2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/drivers/thermal/uniphier_thermal.c
Kunihiko Hayashi ca74472dea thermal: uniphier: Convert to SPDX identifier
This converts license boilerplate to SPDX identifier, and removes
unnecessary lines.

Signed-off-by: Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Eduardo Valentin <edubezval@gmail.com>
2019-01-02 04:47:16 -08:00

378 lines
9.3 KiB
C

// SPDX-License-Identifier: GPL-2.0
/**
* uniphier_thermal.c - Socionext UniPhier thermal driver
* Copyright 2014 Panasonic Corporation
* Copyright 2016-2017 Socionext Inc.
* Author:
* Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
*/
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/thermal.h>
#include "thermal_core.h"
/*
* block registers
* addresses are the offset from .block_base
*/
#define PVTCTLEN 0x0000
#define PVTCTLEN_EN BIT(0)
#define PVTCTLMODE 0x0004
#define PVTCTLMODE_MASK 0xf
#define PVTCTLMODE_TEMPMON 0x5
#define EMONREPEAT 0x0040
#define EMONREPEAT_ENDLESS BIT(24)
#define EMONREPEAT_PERIOD GENMASK(3, 0)
#define EMONREPEAT_PERIOD_1000000 0x9
/*
* common registers
* addresses are the offset from .map_base
*/
#define PVTCTLSEL 0x0900
#define PVTCTLSEL_MASK GENMASK(2, 0)
#define PVTCTLSEL_MONITOR 0
#define SETALERT0 0x0910
#define SETALERT1 0x0914
#define SETALERT2 0x0918
#define SETALERT_TEMP_OVF (GENMASK(7, 0) << 16)
#define SETALERT_TEMP_OVF_VALUE(val) (((val) & GENMASK(7, 0)) << 16)
#define SETALERT_EN BIT(0)
#define PMALERTINTCTL 0x0920
#define PMALERTINTCTL_CLR(ch) BIT(4 * (ch) + 2)
#define PMALERTINTCTL_SET(ch) BIT(4 * (ch) + 1)
#define PMALERTINTCTL_EN(ch) BIT(4 * (ch) + 0)
#define PMALERTINTCTL_MASK (GENMASK(10, 8) | GENMASK(6, 4) | \
GENMASK(2, 0))
#define TMOD 0x0928
#define TMOD_WIDTH 9
#define TMODCOEF 0x0e5c
#define TMODSETUP0_EN BIT(30)
#define TMODSETUP0_VAL(val) (((val) & GENMASK(13, 0)) << 16)
#define TMODSETUP1_EN BIT(15)
#define TMODSETUP1_VAL(val) ((val) & GENMASK(14, 0))
/* SoC critical temperature */
#define CRITICAL_TEMP_LIMIT (120 * 1000)
/* Max # of alert channels */
#define ALERT_CH_NUM 3
/* SoC specific thermal sensor data */
struct uniphier_tm_soc_data {
u32 map_base;
u32 block_base;
u32 tmod_setup_addr;
};
struct uniphier_tm_dev {
struct regmap *regmap;
struct device *dev;
bool alert_en[ALERT_CH_NUM];
struct thermal_zone_device *tz_dev;
const struct uniphier_tm_soc_data *data;
};
static int uniphier_tm_initialize_sensor(struct uniphier_tm_dev *tdev)
{
struct regmap *map = tdev->regmap;
u32 val;
u32 tmod_calib[2];
int ret;
/* stop PVT */
regmap_write_bits(map, tdev->data->block_base + PVTCTLEN,
PVTCTLEN_EN, 0);
/*
* Since SoC has a calibrated value that was set in advance,
* TMODCOEF shows non-zero and PVT refers the value internally.
*
* If TMODCOEF shows zero, the boards don't have the calibrated
* value, and the driver has to set default value from DT.
*/
ret = regmap_read(map, tdev->data->map_base + TMODCOEF, &val);
if (ret)
return ret;
if (!val) {
/* look for the default values in DT */
ret = of_property_read_u32_array(tdev->dev->of_node,
"socionext,tmod-calibration",
tmod_calib,
ARRAY_SIZE(tmod_calib));
if (ret)
return ret;
regmap_write(map, tdev->data->tmod_setup_addr,
TMODSETUP0_EN | TMODSETUP0_VAL(tmod_calib[0]) |
TMODSETUP1_EN | TMODSETUP1_VAL(tmod_calib[1]));
}
/* select temperature mode */
regmap_write_bits(map, tdev->data->block_base + PVTCTLMODE,
PVTCTLMODE_MASK, PVTCTLMODE_TEMPMON);
/* set monitoring period */
regmap_write_bits(map, tdev->data->block_base + EMONREPEAT,
EMONREPEAT_ENDLESS | EMONREPEAT_PERIOD,
EMONREPEAT_ENDLESS | EMONREPEAT_PERIOD_1000000);
/* set monitor mode */
regmap_write_bits(map, tdev->data->map_base + PVTCTLSEL,
PVTCTLSEL_MASK, PVTCTLSEL_MONITOR);
return 0;
}
static void uniphier_tm_set_alert(struct uniphier_tm_dev *tdev, u32 ch,
u32 temp)
{
struct regmap *map = tdev->regmap;
/* set alert temperature */
regmap_write_bits(map, tdev->data->map_base + SETALERT0 + (ch << 2),
SETALERT_EN | SETALERT_TEMP_OVF,
SETALERT_EN |
SETALERT_TEMP_OVF_VALUE(temp / 1000));
}
static void uniphier_tm_enable_sensor(struct uniphier_tm_dev *tdev)
{
struct regmap *map = tdev->regmap;
int i;
u32 bits = 0;
for (i = 0; i < ALERT_CH_NUM; i++)
if (tdev->alert_en[i])
bits |= PMALERTINTCTL_EN(i);
/* enable alert interrupt */
regmap_write_bits(map, tdev->data->map_base + PMALERTINTCTL,
PMALERTINTCTL_MASK, bits);
/* start PVT */
regmap_write_bits(map, tdev->data->block_base + PVTCTLEN,
PVTCTLEN_EN, PVTCTLEN_EN);
usleep_range(700, 1500); /* The spec note says at least 700us */
}
static void uniphier_tm_disable_sensor(struct uniphier_tm_dev *tdev)
{
struct regmap *map = tdev->regmap;
/* disable alert interrupt */
regmap_write_bits(map, tdev->data->map_base + PMALERTINTCTL,
PMALERTINTCTL_MASK, 0);
/* stop PVT */
regmap_write_bits(map, tdev->data->block_base + PVTCTLEN,
PVTCTLEN_EN, 0);
usleep_range(1000, 2000); /* The spec note says at least 1ms */
}
static int uniphier_tm_get_temp(void *data, int *out_temp)
{
struct uniphier_tm_dev *tdev = data;
struct regmap *map = tdev->regmap;
int ret;
u32 temp;
ret = regmap_read(map, tdev->data->map_base + TMOD, &temp);
if (ret)
return ret;
/* MSB of the TMOD field is a sign bit */
*out_temp = sign_extend32(temp, TMOD_WIDTH - 1) * 1000;
return 0;
}
static const struct thermal_zone_of_device_ops uniphier_of_thermal_ops = {
.get_temp = uniphier_tm_get_temp,
};
static void uniphier_tm_irq_clear(struct uniphier_tm_dev *tdev)
{
u32 mask = 0, bits = 0;
int i;
for (i = 0; i < ALERT_CH_NUM; i++) {
mask |= (PMALERTINTCTL_CLR(i) | PMALERTINTCTL_SET(i));
bits |= PMALERTINTCTL_CLR(i);
}
/* clear alert interrupt */
regmap_write_bits(tdev->regmap,
tdev->data->map_base + PMALERTINTCTL, mask, bits);
}
static irqreturn_t uniphier_tm_alarm_irq(int irq, void *_tdev)
{
struct uniphier_tm_dev *tdev = _tdev;
disable_irq_nosync(irq);
uniphier_tm_irq_clear(tdev);
return IRQ_WAKE_THREAD;
}
static irqreturn_t uniphier_tm_alarm_irq_thread(int irq, void *_tdev)
{
struct uniphier_tm_dev *tdev = _tdev;
thermal_zone_device_update(tdev->tz_dev, THERMAL_EVENT_UNSPECIFIED);
return IRQ_HANDLED;
}
static int uniphier_tm_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct regmap *regmap;
struct device_node *parent;
struct uniphier_tm_dev *tdev;
const struct thermal_trip *trips;
int i, ret, irq, ntrips, crit_temp = INT_MAX;
tdev = devm_kzalloc(dev, sizeof(*tdev), GFP_KERNEL);
if (!tdev)
return -ENOMEM;
tdev->dev = dev;
tdev->data = of_device_get_match_data(dev);
if (WARN_ON(!tdev->data))
return -EINVAL;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
/* get regmap from syscon node */
parent = of_get_parent(dev->of_node); /* parent should be syscon node */
regmap = syscon_node_to_regmap(parent);
of_node_put(parent);
if (IS_ERR(regmap)) {
dev_err(dev, "failed to get regmap (error %ld)\n",
PTR_ERR(regmap));
return PTR_ERR(regmap);
}
tdev->regmap = regmap;
ret = uniphier_tm_initialize_sensor(tdev);
if (ret) {
dev_err(dev, "failed to initialize sensor\n");
return ret;
}
ret = devm_request_threaded_irq(dev, irq, uniphier_tm_alarm_irq,
uniphier_tm_alarm_irq_thread,
0, "thermal", tdev);
if (ret)
return ret;
platform_set_drvdata(pdev, tdev);
tdev->tz_dev = devm_thermal_zone_of_sensor_register(dev, 0, tdev,
&uniphier_of_thermal_ops);
if (IS_ERR(tdev->tz_dev)) {
dev_err(dev, "failed to register sensor device\n");
return PTR_ERR(tdev->tz_dev);
}
/* get trip points */
trips = of_thermal_get_trip_points(tdev->tz_dev);
ntrips = of_thermal_get_ntrips(tdev->tz_dev);
if (ntrips > ALERT_CH_NUM) {
dev_err(dev, "thermal zone has too many trips\n");
return -E2BIG;
}
/* set alert temperatures */
for (i = 0; i < ntrips; i++) {
if (trips[i].type == THERMAL_TRIP_CRITICAL &&
trips[i].temperature < crit_temp)
crit_temp = trips[i].temperature;
uniphier_tm_set_alert(tdev, i, trips[i].temperature);
tdev->alert_en[i] = true;
}
if (crit_temp > CRITICAL_TEMP_LIMIT) {
dev_err(dev, "critical trip is over limit(>%d), or not set\n",
CRITICAL_TEMP_LIMIT);
return -EINVAL;
}
uniphier_tm_enable_sensor(tdev);
return 0;
}
static int uniphier_tm_remove(struct platform_device *pdev)
{
struct uniphier_tm_dev *tdev = platform_get_drvdata(pdev);
/* disable sensor */
uniphier_tm_disable_sensor(tdev);
return 0;
}
static const struct uniphier_tm_soc_data uniphier_pxs2_tm_data = {
.map_base = 0xe000,
.block_base = 0xe000,
.tmod_setup_addr = 0xe904,
};
static const struct uniphier_tm_soc_data uniphier_ld20_tm_data = {
.map_base = 0xe000,
.block_base = 0xe800,
.tmod_setup_addr = 0xe938,
};
static const struct of_device_id uniphier_tm_dt_ids[] = {
{
.compatible = "socionext,uniphier-pxs2-thermal",
.data = &uniphier_pxs2_tm_data,
},
{
.compatible = "socionext,uniphier-ld20-thermal",
.data = &uniphier_ld20_tm_data,
},
{
.compatible = "socionext,uniphier-pxs3-thermal",
.data = &uniphier_ld20_tm_data,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, uniphier_tm_dt_ids);
static struct platform_driver uniphier_tm_driver = {
.probe = uniphier_tm_probe,
.remove = uniphier_tm_remove,
.driver = {
.name = "uniphier-thermal",
.of_match_table = uniphier_tm_dt_ids,
},
};
module_platform_driver(uniphier_tm_driver);
MODULE_AUTHOR("Kunihiko Hayashi <hayashi.kunihiko@socionext.com>");
MODULE_DESCRIPTION("UniPhier thermal driver");
MODULE_LICENSE("GPL v2");