2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 22:25:40 +08:00
linux-next/arch/arm/common/pl330.c
Jassi Brar 75070612c4 ARM: 6132/1: PL330: Add common core driver
PL330 is a configurable DMA controller PrimeCell device.
The register map of the device is well defined.
The configuration of a particular implementation can be
read from the six configuration registers CR0-4,Dn.

This patch implements a driver for the specification:-
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0424a/DDI0424A_dmac_pl330_r0p0_trm.pdf

The exported interface should be sufficient to implement
a driver for any DMA API.

Signed-off-by: Jassi Brar <jassisinghbrar@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2010-05-15 15:03:50 +01:00

1967 lines
41 KiB
C

/* linux/arch/arm/common/pl330.c
*
* Copyright (C) 2010 Samsung Electronics Co Ltd.
* Jaswinder Singh <jassi.brar@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <asm/hardware/pl330.h>
/* Register and Bit field Definitions */
#define DS 0x0
#define DS_ST_STOP 0x0
#define DS_ST_EXEC 0x1
#define DS_ST_CMISS 0x2
#define DS_ST_UPDTPC 0x3
#define DS_ST_WFE 0x4
#define DS_ST_ATBRR 0x5
#define DS_ST_QBUSY 0x6
#define DS_ST_WFP 0x7
#define DS_ST_KILL 0x8
#define DS_ST_CMPLT 0x9
#define DS_ST_FLTCMP 0xe
#define DS_ST_FAULT 0xf
#define DPC 0x4
#define INTEN 0x20
#define ES 0x24
#define INTSTATUS 0x28
#define INTCLR 0x2c
#define FSM 0x30
#define FSC 0x34
#define FTM 0x38
#define _FTC 0x40
#define FTC(n) (_FTC + (n)*0x4)
#define _CS 0x100
#define CS(n) (_CS + (n)*0x8)
#define CS_CNS (1 << 21)
#define _CPC 0x104
#define CPC(n) (_CPC + (n)*0x8)
#define _SA 0x400
#define SA(n) (_SA + (n)*0x20)
#define _DA 0x404
#define DA(n) (_DA + (n)*0x20)
#define _CC 0x408
#define CC(n) (_CC + (n)*0x20)
#define CC_SRCINC (1 << 0)
#define CC_DSTINC (1 << 14)
#define CC_SRCPRI (1 << 8)
#define CC_DSTPRI (1 << 22)
#define CC_SRCNS (1 << 9)
#define CC_DSTNS (1 << 23)
#define CC_SRCIA (1 << 10)
#define CC_DSTIA (1 << 24)
#define CC_SRCBRSTLEN_SHFT 4
#define CC_DSTBRSTLEN_SHFT 18
#define CC_SRCBRSTSIZE_SHFT 1
#define CC_DSTBRSTSIZE_SHFT 15
#define CC_SRCCCTRL_SHFT 11
#define CC_SRCCCTRL_MASK 0x7
#define CC_DSTCCTRL_SHFT 25
#define CC_DRCCCTRL_MASK 0x7
#define CC_SWAP_SHFT 28
#define _LC0 0x40c
#define LC0(n) (_LC0 + (n)*0x20)
#define _LC1 0x410
#define LC1(n) (_LC1 + (n)*0x20)
#define DBGSTATUS 0xd00
#define DBG_BUSY (1 << 0)
#define DBGCMD 0xd04
#define DBGINST0 0xd08
#define DBGINST1 0xd0c
#define CR0 0xe00
#define CR1 0xe04
#define CR2 0xe08
#define CR3 0xe0c
#define CR4 0xe10
#define CRD 0xe14
#define PERIPH_ID 0xfe0
#define PCELL_ID 0xff0
#define CR0_PERIPH_REQ_SET (1 << 0)
#define CR0_BOOT_EN_SET (1 << 1)
#define CR0_BOOT_MAN_NS (1 << 2)
#define CR0_NUM_CHANS_SHIFT 4
#define CR0_NUM_CHANS_MASK 0x7
#define CR0_NUM_PERIPH_SHIFT 12
#define CR0_NUM_PERIPH_MASK 0x1f
#define CR0_NUM_EVENTS_SHIFT 17
#define CR0_NUM_EVENTS_MASK 0x1f
#define CR1_ICACHE_LEN_SHIFT 0
#define CR1_ICACHE_LEN_MASK 0x7
#define CR1_NUM_ICACHELINES_SHIFT 4
#define CR1_NUM_ICACHELINES_MASK 0xf
#define CRD_DATA_WIDTH_SHIFT 0
#define CRD_DATA_WIDTH_MASK 0x7
#define CRD_WR_CAP_SHIFT 4
#define CRD_WR_CAP_MASK 0x7
#define CRD_WR_Q_DEP_SHIFT 8
#define CRD_WR_Q_DEP_MASK 0xf
#define CRD_RD_CAP_SHIFT 12
#define CRD_RD_CAP_MASK 0x7
#define CRD_RD_Q_DEP_SHIFT 16
#define CRD_RD_Q_DEP_MASK 0xf
#define CRD_DATA_BUFF_SHIFT 20
#define CRD_DATA_BUFF_MASK 0x3ff
#define PART 0x330
#define DESIGNER 0x41
#define REVISION 0x0
#define INTEG_CFG 0x0
#define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12) \
| (REVISION << 20) | (INTEG_CFG << 24))
#define PCELL_ID_VAL 0xb105f00d
#define PL330_STATE_STOPPED (1 << 0)
#define PL330_STATE_EXECUTING (1 << 1)
#define PL330_STATE_WFE (1 << 2)
#define PL330_STATE_FAULTING (1 << 3)
#define PL330_STATE_COMPLETING (1 << 4)
#define PL330_STATE_WFP (1 << 5)
#define PL330_STATE_KILLING (1 << 6)
#define PL330_STATE_FAULT_COMPLETING (1 << 7)
#define PL330_STATE_CACHEMISS (1 << 8)
#define PL330_STATE_UPDTPC (1 << 9)
#define PL330_STATE_ATBARRIER (1 << 10)
#define PL330_STATE_QUEUEBUSY (1 << 11)
#define PL330_STATE_INVALID (1 << 15)
#define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
| PL330_STATE_WFE | PL330_STATE_FAULTING)
#define CMD_DMAADDH 0x54
#define CMD_DMAEND 0x00
#define CMD_DMAFLUSHP 0x35
#define CMD_DMAGO 0xa0
#define CMD_DMALD 0x04
#define CMD_DMALDP 0x25
#define CMD_DMALP 0x20
#define CMD_DMALPEND 0x28
#define CMD_DMAKILL 0x01
#define CMD_DMAMOV 0xbc
#define CMD_DMANOP 0x18
#define CMD_DMARMB 0x12
#define CMD_DMASEV 0x34
#define CMD_DMAST 0x08
#define CMD_DMASTP 0x29
#define CMD_DMASTZ 0x0c
#define CMD_DMAWFE 0x36
#define CMD_DMAWFP 0x30
#define CMD_DMAWMB 0x13
#define SZ_DMAADDH 3
#define SZ_DMAEND 1
#define SZ_DMAFLUSHP 2
#define SZ_DMALD 1
#define SZ_DMALDP 2
#define SZ_DMALP 2
#define SZ_DMALPEND 2
#define SZ_DMAKILL 1
#define SZ_DMAMOV 6
#define SZ_DMANOP 1
#define SZ_DMARMB 1
#define SZ_DMASEV 2
#define SZ_DMAST 1
#define SZ_DMASTP 2
#define SZ_DMASTZ 1
#define SZ_DMAWFE 2
#define SZ_DMAWFP 2
#define SZ_DMAWMB 1
#define SZ_DMAGO 6
#define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
#define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
#define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
#define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
/*
* With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
* at 1byte/burst for P<->M and M<->M respectively.
* For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
* should be enough for P<->M and M<->M respectively.
*/
#define MCODE_BUFF_PER_REQ 256
/*
* Mark a _pl330_req as free.
* We do it by writing DMAEND as the first instruction
* because no valid request is going to have DMAEND as
* its first instruction to execute.
*/
#define MARK_FREE(req) do { \
_emit_END(0, (req)->mc_cpu); \
(req)->mc_len = 0; \
} while (0)
/* If the _pl330_req is available to the client */
#define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
/* Use this _only_ to wait on transient states */
#define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
#ifdef PL330_DEBUG_MCGEN
static unsigned cmd_line;
#define PL330_DBGCMD_DUMP(off, x...) do { \
printk("%x:", cmd_line); \
printk(x); \
cmd_line += off; \
} while (0)
#define PL330_DBGMC_START(addr) (cmd_line = addr)
#else
#define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
#define PL330_DBGMC_START(addr) do {} while (0)
#endif
struct _xfer_spec {
u32 ccr;
struct pl330_req *r;
struct pl330_xfer *x;
};
enum dmamov_dst {
SAR = 0,
CCR,
DAR,
};
enum pl330_dst {
SRC = 0,
DST,
};
enum pl330_cond {
SINGLE,
BURST,
ALWAYS,
};
struct _pl330_req {
u32 mc_bus;
void *mc_cpu;
/* Number of bytes taken to setup MC for the req */
u32 mc_len;
struct pl330_req *r;
/* Hook to attach to DMAC's list of reqs with due callback */
struct list_head rqd;
};
/* ToBeDone for tasklet */
struct _pl330_tbd {
bool reset_dmac;
bool reset_mngr;
u8 reset_chan;
};
/* A DMAC Thread */
struct pl330_thread {
u8 id;
int ev;
/* If the channel is not yet acquired by any client */
bool free;
/* Parent DMAC */
struct pl330_dmac *dmac;
/* Only two at a time */
struct _pl330_req req[2];
/* Index of the last submitted request */
unsigned lstenq;
};
enum pl330_dmac_state {
UNINIT,
INIT,
DYING,
};
/* A DMAC */
struct pl330_dmac {
spinlock_t lock;
/* Holds list of reqs with due callbacks */
struct list_head req_done;
/* Pointer to platform specific stuff */
struct pl330_info *pinfo;
/* Maximum possible events/irqs */
int events[32];
/* BUS address of MicroCode buffer */
u32 mcode_bus;
/* CPU address of MicroCode buffer */
void *mcode_cpu;
/* List of all Channel threads */
struct pl330_thread *channels;
/* Pointer to the MANAGER thread */
struct pl330_thread *manager;
/* To handle bad news in interrupt */
struct tasklet_struct tasks;
struct _pl330_tbd dmac_tbd;
/* State of DMAC operation */
enum pl330_dmac_state state;
};
static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
{
if (r && r->xfer_cb)
r->xfer_cb(r->token, err);
}
static inline bool _queue_empty(struct pl330_thread *thrd)
{
return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
? true : false;
}
static inline bool _queue_full(struct pl330_thread *thrd)
{
return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
? false : true;
}
static inline bool is_manager(struct pl330_thread *thrd)
{
struct pl330_dmac *pl330 = thrd->dmac;
/* MANAGER is indexed at the end */
if (thrd->id == pl330->pinfo->pcfg.num_chan)
return true;
else
return false;
}
/* If manager of the thread is in Non-Secure mode */
static inline bool _manager_ns(struct pl330_thread *thrd)
{
struct pl330_dmac *pl330 = thrd->dmac;
return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
}
static inline u32 get_id(struct pl330_info *pi, u32 off)
{
void __iomem *regs = pi->base;
u32 id = 0;
id |= (readb(regs + off + 0x0) << 0);
id |= (readb(regs + off + 0x4) << 8);
id |= (readb(regs + off + 0x8) << 16);
id |= (readb(regs + off + 0xc) << 24);
return id;
}
static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
enum pl330_dst da, u16 val)
{
if (dry_run)
return SZ_DMAADDH;
buf[0] = CMD_DMAADDH;
buf[0] |= (da << 1);
*((u16 *)&buf[1]) = val;
PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
da == 1 ? "DA" : "SA", val);
return SZ_DMAADDH;
}
static inline u32 _emit_END(unsigned dry_run, u8 buf[])
{
if (dry_run)
return SZ_DMAEND;
buf[0] = CMD_DMAEND;
PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
return SZ_DMAEND;
}
static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
{
if (dry_run)
return SZ_DMAFLUSHP;
buf[0] = CMD_DMAFLUSHP;
peri &= 0x1f;
peri <<= 3;
buf[1] = peri;
PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
return SZ_DMAFLUSHP;
}
static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
{
if (dry_run)
return SZ_DMALD;
buf[0] = CMD_DMALD;
if (cond == SINGLE)
buf[0] |= (0 << 1) | (1 << 0);
else if (cond == BURST)
buf[0] |= (1 << 1) | (1 << 0);
PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
return SZ_DMALD;
}
static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
enum pl330_cond cond, u8 peri)
{
if (dry_run)
return SZ_DMALDP;
buf[0] = CMD_DMALDP;
if (cond == BURST)
buf[0] |= (1 << 1);
peri &= 0x1f;
peri <<= 3;
buf[1] = peri;
PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
cond == SINGLE ? 'S' : 'B', peri >> 3);
return SZ_DMALDP;
}
static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
unsigned loop, u8 cnt)
{
if (dry_run)
return SZ_DMALP;
buf[0] = CMD_DMALP;
if (loop)
buf[0] |= (1 << 1);
cnt--; /* DMAC increments by 1 internally */
buf[1] = cnt;
PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
return SZ_DMALP;
}
struct _arg_LPEND {
enum pl330_cond cond;
bool forever;
unsigned loop;
u8 bjump;
};
static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
const struct _arg_LPEND *arg)
{
enum pl330_cond cond = arg->cond;
bool forever = arg->forever;
unsigned loop = arg->loop;
u8 bjump = arg->bjump;
if (dry_run)
return SZ_DMALPEND;
buf[0] = CMD_DMALPEND;
if (loop)
buf[0] |= (1 << 2);
if (!forever)
buf[0] |= (1 << 4);
if (cond == SINGLE)
buf[0] |= (0 << 1) | (1 << 0);
else if (cond == BURST)
buf[0] |= (1 << 1) | (1 << 0);
buf[1] = bjump;
PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
forever ? "FE" : "END",
cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
loop ? '1' : '0',
bjump);
return SZ_DMALPEND;
}
static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
{
if (dry_run)
return SZ_DMAKILL;
buf[0] = CMD_DMAKILL;
return SZ_DMAKILL;
}
static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
enum dmamov_dst dst, u32 val)
{
if (dry_run)
return SZ_DMAMOV;
buf[0] = CMD_DMAMOV;
buf[1] = dst;
*((u32 *)&buf[2]) = val;
PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
return SZ_DMAMOV;
}
static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
{
if (dry_run)
return SZ_DMANOP;
buf[0] = CMD_DMANOP;
PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
return SZ_DMANOP;
}
static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
{
if (dry_run)
return SZ_DMARMB;
buf[0] = CMD_DMARMB;
PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
return SZ_DMARMB;
}
static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
{
if (dry_run)
return SZ_DMASEV;
buf[0] = CMD_DMASEV;
ev &= 0x1f;
ev <<= 3;
buf[1] = ev;
PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
return SZ_DMASEV;
}
static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
{
if (dry_run)
return SZ_DMAST;
buf[0] = CMD_DMAST;
if (cond == SINGLE)
buf[0] |= (0 << 1) | (1 << 0);
else if (cond == BURST)
buf[0] |= (1 << 1) | (1 << 0);
PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
return SZ_DMAST;
}
static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
enum pl330_cond cond, u8 peri)
{
if (dry_run)
return SZ_DMASTP;
buf[0] = CMD_DMASTP;
if (cond == BURST)
buf[0] |= (1 << 1);
peri &= 0x1f;
peri <<= 3;
buf[1] = peri;
PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
cond == SINGLE ? 'S' : 'B', peri >> 3);
return SZ_DMASTP;
}
static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
{
if (dry_run)
return SZ_DMASTZ;
buf[0] = CMD_DMASTZ;
PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
return SZ_DMASTZ;
}
static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
unsigned invalidate)
{
if (dry_run)
return SZ_DMAWFE;
buf[0] = CMD_DMAWFE;
ev &= 0x1f;
ev <<= 3;
buf[1] = ev;
if (invalidate)
buf[1] |= (1 << 1);
PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
ev >> 3, invalidate ? ", I" : "");
return SZ_DMAWFE;
}
static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
enum pl330_cond cond, u8 peri)
{
if (dry_run)
return SZ_DMAWFP;
buf[0] = CMD_DMAWFP;
if (cond == SINGLE)
buf[0] |= (0 << 1) | (0 << 0);
else if (cond == BURST)
buf[0] |= (1 << 1) | (0 << 0);
else
buf[0] |= (0 << 1) | (1 << 0);
peri &= 0x1f;
peri <<= 3;
buf[1] = peri;
PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
return SZ_DMAWFP;
}
static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
{
if (dry_run)
return SZ_DMAWMB;
buf[0] = CMD_DMAWMB;
PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
return SZ_DMAWMB;
}
struct _arg_GO {
u8 chan;
u32 addr;
unsigned ns;
};
static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
const struct _arg_GO *arg)
{
u8 chan = arg->chan;
u32 addr = arg->addr;
unsigned ns = arg->ns;
if (dry_run)
return SZ_DMAGO;
buf[0] = CMD_DMAGO;
buf[0] |= (ns << 1);
buf[1] = chan & 0x7;
*((u32 *)&buf[2]) = addr;
return SZ_DMAGO;
}
#define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
/* Returns Time-Out */
static bool _until_dmac_idle(struct pl330_thread *thrd)
{
void __iomem *regs = thrd->dmac->pinfo->base;
unsigned long loops = msecs_to_loops(5);
do {
/* Until Manager is Idle */
if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
break;
cpu_relax();
} while (--loops);
if (!loops)
return true;
return false;
}
static inline void _execute_DBGINSN(struct pl330_thread *thrd,
u8 insn[], bool as_manager)
{
void __iomem *regs = thrd->dmac->pinfo->base;
u32 val;
val = (insn[0] << 16) | (insn[1] << 24);
if (!as_manager) {
val |= (1 << 0);
val |= (thrd->id << 8); /* Channel Number */
}
writel(val, regs + DBGINST0);
val = *((u32 *)&insn[2]);
writel(val, regs + DBGINST1);
/* If timed out due to halted state-machine */
if (_until_dmac_idle(thrd)) {
dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
return;
}
/* Get going */
writel(0, regs + DBGCMD);
}
static inline u32 _state(struct pl330_thread *thrd)
{
void __iomem *regs = thrd->dmac->pinfo->base;
u32 val;
if (is_manager(thrd))
val = readl(regs + DS) & 0xf;
else
val = readl(regs + CS(thrd->id)) & 0xf;
switch (val) {
case DS_ST_STOP:
return PL330_STATE_STOPPED;
case DS_ST_EXEC:
return PL330_STATE_EXECUTING;
case DS_ST_CMISS:
return PL330_STATE_CACHEMISS;
case DS_ST_UPDTPC:
return PL330_STATE_UPDTPC;
case DS_ST_WFE:
return PL330_STATE_WFE;
case DS_ST_FAULT:
return PL330_STATE_FAULTING;
case DS_ST_ATBRR:
if (is_manager(thrd))
return PL330_STATE_INVALID;
else
return PL330_STATE_ATBARRIER;
case DS_ST_QBUSY:
if (is_manager(thrd))
return PL330_STATE_INVALID;
else
return PL330_STATE_QUEUEBUSY;
case DS_ST_WFP:
if (is_manager(thrd))
return PL330_STATE_INVALID;
else
return PL330_STATE_WFP;
case DS_ST_KILL:
if (is_manager(thrd))
return PL330_STATE_INVALID;
else
return PL330_STATE_KILLING;
case DS_ST_CMPLT:
if (is_manager(thrd))
return PL330_STATE_INVALID;
else
return PL330_STATE_COMPLETING;
case DS_ST_FLTCMP:
if (is_manager(thrd))
return PL330_STATE_INVALID;
else
return PL330_STATE_FAULT_COMPLETING;
default:
return PL330_STATE_INVALID;
}
}
/* If the request 'req' of thread 'thrd' is currently active */
static inline bool _req_active(struct pl330_thread *thrd,
struct _pl330_req *req)
{
void __iomem *regs = thrd->dmac->pinfo->base;
u32 buf = req->mc_bus, pc = readl(regs + CPC(thrd->id));
if (IS_FREE(req))
return false;
return (pc >= buf && pc <= buf + req->mc_len) ? true : false;
}
/* Returns 0 if the thread is inactive, ID of active req + 1 otherwise */
static inline unsigned _thrd_active(struct pl330_thread *thrd)
{
if (_req_active(thrd, &thrd->req[0]))
return 1; /* First req active */
if (_req_active(thrd, &thrd->req[1]))
return 2; /* Second req active */
return 0;
}
static void _stop(struct pl330_thread *thrd)
{
void __iomem *regs = thrd->dmac->pinfo->base;
u8 insn[6] = {0, 0, 0, 0, 0, 0};
if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
/* Return if nothing needs to be done */
if (_state(thrd) == PL330_STATE_COMPLETING
|| _state(thrd) == PL330_STATE_KILLING
|| _state(thrd) == PL330_STATE_STOPPED)
return;
_emit_KILL(0, insn);
/* Stop generating interrupts for SEV */
writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
_execute_DBGINSN(thrd, insn, is_manager(thrd));
}
/* Start doing req 'idx' of thread 'thrd' */
static bool _trigger(struct pl330_thread *thrd)
{
void __iomem *regs = thrd->dmac->pinfo->base;
struct _pl330_req *req;
struct pl330_req *r;
struct _arg_GO go;
unsigned ns;
u8 insn[6] = {0, 0, 0, 0, 0, 0};
/* Return if already ACTIVE */
if (_state(thrd) != PL330_STATE_STOPPED)
return true;
if (!IS_FREE(&thrd->req[1 - thrd->lstenq]))
req = &thrd->req[1 - thrd->lstenq];
else if (!IS_FREE(&thrd->req[thrd->lstenq]))
req = &thrd->req[thrd->lstenq];
else
req = NULL;
/* Return if no request */
if (!req || !req->r)
return true;
r = req->r;
if (r->cfg)
ns = r->cfg->nonsecure ? 1 : 0;
else if (readl(regs + CS(thrd->id)) & CS_CNS)
ns = 1;
else
ns = 0;
/* See 'Abort Sources' point-4 at Page 2-25 */
if (_manager_ns(thrd) && !ns)
dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
__func__, __LINE__);
go.chan = thrd->id;
go.addr = req->mc_bus;
go.ns = ns;
_emit_GO(0, insn, &go);
/* Set to generate interrupts for SEV */
writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
/* Only manager can execute GO */
_execute_DBGINSN(thrd, insn, true);
return true;
}
static bool _start(struct pl330_thread *thrd)
{
switch (_state(thrd)) {
case PL330_STATE_FAULT_COMPLETING:
UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
if (_state(thrd) == PL330_STATE_KILLING)
UNTIL(thrd, PL330_STATE_STOPPED)
case PL330_STATE_FAULTING:
_stop(thrd);
case PL330_STATE_KILLING:
case PL330_STATE_COMPLETING:
UNTIL(thrd, PL330_STATE_STOPPED)
case PL330_STATE_STOPPED:
return _trigger(thrd);
case PL330_STATE_WFP:
case PL330_STATE_QUEUEBUSY:
case PL330_STATE_ATBARRIER:
case PL330_STATE_UPDTPC:
case PL330_STATE_CACHEMISS:
case PL330_STATE_EXECUTING:
return true;
case PL330_STATE_WFE: /* For RESUME, nothing yet */
default:
return false;
}
}
static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
const struct _xfer_spec *pxs, int cyc)
{
int off = 0;
while (cyc--) {
off += _emit_LD(dry_run, &buf[off], ALWAYS);
off += _emit_RMB(dry_run, &buf[off]);
off += _emit_ST(dry_run, &buf[off], ALWAYS);
off += _emit_WMB(dry_run, &buf[off]);
}
return off;
}
static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
const struct _xfer_spec *pxs, int cyc)
{
int off = 0;
while (cyc--) {
off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
off += _emit_ST(dry_run, &buf[off], ALWAYS);
off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
}
return off;
}
static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
const struct _xfer_spec *pxs, int cyc)
{
int off = 0;
while (cyc--) {
off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
off += _emit_LD(dry_run, &buf[off], ALWAYS);
off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
}
return off;
}
static int _bursts(unsigned dry_run, u8 buf[],
const struct _xfer_spec *pxs, int cyc)
{
int off = 0;
switch (pxs->r->rqtype) {
case MEMTODEV:
off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
break;
case DEVTOMEM:
off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
break;
case MEMTOMEM:
off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
break;
default:
off += 0x40000000; /* Scare off the Client */
break;
}
return off;
}
/* Returns bytes consumed and updates bursts */
static inline int _loop(unsigned dry_run, u8 buf[],
unsigned long *bursts, const struct _xfer_spec *pxs)
{
int cyc, cycmax, szlp, szlpend, szbrst, off;
unsigned lcnt0, lcnt1, ljmp0, ljmp1;
struct _arg_LPEND lpend;
/* Max iterations possibile in DMALP is 256 */
if (*bursts >= 256*256) {
lcnt1 = 256;
lcnt0 = 256;
cyc = *bursts / lcnt1 / lcnt0;
} else if (*bursts > 256) {
lcnt1 = 256;
lcnt0 = *bursts / lcnt1;
cyc = 1;
} else {
lcnt1 = *bursts;
lcnt0 = 0;
cyc = 1;
}
szlp = _emit_LP(1, buf, 0, 0);
szbrst = _bursts(1, buf, pxs, 1);
lpend.cond = ALWAYS;
lpend.forever = false;
lpend.loop = 0;
lpend.bjump = 0;
szlpend = _emit_LPEND(1, buf, &lpend);
if (lcnt0) {
szlp *= 2;
szlpend *= 2;
}
/*
* Max bursts that we can unroll due to limit on the
* size of backward jump that can be encoded in DMALPEND
* which is 8-bits and hence 255
*/
cycmax = (255 - (szlp + szlpend)) / szbrst;
cyc = (cycmax < cyc) ? cycmax : cyc;
off = 0;
if (lcnt0) {
off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
ljmp0 = off;
}
off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
ljmp1 = off;
off += _bursts(dry_run, &buf[off], pxs, cyc);
lpend.cond = ALWAYS;
lpend.forever = false;
lpend.loop = 1;
lpend.bjump = off - ljmp1;
off += _emit_LPEND(dry_run, &buf[off], &lpend);
if (lcnt0) {
lpend.cond = ALWAYS;
lpend.forever = false;
lpend.loop = 0;
lpend.bjump = off - ljmp0;
off += _emit_LPEND(dry_run, &buf[off], &lpend);
}
*bursts = lcnt1 * cyc;
if (lcnt0)
*bursts *= lcnt0;
return off;
}
static inline int _setup_loops(unsigned dry_run, u8 buf[],
const struct _xfer_spec *pxs)
{
struct pl330_xfer *x = pxs->x;
u32 ccr = pxs->ccr;
unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
int off = 0;
while (bursts) {
c = bursts;
off += _loop(dry_run, &buf[off], &c, pxs);
bursts -= c;
}
return off;
}
static inline int _setup_xfer(unsigned dry_run, u8 buf[],
const struct _xfer_spec *pxs)
{
struct pl330_xfer *x = pxs->x;
int off = 0;
/* DMAMOV SAR, x->src_addr */
off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
/* DMAMOV DAR, x->dst_addr */
off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
/* Setup Loop(s) */
off += _setup_loops(dry_run, &buf[off], pxs);
return off;
}
/*
* A req is a sequence of one or more xfer units.
* Returns the number of bytes taken to setup the MC for the req.
*/
static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
unsigned index, struct _xfer_spec *pxs)
{
struct _pl330_req *req = &thrd->req[index];
struct pl330_xfer *x;
u8 *buf = req->mc_cpu;
int off = 0;
PL330_DBGMC_START(req->mc_bus);
/* DMAMOV CCR, ccr */
off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
x = pxs->r->x;
do {
/* Error if xfer length is not aligned at burst size */
if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
return -EINVAL;
pxs->x = x;
off += _setup_xfer(dry_run, &buf[off], pxs);
x = x->next;
} while (x);
/* DMASEV peripheral/event */
off += _emit_SEV(dry_run, &buf[off], thrd->ev);
/* DMAEND */
off += _emit_END(dry_run, &buf[off]);
return off;
}
static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
{
u32 ccr = 0;
if (rqc->src_inc)
ccr |= CC_SRCINC;
if (rqc->dst_inc)
ccr |= CC_DSTINC;
/* We set same protection levels for Src and DST for now */
if (rqc->privileged)
ccr |= CC_SRCPRI | CC_DSTPRI;
if (rqc->nonsecure)
ccr |= CC_SRCNS | CC_DSTNS;
if (rqc->insnaccess)
ccr |= CC_SRCIA | CC_DSTIA;
ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
ccr |= (rqc->dcctl << CC_SRCCCTRL_SHFT);
ccr |= (rqc->scctl << CC_DSTCCTRL_SHFT);
ccr |= (rqc->swap << CC_SWAP_SHFT);
return ccr;
}
static inline bool _is_valid(u32 ccr)
{
enum pl330_dstcachectrl dcctl;
enum pl330_srccachectrl scctl;
dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
if (dcctl == DINVALID1 || dcctl == DINVALID2
|| scctl == SINVALID1 || scctl == SINVALID2)
return false;
else
return true;
}
/*
* Submit a list of xfers after which the client wants notification.
* Client is not notified after each xfer unit, just once after all
* xfer units are done or some error occurs.
*/
int pl330_submit_req(void *ch_id, struct pl330_req *r)
{
struct pl330_thread *thrd = ch_id;
struct pl330_dmac *pl330;
struct pl330_info *pi;
struct _xfer_spec xs;
unsigned long flags;
void __iomem *regs;
unsigned idx;
u32 ccr;
int ret = 0;
/* No Req or Unacquired Channel or DMAC */
if (!r || !thrd || thrd->free)
return -EINVAL;
pl330 = thrd->dmac;
pi = pl330->pinfo;
regs = pi->base;
if (pl330->state == DYING
|| pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
__func__, __LINE__);
return -EAGAIN;
}
/* If request for non-existing peripheral */
if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
dev_info(thrd->dmac->pinfo->dev,
"%s:%d Invalid peripheral(%u)!\n",
__func__, __LINE__, r->peri);
return -EINVAL;
}
spin_lock_irqsave(&pl330->lock, flags);
if (_queue_full(thrd)) {
ret = -EAGAIN;
goto xfer_exit;
}
/* Prefer Secure Channel */
if (!_manager_ns(thrd))
r->cfg->nonsecure = 0;
else
r->cfg->nonsecure = 1;
/* Use last settings, if not provided */
if (r->cfg)
ccr = _prepare_ccr(r->cfg);
else
ccr = readl(regs + CC(thrd->id));
/* If this req doesn't have valid xfer settings */
if (!_is_valid(ccr)) {
ret = -EINVAL;
dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
__func__, __LINE__, ccr);
goto xfer_exit;
}
idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
xs.ccr = ccr;
xs.r = r;
/* First dry run to check if req is acceptable */
ret = _setup_req(1, thrd, idx, &xs);
if (ret < 0)
goto xfer_exit;
if (ret > pi->mcbufsz / 2) {
dev_info(thrd->dmac->pinfo->dev,
"%s:%d Trying increasing mcbufsz\n",
__func__, __LINE__);
ret = -ENOMEM;
goto xfer_exit;
}
/* Hook the request */
thrd->lstenq = idx;
thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
thrd->req[idx].r = r;
ret = 0;
xfer_exit:
spin_unlock_irqrestore(&pl330->lock, flags);
return ret;
}
EXPORT_SYMBOL(pl330_submit_req);
static void pl330_dotask(unsigned long data)
{
struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
struct pl330_info *pi = pl330->pinfo;
unsigned long flags;
int i;
spin_lock_irqsave(&pl330->lock, flags);
/* The DMAC itself gone nuts */
if (pl330->dmac_tbd.reset_dmac) {
pl330->state = DYING;
/* Reset the manager too */
pl330->dmac_tbd.reset_mngr = true;
/* Clear the reset flag */
pl330->dmac_tbd.reset_dmac = false;
}
if (pl330->dmac_tbd.reset_mngr) {
_stop(pl330->manager);
/* Reset all channels */
pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
/* Clear the reset flag */
pl330->dmac_tbd.reset_mngr = false;
}
for (i = 0; i < pi->pcfg.num_chan; i++) {
if (pl330->dmac_tbd.reset_chan & (1 << i)) {
struct pl330_thread *thrd = &pl330->channels[i];
void __iomem *regs = pi->base;
enum pl330_op_err err;
_stop(thrd);
if (readl(regs + FSC) & (1 << thrd->id))
err = PL330_ERR_FAIL;
else
err = PL330_ERR_ABORT;
spin_unlock_irqrestore(&pl330->lock, flags);
_callback(thrd->req[1 - thrd->lstenq].r, err);
_callback(thrd->req[thrd->lstenq].r, err);
spin_lock_irqsave(&pl330->lock, flags);
thrd->req[0].r = NULL;
thrd->req[1].r = NULL;
MARK_FREE(&thrd->req[0]);
MARK_FREE(&thrd->req[1]);
/* Clear the reset flag */
pl330->dmac_tbd.reset_chan &= ~(1 << i);
}
}
spin_unlock_irqrestore(&pl330->lock, flags);
return;
}
/* Returns 1 if state was updated, 0 otherwise */
int pl330_update(const struct pl330_info *pi)
{
struct _pl330_req *rqdone;
struct pl330_dmac *pl330;
unsigned long flags;
void __iomem *regs;
u32 val;
int id, ev, ret = 0;
if (!pi || !pi->pl330_data)
return 0;
regs = pi->base;
pl330 = pi->pl330_data;
spin_lock_irqsave(&pl330->lock, flags);
val = readl(regs + FSM) & 0x1;
if (val)
pl330->dmac_tbd.reset_mngr = true;
else
pl330->dmac_tbd.reset_mngr = false;
val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
pl330->dmac_tbd.reset_chan |= val;
if (val) {
int i = 0;
while (i < pi->pcfg.num_chan) {
if (val & (1 << i)) {
dev_info(pi->dev,
"Reset Channel-%d\t CS-%x FTC-%x\n",
i, readl(regs + CS(i)),
readl(regs + FTC(i)));
_stop(&pl330->channels[i]);
}
i++;
}
}
/* Check which event happened i.e, thread notified */
val = readl(regs + ES);
if (pi->pcfg.num_events < 32
&& val & ~((1 << pi->pcfg.num_events) - 1)) {
pl330->dmac_tbd.reset_dmac = true;
dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
ret = 1;
goto updt_exit;
}
for (ev = 0; ev < pi->pcfg.num_events; ev++) {
if (val & (1 << ev)) { /* Event occured */
struct pl330_thread *thrd;
u32 inten = readl(regs + INTEN);
int active;
/* Clear the event */
if (inten & (1 << ev))
writel(1 << ev, regs + INTCLR);
ret = 1;
id = pl330->events[ev];
thrd = &pl330->channels[id];
active = _thrd_active(thrd);
if (!active) /* Aborted */
continue;
active -= 1;
rqdone = &thrd->req[active];
MARK_FREE(rqdone);
/* Get going again ASAP */
_start(thrd);
/* For now, just make a list of callbacks to be done */
list_add_tail(&rqdone->rqd, &pl330->req_done);
}
}
/* Now that we are in no hurry, do the callbacks */
while (!list_empty(&pl330->req_done)) {
rqdone = container_of(pl330->req_done.next,
struct _pl330_req, rqd);
list_del_init(&rqdone->rqd);
spin_unlock_irqrestore(&pl330->lock, flags);
_callback(rqdone->r, PL330_ERR_NONE);
spin_lock_irqsave(&pl330->lock, flags);
}
updt_exit:
spin_unlock_irqrestore(&pl330->lock, flags);
if (pl330->dmac_tbd.reset_dmac
|| pl330->dmac_tbd.reset_mngr
|| pl330->dmac_tbd.reset_chan) {
ret = 1;
tasklet_schedule(&pl330->tasks);
}
return ret;
}
EXPORT_SYMBOL(pl330_update);
int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
{
struct pl330_thread *thrd = ch_id;
struct pl330_dmac *pl330;
unsigned long flags;
int ret = 0, active;
if (!thrd || thrd->free || thrd->dmac->state == DYING)
return -EINVAL;
pl330 = thrd->dmac;
spin_lock_irqsave(&pl330->lock, flags);
switch (op) {
case PL330_OP_FLUSH:
/* Make sure the channel is stopped */
_stop(thrd);
thrd->req[0].r = NULL;
thrd->req[1].r = NULL;
MARK_FREE(&thrd->req[0]);
MARK_FREE(&thrd->req[1]);
break;
case PL330_OP_ABORT:
active = _thrd_active(thrd);
/* Make sure the channel is stopped */
_stop(thrd);
/* ABORT is only for the active req */
if (!active)
break;
active--;
thrd->req[active].r = NULL;
MARK_FREE(&thrd->req[active]);
/* Start the next */
case PL330_OP_START:
if (!_start(thrd))
ret = -EIO;
break;
default:
ret = -EINVAL;
}
spin_unlock_irqrestore(&pl330->lock, flags);
return ret;
}
EXPORT_SYMBOL(pl330_chan_ctrl);
int pl330_chan_status(void *ch_id, struct pl330_chanstatus *pstatus)
{
struct pl330_thread *thrd = ch_id;
struct pl330_dmac *pl330;
struct pl330_info *pi;
void __iomem *regs;
int active;
u32 val;
if (!pstatus || !thrd || thrd->free)
return -EINVAL;
pl330 = thrd->dmac;
pi = pl330->pinfo;
regs = pi->base;
/* The client should remove the DMAC and add again */
if (pl330->state == DYING)
pstatus->dmac_halted = true;
else
pstatus->dmac_halted = false;
val = readl(regs + FSC);
if (val & (1 << thrd->id))
pstatus->faulting = true;
else
pstatus->faulting = false;
active = _thrd_active(thrd);
if (!active) {
/* Indicate that the thread is not running */
pstatus->top_req = NULL;
pstatus->wait_req = NULL;
} else {
active--;
pstatus->top_req = thrd->req[active].r;
pstatus->wait_req = !IS_FREE(&thrd->req[1 - active])
? thrd->req[1 - active].r : NULL;
}
pstatus->src_addr = readl(regs + SA(thrd->id));
pstatus->dst_addr = readl(regs + DA(thrd->id));
return 0;
}
EXPORT_SYMBOL(pl330_chan_status);
/* Reserve an event */
static inline int _alloc_event(struct pl330_thread *thrd)
{
struct pl330_dmac *pl330 = thrd->dmac;
struct pl330_info *pi = pl330->pinfo;
int ev;
for (ev = 0; ev < pi->pcfg.num_events; ev++)
if (pl330->events[ev] == -1) {
pl330->events[ev] = thrd->id;
return ev;
}
return -1;
}
/* Upon success, returns IdentityToken for the
* allocated channel, NULL otherwise.
*/
void *pl330_request_channel(const struct pl330_info *pi)
{
struct pl330_thread *thrd = NULL;
struct pl330_dmac *pl330;
unsigned long flags;
int chans, i;
if (!pi || !pi->pl330_data)
return NULL;
pl330 = pi->pl330_data;
if (pl330->state == DYING)
return NULL;
chans = pi->pcfg.num_chan;
spin_lock_irqsave(&pl330->lock, flags);
for (i = 0; i < chans; i++) {
thrd = &pl330->channels[i];
if (thrd->free) {
thrd->ev = _alloc_event(thrd);
if (thrd->ev >= 0) {
thrd->free = false;
thrd->lstenq = 1;
thrd->req[0].r = NULL;
MARK_FREE(&thrd->req[0]);
thrd->req[1].r = NULL;
MARK_FREE(&thrd->req[1]);
break;
}
}
thrd = NULL;
}
spin_unlock_irqrestore(&pl330->lock, flags);
return thrd;
}
EXPORT_SYMBOL(pl330_request_channel);
/* Release an event */
static inline void _free_event(struct pl330_thread *thrd, int ev)
{
struct pl330_dmac *pl330 = thrd->dmac;
struct pl330_info *pi = pl330->pinfo;
/* If the event is valid and was held by the thread */
if (ev >= 0 && ev < pi->pcfg.num_events
&& pl330->events[ev] == thrd->id)
pl330->events[ev] = -1;
}
void pl330_release_channel(void *ch_id)
{
struct pl330_thread *thrd = ch_id;
struct pl330_dmac *pl330;
unsigned long flags;
if (!thrd || thrd->free)
return;
_stop(thrd);
_callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
_callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
pl330 = thrd->dmac;
spin_lock_irqsave(&pl330->lock, flags);
_free_event(thrd, thrd->ev);
thrd->free = true;
spin_unlock_irqrestore(&pl330->lock, flags);
}
EXPORT_SYMBOL(pl330_release_channel);
/* Initialize the structure for PL330 configuration, that can be used
* by the client driver the make best use of the DMAC
*/
static void read_dmac_config(struct pl330_info *pi)
{
void __iomem *regs = pi->base;
u32 val;
val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
val &= CRD_DATA_WIDTH_MASK;
pi->pcfg.data_bus_width = 8 * (1 << val);
val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
val &= CRD_DATA_BUFF_MASK;
pi->pcfg.data_buf_dep = val + 1;
val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
val &= CR0_NUM_CHANS_MASK;
val += 1;
pi->pcfg.num_chan = val;
val = readl(regs + CR0);
if (val & CR0_PERIPH_REQ_SET) {
val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
val += 1;
pi->pcfg.num_peri = val;
pi->pcfg.peri_ns = readl(regs + CR4);
} else {
pi->pcfg.num_peri = 0;
}
val = readl(regs + CR0);
if (val & CR0_BOOT_MAN_NS)
pi->pcfg.mode |= DMAC_MODE_NS;
else
pi->pcfg.mode &= ~DMAC_MODE_NS;
val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
val &= CR0_NUM_EVENTS_MASK;
val += 1;
pi->pcfg.num_events = val;
pi->pcfg.irq_ns = readl(regs + CR3);
pi->pcfg.periph_id = get_id(pi, PERIPH_ID);
pi->pcfg.pcell_id = get_id(pi, PCELL_ID);
}
static inline void _reset_thread(struct pl330_thread *thrd)
{
struct pl330_dmac *pl330 = thrd->dmac;
struct pl330_info *pi = pl330->pinfo;
thrd->req[0].mc_cpu = pl330->mcode_cpu
+ (thrd->id * pi->mcbufsz);
thrd->req[0].mc_bus = pl330->mcode_bus
+ (thrd->id * pi->mcbufsz);
thrd->req[0].r = NULL;
MARK_FREE(&thrd->req[0]);
thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
+ pi->mcbufsz / 2;
thrd->req[1].mc_bus = thrd->req[0].mc_bus
+ pi->mcbufsz / 2;
thrd->req[1].r = NULL;
MARK_FREE(&thrd->req[1]);
}
static int dmac_alloc_threads(struct pl330_dmac *pl330)
{
struct pl330_info *pi = pl330->pinfo;
int chans = pi->pcfg.num_chan;
struct pl330_thread *thrd;
int i;
/* Allocate 1 Manager and 'chans' Channel threads */
pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
GFP_KERNEL);
if (!pl330->channels)
return -ENOMEM;
/* Init Channel threads */
for (i = 0; i < chans; i++) {
thrd = &pl330->channels[i];
thrd->id = i;
thrd->dmac = pl330;
_reset_thread(thrd);
thrd->free = true;
}
/* MANAGER is indexed at the end */
thrd = &pl330->channels[chans];
thrd->id = chans;
thrd->dmac = pl330;
thrd->free = false;
pl330->manager = thrd;
return 0;
}
static int dmac_alloc_resources(struct pl330_dmac *pl330)
{
struct pl330_info *pi = pl330->pinfo;
int chans = pi->pcfg.num_chan;
int ret;
/*
* Alloc MicroCode buffer for 'chans' Channel threads.
* A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
*/
pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
chans * pi->mcbufsz,
&pl330->mcode_bus, GFP_KERNEL);
if (!pl330->mcode_cpu) {
dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
__func__, __LINE__);
return -ENOMEM;
}
ret = dmac_alloc_threads(pl330);
if (ret) {
dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
__func__, __LINE__);
dma_free_coherent(pi->dev,
chans * pi->mcbufsz,
pl330->mcode_cpu, pl330->mcode_bus);
return ret;
}
return 0;
}
int pl330_add(struct pl330_info *pi)
{
struct pl330_dmac *pl330;
void __iomem *regs;
int i, ret;
if (!pi || !pi->dev)
return -EINVAL;
/* If already added */
if (pi->pl330_data)
return -EINVAL;
/*
* If the SoC can perform reset on the DMAC, then do it
* before reading its configuration.
*/
if (pi->dmac_reset)
pi->dmac_reset(pi);
regs = pi->base;
/* Check if we can handle this DMAC */
if (get_id(pi, PERIPH_ID) != PERIPH_ID_VAL
|| get_id(pi, PCELL_ID) != PCELL_ID_VAL) {
dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n",
readl(regs + PERIPH_ID), readl(regs + PCELL_ID));
return -EINVAL;
}
/* Read the configuration of the DMAC */
read_dmac_config(pi);
if (pi->pcfg.num_events == 0) {
dev_err(pi->dev, "%s:%d Can't work without events!\n",
__func__, __LINE__);
return -EINVAL;
}
pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
if (!pl330) {
dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
__func__, __LINE__);
return -ENOMEM;
}
/* Assign the info structure and private data */
pl330->pinfo = pi;
pi->pl330_data = pl330;
spin_lock_init(&pl330->lock);
INIT_LIST_HEAD(&pl330->req_done);
/* Use default MC buffer size if not provided */
if (!pi->mcbufsz)
pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
/* Mark all events as free */
for (i = 0; i < pi->pcfg.num_events; i++)
pl330->events[i] = -1;
/* Allocate resources needed by the DMAC */
ret = dmac_alloc_resources(pl330);
if (ret) {
dev_err(pi->dev, "Unable to create channels for DMAC\n");
kfree(pl330);
return ret;
}
tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
pl330->state = INIT;
return 0;
}
EXPORT_SYMBOL(pl330_add);
static int dmac_free_threads(struct pl330_dmac *pl330)
{
struct pl330_info *pi = pl330->pinfo;
int chans = pi->pcfg.num_chan;
struct pl330_thread *thrd;
int i;
/* Release Channel threads */
for (i = 0; i < chans; i++) {
thrd = &pl330->channels[i];
pl330_release_channel((void *)thrd);
}
/* Free memory */
kfree(pl330->channels);
return 0;
}
static void dmac_free_resources(struct pl330_dmac *pl330)
{
struct pl330_info *pi = pl330->pinfo;
int chans = pi->pcfg.num_chan;
dmac_free_threads(pl330);
dma_free_coherent(pi->dev, chans * pi->mcbufsz,
pl330->mcode_cpu, pl330->mcode_bus);
}
void pl330_del(struct pl330_info *pi)
{
struct pl330_dmac *pl330;
if (!pi || !pi->pl330_data)
return;
pl330 = pi->pl330_data;
pl330->state = UNINIT;
tasklet_kill(&pl330->tasks);
/* Free DMAC resources */
dmac_free_resources(pl330);
kfree(pl330);
pi->pl330_data = NULL;
}
EXPORT_SYMBOL(pl330_del);