsigned long size)
{
if (!map || !size)
return;
early_memunmap(map, size);
}
bool __init acpi_psci_present(void)
{
return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_COMPLIANT;
}
/* Whether HVC must be used instead of SMC as the PSCI conduit */
bool __init acpi_psci_use_hvc(void)
{
return acpi_gbl_FADT.arm_boot_flags & ACPI_FADT_PSCI_USE_HVC;
}
/*
* acpi_fadt_sanity_check() - Check FADT presence and carry out sanity
* checks on it
*
* Return 0 on success, <0 on failure
*/
static int __init acpi_fadt_sanity_check(void)
{
struct acpi_table_header *table;
struct acpi_table_fadt *fadt;
acpi_status status;
acpi_size tbl_size;
int ret = 0;
/*
* FADT is required on arm64; retrieve it to check its presence
* and carry out revision and ACPI HW reduced compliancy tests
*/
status = acpi_get_table_with_size(ACPI_SIG_FADT, 0, &table, &tbl_size);
if (ACPI_FAILURE(status)) {
const char *msg = acpi_format_exception(status);
pr_err("Failed to get FADT table, %s\n", msg);
return -ENODEV;
}
fadt = (struct acpi_table_fadt *)table;
/*
* Revision in table header is the FADT Major revision, and there
* is a minor revision of FADT which was introduced by ACPI 5.1,
* we only deal with ACPI 5.1 or newer revision to get GIC and SMP
* boot protocol configuration data.
*/
if (table->revision < 5 ||
(table->revision == 5 && fadt->minor_revision < 1)) {
pr_err("Unsupported FADT revision %d.%d, should be 5.1+\n",
table->revision, fadt->minor_revision);
ret = -EINVAL;
goto out;
}
if (!(fadt->flags & ACPI_FADT_HW_REDUCED)) {
pr_err("FADT not ACPI hardware reduced compliant\n");
ret = -EINVAL;
}
out:
/*
* acpi_get_table_with_size() creates FADT table mapping that
* should be released after parsing and before resuming boot
*/
early_acpi_os_unmap_memory(table, tbl_size);
return ret;
}
/*
* acpi_boot_table_init() called from setup_arch(), always.
* 1. find RSDP and get its address, and then find XSDT
* 2. extract all tables and checksums them all
* 3. check ACPI FADT revision
* 4. check ACPI FADT HW reduced flag
*
* We can parse ACPI boot-time tables such as MADT after
* this function is called.
*
* On return ACPI is enabled if either:
*
* - ACPI tables are initialized and sanity checks passed
* - acpi=force was passed in the command line and ACPI was not disabled
* explicitly through acpi=off command line parameter
*
* ACPI is disabled on function return otherwise
*/
void __init acpi_boot_table_init(void)
{
/*
* Enable ACPI instead of device tree unless
* - ACPI has been disabled explicitly (acpi=off), or
* - the device tree is not empty (it has more than just a /chosen node)
* and ACPI has not been force enabled (acpi=force)
*/
if (param_acpi_off ||
(!param_acpi_force && of_scan_flat_dt(dt_scan_depth1_nodes, NULL)))
return;
/*
* ACPI is disabled at this point. Enable it in order to parse
* the ACPI tables and carry out sanity checks
*/
enable_acpi();
/*
* If ACPI tables are initialized and FADT sanity checks passed,
* leave ACPI enabled and carry on booting; otherwise disable ACPI
* on initialization error.
* If acpi=force was passed on the command line it forces ACPI
* to be enabled even if its initialization failed.
*/
if (acpi_table_init() || acpi_fadt_sanity_check()) {
pr_err("Failed to init ACPI tables\n");
if (!param_acpi_force)
disable_acpi();
}
}
#ifdef CONFIG_ACPI_APEI
pgprot_t arch_apei_get_mem_attribute(phys_addr_t addr)
{
/*
* According to "Table 8 Map: EFI memory types to AArch64 memory
* types" of UEFI 2.5 section 2.3.6.1, each EFI memory type is
* mapped to a corresponding MAIR attribute encoding.
* The EFI memory attribute advises all possible capabilities
* of a memory region. We use the most efficient capability.
*/
u64 attr;
attr = efi_mem_attributes(addr);
if (attr & EFI_MEMORY_WB)
return PAGE_KERNEL;
if (attr & EFI_MEMORY_WT)
return __pgprot(PROT_NORMAL_WT);
if (attr & EFI_MEMORY_WC)
return __pgprot(PROT_NORMAL_NC);
return __pgprot(PROT_DEVICE_nGnRnE);
}
#endif