2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-16 01:04:08 +08:00
linux-next/drivers/acpi/device_pm.c
Gayatri Kammela b62c770fee ACPI: Update Tiger Lake ACPI device IDs
Tiger Lake's new unique ACPI device IDs for DPTF and fan drivers are not
valid as the IDs are missing 'C'. Fix the IDs by updating them.

After the update, the new IDs should now look like
INT1047 --> INTC1047
INT1040 --> INTC1040
INT1043 --> INTC1043
INT1044 --> INTC1044

Fixes: 55cfe6a5c5 ("ACPI: DPTF: Add Tiger Lake ACPI device IDs")
Fixes: c248dfe7e0 ("ACPI: fan: Add Tiger Lake ACPI device ID")
Suggested-by: Srinivas Pandruvada <srinivas.pandruvada@intel.com>
Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-04-01 13:20:21 +02:00

1353 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/acpi/device_pm.c - ACPI device power management routines.
*
* Copyright (C) 2012, Intel Corp.
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/acpi.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/pm_qos.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/suspend.h>
#include "internal.h"
#define _COMPONENT ACPI_POWER_COMPONENT
ACPI_MODULE_NAME("device_pm");
/**
* acpi_power_state_string - String representation of ACPI device power state.
* @state: ACPI device power state to return the string representation of.
*/
const char *acpi_power_state_string(int state)
{
switch (state) {
case ACPI_STATE_D0:
return "D0";
case ACPI_STATE_D1:
return "D1";
case ACPI_STATE_D2:
return "D2";
case ACPI_STATE_D3_HOT:
return "D3hot";
case ACPI_STATE_D3_COLD:
return "D3cold";
default:
return "(unknown)";
}
}
static int acpi_dev_pm_explicit_get(struct acpi_device *device, int *state)
{
unsigned long long psc;
acpi_status status;
status = acpi_evaluate_integer(device->handle, "_PSC", NULL, &psc);
if (ACPI_FAILURE(status))
return -ENODEV;
*state = psc;
return 0;
}
/**
* acpi_device_get_power - Get power state of an ACPI device.
* @device: Device to get the power state of.
* @state: Place to store the power state of the device.
*
* This function does not update the device's power.state field, but it may
* update its parent's power.state field (when the parent's power state is
* unknown and the device's power state turns out to be D0).
*
* Also, it does not update power resource reference counters to ensure that
* the power state returned by it will be persistent and it may return a power
* state shallower than previously set by acpi_device_set_power() for @device
* (if that power state depends on any power resources).
*/
int acpi_device_get_power(struct acpi_device *device, int *state)
{
int result = ACPI_STATE_UNKNOWN;
int error;
if (!device || !state)
return -EINVAL;
if (!device->flags.power_manageable) {
/* TBD: Non-recursive algorithm for walking up hierarchy. */
*state = device->parent ?
device->parent->power.state : ACPI_STATE_D0;
goto out;
}
/*
* Get the device's power state from power resources settings and _PSC,
* if available.
*/
if (device->power.flags.power_resources) {
error = acpi_power_get_inferred_state(device, &result);
if (error)
return error;
}
if (device->power.flags.explicit_get) {
int psc;
error = acpi_dev_pm_explicit_get(device, &psc);
if (error)
return error;
/*
* The power resources settings may indicate a power state
* shallower than the actual power state of the device, because
* the same power resources may be referenced by other devices.
*
* For systems predating ACPI 4.0 we assume that D3hot is the
* deepest state that can be supported.
*/
if (psc > result && psc < ACPI_STATE_D3_COLD)
result = psc;
else if (result == ACPI_STATE_UNKNOWN)
result = psc > ACPI_STATE_D2 ? ACPI_STATE_D3_HOT : psc;
}
/*
* If we were unsure about the device parent's power state up to this
* point, the fact that the device is in D0 implies that the parent has
* to be in D0 too, except if ignore_parent is set.
*/
if (!device->power.flags.ignore_parent && device->parent
&& device->parent->power.state == ACPI_STATE_UNKNOWN
&& result == ACPI_STATE_D0)
device->parent->power.state = ACPI_STATE_D0;
*state = result;
out:
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] power state is %s\n",
device->pnp.bus_id, acpi_power_state_string(*state)));
return 0;
}
static int acpi_dev_pm_explicit_set(struct acpi_device *adev, int state)
{
if (adev->power.states[state].flags.explicit_set) {
char method[5] = { '_', 'P', 'S', '0' + state, '\0' };
acpi_status status;
status = acpi_evaluate_object(adev->handle, method, NULL, NULL);
if (ACPI_FAILURE(status))
return -ENODEV;
}
return 0;
}
/**
* acpi_device_set_power - Set power state of an ACPI device.
* @device: Device to set the power state of.
* @state: New power state to set.
*
* Callers must ensure that the device is power manageable before using this
* function.
*/
int acpi_device_set_power(struct acpi_device *device, int state)
{
int target_state = state;
int result = 0;
if (!device || !device->flags.power_manageable
|| (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
return -EINVAL;
acpi_handle_debug(device->handle, "Power state change: %s -> %s\n",
acpi_power_state_string(device->power.state),
acpi_power_state_string(state));
/* Make sure this is a valid target state */
/* There is a special case for D0 addressed below. */
if (state > ACPI_STATE_D0 && state == device->power.state) {
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device [%s] already in %s\n",
device->pnp.bus_id,
acpi_power_state_string(state)));
return 0;
}
if (state == ACPI_STATE_D3_COLD) {
/*
* For transitions to D3cold we need to execute _PS3 and then
* possibly drop references to the power resources in use.
*/
state = ACPI_STATE_D3_HOT;
/* If _PR3 is not available, use D3hot as the target state. */
if (!device->power.states[ACPI_STATE_D3_COLD].flags.valid)
target_state = state;
} else if (!device->power.states[state].flags.valid) {
dev_warn(&device->dev, "Power state %s not supported\n",
acpi_power_state_string(state));
return -ENODEV;
}
if (!device->power.flags.ignore_parent &&
device->parent && (state < device->parent->power.state)) {
dev_warn(&device->dev,
"Cannot transition to power state %s for parent in %s\n",
acpi_power_state_string(state),
acpi_power_state_string(device->parent->power.state));
return -ENODEV;
}
/*
* Transition Power
* ----------------
* In accordance with ACPI 6, _PSx is executed before manipulating power
* resources, unless the target state is D0, in which case _PS0 is
* supposed to be executed after turning the power resources on.
*/
if (state > ACPI_STATE_D0) {
/*
* According to ACPI 6, devices cannot go from lower-power
* (deeper) states to higher-power (shallower) states.
*/
if (state < device->power.state) {
dev_warn(&device->dev, "Cannot transition from %s to %s\n",
acpi_power_state_string(device->power.state),
acpi_power_state_string(state));
return -ENODEV;
}
/*
* If the device goes from D3hot to D3cold, _PS3 has been
* evaluated for it already, so skip it in that case.
*/
if (device->power.state < ACPI_STATE_D3_HOT) {
result = acpi_dev_pm_explicit_set(device, state);
if (result)
goto end;
}
if (device->power.flags.power_resources)
result = acpi_power_transition(device, target_state);
} else {
int cur_state = device->power.state;
if (device->power.flags.power_resources) {
result = acpi_power_transition(device, ACPI_STATE_D0);
if (result)
goto end;
}
if (cur_state == ACPI_STATE_D0) {
int psc;
/* Nothing to do here if _PSC is not present. */
if (!device->power.flags.explicit_get)
return 0;
/*
* The power state of the device was set to D0 last
* time, but that might have happened before a
* system-wide transition involving the platform
* firmware, so it may be necessary to evaluate _PS0
* for the device here. However, use extra care here
* and evaluate _PSC to check the device's current power
* state, and only invoke _PS0 if the evaluation of _PSC
* is successful and it returns a power state different
* from D0.
*/
result = acpi_dev_pm_explicit_get(device, &psc);
if (result || psc == ACPI_STATE_D0)
return 0;
}
result = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
}
end:
if (result) {
dev_warn(&device->dev, "Failed to change power state to %s\n",
acpi_power_state_string(state));
} else {
device->power.state = target_state;
ACPI_DEBUG_PRINT((ACPI_DB_INFO,
"Device [%s] transitioned to %s\n",
device->pnp.bus_id,
acpi_power_state_string(state)));
}
return result;
}
EXPORT_SYMBOL(acpi_device_set_power);
int acpi_bus_set_power(acpi_handle handle, int state)
{
struct acpi_device *device;
int result;
result = acpi_bus_get_device(handle, &device);
if (result)
return result;
return acpi_device_set_power(device, state);
}
EXPORT_SYMBOL(acpi_bus_set_power);
int acpi_bus_init_power(struct acpi_device *device)
{
int state;
int result;
if (!device)
return -EINVAL;
device->power.state = ACPI_STATE_UNKNOWN;
if (!acpi_device_is_present(device)) {
device->flags.initialized = false;
return -ENXIO;
}
result = acpi_device_get_power(device, &state);
if (result)
return result;
if (state < ACPI_STATE_D3_COLD && device->power.flags.power_resources) {
/* Reference count the power resources. */
result = acpi_power_on_resources(device, state);
if (result)
return result;
if (state == ACPI_STATE_D0) {
/*
* If _PSC is not present and the state inferred from
* power resources appears to be D0, it still may be
* necessary to execute _PS0 at this point, because
* another device using the same power resources may
* have been put into D0 previously and that's why we
* see D0 here.
*/
result = acpi_dev_pm_explicit_set(device, state);
if (result)
return result;
}
} else if (state == ACPI_STATE_UNKNOWN) {
/*
* No power resources and missing _PSC? Cross fingers and make
* it D0 in hope that this is what the BIOS put the device into.
* [We tried to force D0 here by executing _PS0, but that broke
* Toshiba P870-303 in a nasty way.]
*/
state = ACPI_STATE_D0;
}
device->power.state = state;
return 0;
}
/**
* acpi_device_fix_up_power - Force device with missing _PSC into D0.
* @device: Device object whose power state is to be fixed up.
*
* Devices without power resources and _PSC, but having _PS0 and _PS3 defined,
* are assumed to be put into D0 by the BIOS. However, in some cases that may
* not be the case and this function should be used then.
*/
int acpi_device_fix_up_power(struct acpi_device *device)
{
int ret = 0;
if (!device->power.flags.power_resources
&& !device->power.flags.explicit_get
&& device->power.state == ACPI_STATE_D0)
ret = acpi_dev_pm_explicit_set(device, ACPI_STATE_D0);
return ret;
}
EXPORT_SYMBOL_GPL(acpi_device_fix_up_power);
int acpi_device_update_power(struct acpi_device *device, int *state_p)
{
int state;
int result;
if (device->power.state == ACPI_STATE_UNKNOWN) {
result = acpi_bus_init_power(device);
if (!result && state_p)
*state_p = device->power.state;
return result;
}
result = acpi_device_get_power(device, &state);
if (result)
return result;
if (state == ACPI_STATE_UNKNOWN) {
state = ACPI_STATE_D0;
result = acpi_device_set_power(device, state);
if (result)
return result;
} else {
if (device->power.flags.power_resources) {
/*
* We don't need to really switch the state, bu we need
* to update the power resources' reference counters.
*/
result = acpi_power_transition(device, state);
if (result)
return result;
}
device->power.state = state;
}
if (state_p)
*state_p = state;
return 0;
}
EXPORT_SYMBOL_GPL(acpi_device_update_power);
int acpi_bus_update_power(acpi_handle handle, int *state_p)
{
struct acpi_device *device;
int result;
result = acpi_bus_get_device(handle, &device);
return result ? result : acpi_device_update_power(device, state_p);
}
EXPORT_SYMBOL_GPL(acpi_bus_update_power);
bool acpi_bus_power_manageable(acpi_handle handle)
{
struct acpi_device *device;
int result;
result = acpi_bus_get_device(handle, &device);
return result ? false : device->flags.power_manageable;
}
EXPORT_SYMBOL(acpi_bus_power_manageable);
#ifdef CONFIG_PM
static DEFINE_MUTEX(acpi_pm_notifier_lock);
static DEFINE_MUTEX(acpi_pm_notifier_install_lock);
void acpi_pm_wakeup_event(struct device *dev)
{
pm_wakeup_dev_event(dev, 0, acpi_s2idle_wakeup());
}
EXPORT_SYMBOL_GPL(acpi_pm_wakeup_event);
static void acpi_pm_notify_handler(acpi_handle handle, u32 val, void *not_used)
{
struct acpi_device *adev;
if (val != ACPI_NOTIFY_DEVICE_WAKE)
return;
acpi_handle_debug(handle, "Wake notify\n");
adev = acpi_bus_get_acpi_device(handle);
if (!adev)
return;
mutex_lock(&acpi_pm_notifier_lock);
if (adev->wakeup.flags.notifier_present) {
pm_wakeup_ws_event(adev->wakeup.ws, 0, acpi_s2idle_wakeup());
if (adev->wakeup.context.func) {
acpi_handle_debug(handle, "Running %pS for %s\n",
adev->wakeup.context.func,
dev_name(adev->wakeup.context.dev));
adev->wakeup.context.func(&adev->wakeup.context);
}
}
mutex_unlock(&acpi_pm_notifier_lock);
acpi_bus_put_acpi_device(adev);
}
/**
* acpi_add_pm_notifier - Register PM notify handler for given ACPI device.
* @adev: ACPI device to add the notify handler for.
* @dev: Device to generate a wakeup event for while handling the notification.
* @func: Work function to execute when handling the notification.
*
* NOTE: @adev need not be a run-wake or wakeup device to be a valid source of
* PM wakeup events. For example, wakeup events may be generated for bridges
* if one of the devices below the bridge is signaling wakeup, even if the
* bridge itself doesn't have a wakeup GPE associated with it.
*/
acpi_status acpi_add_pm_notifier(struct acpi_device *adev, struct device *dev,
void (*func)(struct acpi_device_wakeup_context *context))
{
acpi_status status = AE_ALREADY_EXISTS;
if (!dev && !func)
return AE_BAD_PARAMETER;
mutex_lock(&acpi_pm_notifier_install_lock);
if (adev->wakeup.flags.notifier_present)
goto out;
status = acpi_install_notify_handler(adev->handle, ACPI_SYSTEM_NOTIFY,
acpi_pm_notify_handler, NULL);
if (ACPI_FAILURE(status))
goto out;
mutex_lock(&acpi_pm_notifier_lock);
adev->wakeup.ws = wakeup_source_register(&adev->dev,
dev_name(&adev->dev));
adev->wakeup.context.dev = dev;
adev->wakeup.context.func = func;
adev->wakeup.flags.notifier_present = true;
mutex_unlock(&acpi_pm_notifier_lock);
out:
mutex_unlock(&acpi_pm_notifier_install_lock);
return status;
}
/**
* acpi_remove_pm_notifier - Unregister PM notifier from given ACPI device.
* @adev: ACPI device to remove the notifier from.
*/
acpi_status acpi_remove_pm_notifier(struct acpi_device *adev)
{
acpi_status status = AE_BAD_PARAMETER;
mutex_lock(&acpi_pm_notifier_install_lock);
if (!adev->wakeup.flags.notifier_present)
goto out;
status = acpi_remove_notify_handler(adev->handle,
ACPI_SYSTEM_NOTIFY,
acpi_pm_notify_handler);
if (ACPI_FAILURE(status))
goto out;
mutex_lock(&acpi_pm_notifier_lock);
adev->wakeup.context.func = NULL;
adev->wakeup.context.dev = NULL;
wakeup_source_unregister(adev->wakeup.ws);
adev->wakeup.flags.notifier_present = false;
mutex_unlock(&acpi_pm_notifier_lock);
out:
mutex_unlock(&acpi_pm_notifier_install_lock);
return status;
}
bool acpi_bus_can_wakeup(acpi_handle handle)
{
struct acpi_device *device;
int result;
result = acpi_bus_get_device(handle, &device);
return result ? false : device->wakeup.flags.valid;
}
EXPORT_SYMBOL(acpi_bus_can_wakeup);
bool acpi_pm_device_can_wakeup(struct device *dev)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
return adev ? acpi_device_can_wakeup(adev) : false;
}
/**
* acpi_dev_pm_get_state - Get preferred power state of ACPI device.
* @dev: Device whose preferred target power state to return.
* @adev: ACPI device node corresponding to @dev.
* @target_state: System state to match the resultant device state.
* @d_min_p: Location to store the highest power state available to the device.
* @d_max_p: Location to store the lowest power state available to the device.
*
* Find the lowest power (highest number) and highest power (lowest number) ACPI
* device power states that the device can be in while the system is in the
* state represented by @target_state. Store the integer numbers representing
* those stats in the memory locations pointed to by @d_max_p and @d_min_p,
* respectively.
*
* Callers must ensure that @dev and @adev are valid pointers and that @adev
* actually corresponds to @dev before using this function.
*
* Returns 0 on success or -ENODATA when one of the ACPI methods fails or
* returns a value that doesn't make sense. The memory locations pointed to by
* @d_max_p and @d_min_p are only modified on success.
*/
static int acpi_dev_pm_get_state(struct device *dev, struct acpi_device *adev,
u32 target_state, int *d_min_p, int *d_max_p)
{
char method[] = { '_', 'S', '0' + target_state, 'D', '\0' };
acpi_handle handle = adev->handle;
unsigned long long ret;
int d_min, d_max;
bool wakeup = false;
bool has_sxd = false;
acpi_status status;
/*
* If the system state is S0, the lowest power state the device can be
* in is D3cold, unless the device has _S0W and is supposed to signal
* wakeup, in which case the return value of _S0W has to be used as the
* lowest power state available to the device.
*/
d_min = ACPI_STATE_D0;
d_max = ACPI_STATE_D3_COLD;
/*
* If present, _SxD methods return the minimum D-state (highest power
* state) we can use for the corresponding S-states. Otherwise, the
* minimum D-state is D0 (ACPI 3.x).
*/
if (target_state > ACPI_STATE_S0) {
/*
* We rely on acpi_evaluate_integer() not clobbering the integer
* provided if AE_NOT_FOUND is returned.
*/
ret = d_min;
status = acpi_evaluate_integer(handle, method, NULL, &ret);
if ((ACPI_FAILURE(status) && status != AE_NOT_FOUND)
|| ret > ACPI_STATE_D3_COLD)
return -ENODATA;
/*
* We need to handle legacy systems where D3hot and D3cold are
* the same and 3 is returned in both cases, so fall back to
* D3cold if D3hot is not a valid state.
*/
if (!adev->power.states[ret].flags.valid) {
if (ret == ACPI_STATE_D3_HOT)
ret = ACPI_STATE_D3_COLD;
else
return -ENODATA;
}
if (status == AE_OK)
has_sxd = true;
d_min = ret;
wakeup = device_may_wakeup(dev) && adev->wakeup.flags.valid
&& adev->wakeup.sleep_state >= target_state;
} else {
wakeup = adev->wakeup.flags.valid;
}
/*
* If _PRW says we can wake up the system from the target sleep state,
* the D-state returned by _SxD is sufficient for that (we assume a
* wakeup-aware driver if wake is set). Still, if _SxW exists
* (ACPI 3.x), it should return the maximum (lowest power) D-state that
* can wake the system. _S0W may be valid, too.
*/
if (wakeup) {
method[3] = 'W';
status = acpi_evaluate_integer(handle, method, NULL, &ret);
if (status == AE_NOT_FOUND) {
/* No _SxW. In this case, the ACPI spec says that we
* must not go into any power state deeper than the
* value returned from _SxD.
*/
if (has_sxd && target_state > ACPI_STATE_S0)
d_max = d_min;
} else if (ACPI_SUCCESS(status) && ret <= ACPI_STATE_D3_COLD) {
/* Fall back to D3cold if ret is not a valid state. */
if (!adev->power.states[ret].flags.valid)
ret = ACPI_STATE_D3_COLD;
d_max = ret > d_min ? ret : d_min;
} else {
return -ENODATA;
}
}
if (d_min_p)
*d_min_p = d_min;
if (d_max_p)
*d_max_p = d_max;
return 0;
}
/**
* acpi_pm_device_sleep_state - Get preferred power state of ACPI device.
* @dev: Device whose preferred target power state to return.
* @d_min_p: Location to store the upper limit of the allowed states range.
* @d_max_in: Deepest low-power state to take into consideration.
* Return value: Preferred power state of the device on success, -ENODEV
* if there's no 'struct acpi_device' for @dev, -EINVAL if @d_max_in is
* incorrect, or -ENODATA on ACPI method failure.
*
* The caller must ensure that @dev is valid before using this function.
*/
int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p, int d_max_in)
{
struct acpi_device *adev;
int ret, d_min, d_max;
if (d_max_in < ACPI_STATE_D0 || d_max_in > ACPI_STATE_D3_COLD)
return -EINVAL;
if (d_max_in > ACPI_STATE_D2) {
enum pm_qos_flags_status stat;
stat = dev_pm_qos_flags(dev, PM_QOS_FLAG_NO_POWER_OFF);
if (stat == PM_QOS_FLAGS_ALL)
d_max_in = ACPI_STATE_D2;
}
adev = ACPI_COMPANION(dev);
if (!adev) {
dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
return -ENODEV;
}
ret = acpi_dev_pm_get_state(dev, adev, acpi_target_system_state(),
&d_min, &d_max);
if (ret)
return ret;
if (d_max_in < d_min)
return -EINVAL;
if (d_max > d_max_in) {
for (d_max = d_max_in; d_max > d_min; d_max--) {
if (adev->power.states[d_max].flags.valid)
break;
}
}
if (d_min_p)
*d_min_p = d_min;
return d_max;
}
EXPORT_SYMBOL(acpi_pm_device_sleep_state);
/**
* acpi_pm_notify_work_func - ACPI devices wakeup notification work function.
* @context: Device wakeup context.
*/
static void acpi_pm_notify_work_func(struct acpi_device_wakeup_context *context)
{
struct device *dev = context->dev;
if (dev) {
pm_wakeup_event(dev, 0);
pm_request_resume(dev);
}
}
static DEFINE_MUTEX(acpi_wakeup_lock);
static int __acpi_device_wakeup_enable(struct acpi_device *adev,
u32 target_state, int max_count)
{
struct acpi_device_wakeup *wakeup = &adev->wakeup;
acpi_status status;
int error = 0;
mutex_lock(&acpi_wakeup_lock);
if (wakeup->enable_count >= max_count)
goto out;
if (wakeup->enable_count > 0)
goto inc;
error = acpi_enable_wakeup_device_power(adev, target_state);
if (error)
goto out;
status = acpi_enable_gpe(wakeup->gpe_device, wakeup->gpe_number);
if (ACPI_FAILURE(status)) {
acpi_disable_wakeup_device_power(adev);
error = -EIO;
goto out;
}
acpi_handle_debug(adev->handle, "GPE%2X enabled for wakeup\n",
(unsigned int)wakeup->gpe_number);
inc:
wakeup->enable_count++;
out:
mutex_unlock(&acpi_wakeup_lock);
return error;
}
/**
* acpi_device_wakeup_enable - Enable wakeup functionality for device.
* @adev: ACPI device to enable wakeup functionality for.
* @target_state: State the system is transitioning into.
*
* Enable the GPE associated with @adev so that it can generate wakeup signals
* for the device in response to external (remote) events and enable wakeup
* power for it.
*
* Callers must ensure that @adev is a valid ACPI device node before executing
* this function.
*/
static int acpi_device_wakeup_enable(struct acpi_device *adev, u32 target_state)
{
return __acpi_device_wakeup_enable(adev, target_state, 1);
}
/**
* acpi_device_wakeup_disable - Disable wakeup functionality for device.
* @adev: ACPI device to disable wakeup functionality for.
*
* Disable the GPE associated with @adev and disable wakeup power for it.
*
* Callers must ensure that @adev is a valid ACPI device node before executing
* this function.
*/
static void acpi_device_wakeup_disable(struct acpi_device *adev)
{
struct acpi_device_wakeup *wakeup = &adev->wakeup;
mutex_lock(&acpi_wakeup_lock);
if (!wakeup->enable_count)
goto out;
acpi_disable_gpe(wakeup->gpe_device, wakeup->gpe_number);
acpi_disable_wakeup_device_power(adev);
wakeup->enable_count--;
out:
mutex_unlock(&acpi_wakeup_lock);
}
static int __acpi_pm_set_device_wakeup(struct device *dev, bool enable,
int max_count)
{
struct acpi_device *adev;
int error;
adev = ACPI_COMPANION(dev);
if (!adev) {
dev_dbg(dev, "ACPI companion missing in %s!\n", __func__);
return -ENODEV;
}
if (!acpi_device_can_wakeup(adev))
return -EINVAL;
if (!enable) {
acpi_device_wakeup_disable(adev);
dev_dbg(dev, "Wakeup disabled by ACPI\n");
return 0;
}
error = __acpi_device_wakeup_enable(adev, acpi_target_system_state(),
max_count);
if (!error)
dev_dbg(dev, "Wakeup enabled by ACPI\n");
return error;
}
/**
* acpi_pm_set_device_wakeup - Enable/disable remote wakeup for given device.
* @dev: Device to enable/disable to generate wakeup events.
* @enable: Whether to enable or disable the wakeup functionality.
*/
int acpi_pm_set_device_wakeup(struct device *dev, bool enable)
{
return __acpi_pm_set_device_wakeup(dev, enable, 1);
}
EXPORT_SYMBOL_GPL(acpi_pm_set_device_wakeup);
/**
* acpi_pm_set_bridge_wakeup - Enable/disable remote wakeup for given bridge.
* @dev: Bridge device to enable/disable to generate wakeup events.
* @enable: Whether to enable or disable the wakeup functionality.
*/
int acpi_pm_set_bridge_wakeup(struct device *dev, bool enable)
{
return __acpi_pm_set_device_wakeup(dev, enable, INT_MAX);
}
EXPORT_SYMBOL_GPL(acpi_pm_set_bridge_wakeup);
/**
* acpi_dev_pm_low_power - Put ACPI device into a low-power state.
* @dev: Device to put into a low-power state.
* @adev: ACPI device node corresponding to @dev.
* @system_state: System state to choose the device state for.
*/
static int acpi_dev_pm_low_power(struct device *dev, struct acpi_device *adev,
u32 system_state)
{
int ret, state;
if (!acpi_device_power_manageable(adev))
return 0;
ret = acpi_dev_pm_get_state(dev, adev, system_state, NULL, &state);
return ret ? ret : acpi_device_set_power(adev, state);
}
/**
* acpi_dev_pm_full_power - Put ACPI device into the full-power state.
* @adev: ACPI device node to put into the full-power state.
*/
static int acpi_dev_pm_full_power(struct acpi_device *adev)
{
return acpi_device_power_manageable(adev) ?
acpi_device_set_power(adev, ACPI_STATE_D0) : 0;
}
/**
* acpi_dev_suspend - Put device into a low-power state using ACPI.
* @dev: Device to put into a low-power state.
* @wakeup: Whether or not to enable wakeup for the device.
*
* Put the given device into a low-power state using the standard ACPI
* mechanism. Set up remote wakeup if desired, choose the state to put the
* device into (this checks if remote wakeup is expected to work too), and set
* the power state of the device.
*/
int acpi_dev_suspend(struct device *dev, bool wakeup)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
u32 target_state = acpi_target_system_state();
int error;
if (!adev)
return 0;
if (wakeup && acpi_device_can_wakeup(adev)) {
error = acpi_device_wakeup_enable(adev, target_state);
if (error)
return -EAGAIN;
} else {
wakeup = false;
}
error = acpi_dev_pm_low_power(dev, adev, target_state);
if (error && wakeup)
acpi_device_wakeup_disable(adev);
return error;
}
EXPORT_SYMBOL_GPL(acpi_dev_suspend);
/**
* acpi_dev_resume - Put device into the full-power state using ACPI.
* @dev: Device to put into the full-power state.
*
* Put the given device into the full-power state using the standard ACPI
* mechanism. Set the power state of the device to ACPI D0 and disable wakeup.
*/
int acpi_dev_resume(struct device *dev)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
int error;
if (!adev)
return 0;
error = acpi_dev_pm_full_power(adev);
acpi_device_wakeup_disable(adev);
return error;
}
EXPORT_SYMBOL_GPL(acpi_dev_resume);
/**
* acpi_subsys_runtime_suspend - Suspend device using ACPI.
* @dev: Device to suspend.
*
* Carry out the generic runtime suspend procedure for @dev and use ACPI to put
* it into a runtime low-power state.
*/
int acpi_subsys_runtime_suspend(struct device *dev)
{
int ret = pm_generic_runtime_suspend(dev);
return ret ? ret : acpi_dev_suspend(dev, true);
}
EXPORT_SYMBOL_GPL(acpi_subsys_runtime_suspend);
/**
* acpi_subsys_runtime_resume - Resume device using ACPI.
* @dev: Device to Resume.
*
* Use ACPI to put the given device into the full-power state and carry out the
* generic runtime resume procedure for it.
*/
int acpi_subsys_runtime_resume(struct device *dev)
{
int ret = acpi_dev_resume(dev);
return ret ? ret : pm_generic_runtime_resume(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_runtime_resume);
#ifdef CONFIG_PM_SLEEP
static bool acpi_dev_needs_resume(struct device *dev, struct acpi_device *adev)
{
u32 sys_target = acpi_target_system_state();
int ret, state;
if (!pm_runtime_suspended(dev) || !adev || (adev->wakeup.flags.valid &&
device_may_wakeup(dev) != !!adev->wakeup.prepare_count))
return true;
if (sys_target == ACPI_STATE_S0)
return false;
if (adev->power.flags.dsw_present)
return true;
ret = acpi_dev_pm_get_state(dev, adev, sys_target, NULL, &state);
if (ret)
return true;
return state != adev->power.state;
}
/**
* acpi_subsys_prepare - Prepare device for system transition to a sleep state.
* @dev: Device to prepare.
*/
int acpi_subsys_prepare(struct device *dev)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
if (dev->driver && dev->driver->pm && dev->driver->pm->prepare) {
int ret = dev->driver->pm->prepare(dev);
if (ret < 0)
return ret;
if (!ret && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
return 0;
}
return !acpi_dev_needs_resume(dev, adev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_prepare);
/**
* acpi_subsys_complete - Finalize device's resume during system resume.
* @dev: Device to handle.
*/
void acpi_subsys_complete(struct device *dev)
{
pm_generic_complete(dev);
/*
* If the device had been runtime-suspended before the system went into
* the sleep state it is going out of and it has never been resumed till
* now, resume it in case the firmware powered it up.
*/
if (pm_runtime_suspended(dev) && pm_resume_via_firmware())
pm_request_resume(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_complete);
/**
* acpi_subsys_suspend - Run the device driver's suspend callback.
* @dev: Device to handle.
*
* Follow PCI and resume devices from runtime suspend before running their
* system suspend callbacks, unless the driver can cope with runtime-suspended
* devices during system suspend and there are no ACPI-specific reasons for
* resuming them.
*/
int acpi_subsys_suspend(struct device *dev)
{
if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
pm_runtime_resume(dev);
return pm_generic_suspend(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_suspend);
/**
* acpi_subsys_suspend_late - Suspend device using ACPI.
* @dev: Device to suspend.
*
* Carry out the generic late suspend procedure for @dev and use ACPI to put
* it into a low-power state during system transition into a sleep state.
*/
int acpi_subsys_suspend_late(struct device *dev)
{
int ret;
if (dev_pm_smart_suspend_and_suspended(dev))
return 0;
ret = pm_generic_suspend_late(dev);
return ret ? ret : acpi_dev_suspend(dev, device_may_wakeup(dev));
}
EXPORT_SYMBOL_GPL(acpi_subsys_suspend_late);
/**
* acpi_subsys_suspend_noirq - Run the device driver's "noirq" suspend callback.
* @dev: Device to suspend.
*/
int acpi_subsys_suspend_noirq(struct device *dev)
{
int ret;
if (dev_pm_smart_suspend_and_suspended(dev)) {
dev->power.may_skip_resume = true;
return 0;
}
ret = pm_generic_suspend_noirq(dev);
if (ret)
return ret;
/*
* If the target system sleep state is suspend-to-idle, it is sufficient
* to check whether or not the device's wakeup settings are good for
* runtime PM. Otherwise, the pm_resume_via_firmware() check will cause
* acpi_subsys_complete() to take care of fixing up the device's state
* anyway, if need be.
*/
dev->power.may_skip_resume = device_may_wakeup(dev) ||
!device_can_wakeup(dev);
return 0;
}
EXPORT_SYMBOL_GPL(acpi_subsys_suspend_noirq);
/**
* acpi_subsys_resume_noirq - Run the device driver's "noirq" resume callback.
* @dev: Device to handle.
*/
static int acpi_subsys_resume_noirq(struct device *dev)
{
if (dev_pm_may_skip_resume(dev))
return 0;
/*
* Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend
* during system suspend, so update their runtime PM status to "active"
* as they will be put into D0 going forward.
*/
if (dev_pm_smart_suspend_and_suspended(dev))
pm_runtime_set_active(dev);
return pm_generic_resume_noirq(dev);
}
/**
* acpi_subsys_resume_early - Resume device using ACPI.
* @dev: Device to Resume.
*
* Use ACPI to put the given device into the full-power state and carry out the
* generic early resume procedure for it during system transition into the
* working state.
*/
static int acpi_subsys_resume_early(struct device *dev)
{
int ret = acpi_dev_resume(dev);
return ret ? ret : pm_generic_resume_early(dev);
}
/**
* acpi_subsys_freeze - Run the device driver's freeze callback.
* @dev: Device to handle.
*/
int acpi_subsys_freeze(struct device *dev)
{
/*
* Resume all runtime-suspended devices before creating a snapshot
* image of system memory, because the restore kernel generally cannot
* be expected to always handle them consistently and they need to be
* put into the runtime-active metastate during system resume anyway,
* so it is better to ensure that the state saved in the image will be
* always consistent with that.
*/
pm_runtime_resume(dev);
return pm_generic_freeze(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_freeze);
/**
* acpi_subsys_restore_early - Restore device using ACPI.
* @dev: Device to restore.
*/
int acpi_subsys_restore_early(struct device *dev)
{
int ret = acpi_dev_resume(dev);
return ret ? ret : pm_generic_restore_early(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_restore_early);
/**
* acpi_subsys_poweroff - Run the device driver's poweroff callback.
* @dev: Device to handle.
*
* Follow PCI and resume devices from runtime suspend before running their
* system poweroff callbacks, unless the driver can cope with runtime-suspended
* devices during system suspend and there are no ACPI-specific reasons for
* resuming them.
*/
int acpi_subsys_poweroff(struct device *dev)
{
if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
acpi_dev_needs_resume(dev, ACPI_COMPANION(dev)))
pm_runtime_resume(dev);
return pm_generic_poweroff(dev);
}
EXPORT_SYMBOL_GPL(acpi_subsys_poweroff);
/**
* acpi_subsys_poweroff_late - Run the device driver's poweroff callback.
* @dev: Device to handle.
*
* Carry out the generic late poweroff procedure for @dev and use ACPI to put
* it into a low-power state during system transition into a sleep state.
*/
static int acpi_subsys_poweroff_late(struct device *dev)
{
int ret;
if (dev_pm_smart_suspend_and_suspended(dev))
return 0;
ret = pm_generic_poweroff_late(dev);
if (ret)
return ret;
return acpi_dev_suspend(dev, device_may_wakeup(dev));
}
/**
* acpi_subsys_poweroff_noirq - Run the driver's "noirq" poweroff callback.
* @dev: Device to suspend.
*/
static int acpi_subsys_poweroff_noirq(struct device *dev)
{
if (dev_pm_smart_suspend_and_suspended(dev))
return 0;
return pm_generic_poweroff_noirq(dev);
}
#endif /* CONFIG_PM_SLEEP */
static struct dev_pm_domain acpi_general_pm_domain = {
.ops = {
.runtime_suspend = acpi_subsys_runtime_suspend,
.runtime_resume = acpi_subsys_runtime_resume,
#ifdef CONFIG_PM_SLEEP
.prepare = acpi_subsys_prepare,
.complete = acpi_subsys_complete,
.suspend = acpi_subsys_suspend,
.suspend_late = acpi_subsys_suspend_late,
.suspend_noirq = acpi_subsys_suspend_noirq,
.resume_noirq = acpi_subsys_resume_noirq,
.resume_early = acpi_subsys_resume_early,
.freeze = acpi_subsys_freeze,
.poweroff = acpi_subsys_poweroff,
.poweroff_late = acpi_subsys_poweroff_late,
.poweroff_noirq = acpi_subsys_poweroff_noirq,
.restore_early = acpi_subsys_restore_early,
#endif
},
};
/**
* acpi_dev_pm_detach - Remove ACPI power management from the device.
* @dev: Device to take care of.
* @power_off: Whether or not to try to remove power from the device.
*
* Remove the device from the general ACPI PM domain and remove its wakeup
* notifier. If @power_off is set, additionally remove power from the device if
* possible.
*
* Callers must ensure proper synchronization of this function with power
* management callbacks.
*/
static void acpi_dev_pm_detach(struct device *dev, bool power_off)
{
struct acpi_device *adev = ACPI_COMPANION(dev);
if (adev && dev->pm_domain == &acpi_general_pm_domain) {
dev_pm_domain_set(dev, NULL);
acpi_remove_pm_notifier(adev);
if (power_off) {
/*
* If the device's PM QoS resume latency limit or flags
* have been exposed to user space, they have to be
* hidden at this point, so that they don't affect the
* choice of the low-power state to put the device into.
*/
dev_pm_qos_hide_latency_limit(dev);
dev_pm_qos_hide_flags(dev);
acpi_device_wakeup_disable(adev);
acpi_dev_pm_low_power(dev, adev, ACPI_STATE_S0);
}
}
}
/**
* acpi_dev_pm_attach - Prepare device for ACPI power management.
* @dev: Device to prepare.
* @power_on: Whether or not to power on the device.
*
* If @dev has a valid ACPI handle that has a valid struct acpi_device object
* attached to it, install a wakeup notification handler for the device and
* add it to the general ACPI PM domain. If @power_on is set, the device will
* be put into the ACPI D0 state before the function returns.
*
* This assumes that the @dev's bus type uses generic power management callbacks
* (or doesn't use any power management callbacks at all).
*
* Callers must ensure proper synchronization of this function with power
* management callbacks.
*/
int acpi_dev_pm_attach(struct device *dev, bool power_on)
{
/*
* Skip devices whose ACPI companions match the device IDs below,
* because they require special power management handling incompatible
* with the generic ACPI PM domain.
*/
static const struct acpi_device_id special_pm_ids[] = {
{"PNP0C0B", }, /* Generic ACPI fan */
{"INT3404", }, /* Fan */
{"INTC1044", }, /* Fan for Tiger Lake generation */
{}
};
struct acpi_device *adev = ACPI_COMPANION(dev);
if (!adev || !acpi_match_device_ids(adev, special_pm_ids))
return 0;
/*
* Only attach the power domain to the first device if the
* companion is shared by multiple. This is to prevent doing power
* management twice.
*/
if (!acpi_device_is_first_physical_node(adev, dev))
return 0;
acpi_add_pm_notifier(adev, dev, acpi_pm_notify_work_func);
dev_pm_domain_set(dev, &acpi_general_pm_domain);
if (power_on) {
acpi_dev_pm_full_power(adev);
acpi_device_wakeup_disable(adev);
}
dev->pm_domain->detach = acpi_dev_pm_detach;
return 1;
}
EXPORT_SYMBOL_GPL(acpi_dev_pm_attach);
#endif /* CONFIG_PM */