2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 22:24:09 +08:00
linux-next/drivers/scsi/mpt3sas/mpt3sas_warpdrive.c
Sreekanth Reddy c84b06a48c mpt3sas: Single driver module which supports both SAS 2.0 & SAS 3.0 HBAs
Modified the mpt3sas driver to have a single driver module which
supports both SAS 2.0 & SAS 3.0 HBA devices.

* Added SAS 2.0 HBA device IDs to the mpt3sas_pci_table pci table.

* Created two separate SCSI host templates for SAS2 and SAS3 HBAs so
  that, during the driver load time driver can use corresponding host
  template(based the pci device ID) while registering a scsi host
  adapter instance for that pci device.

* Registered two IOCTL devices, mpt2ctl is for SAS2 HBAs & mpt3ctl for
  SAS3 HBAs. Also updated the code to make sure that mpt2ctl device
  processes only those ioctl cmds issued for the SAS2 HBAs and mpt3ctl
  device processes only those ioctl cmds issued for the SAS3 HBAs.

* Added separate indexing for SAS2 and SAS3 HBAs.

* Replaced compile time check 'MPT2SAS_SCSI' to run time check
  'hba_mpi_version_belonged' whereever needed.

* Aliased this merged driver to mpt2sas using MODULE_ALIAS.

* Moved global varaible 'driver_name' to per adapter instance variable.

* Created two raid function template and used corresponding raid
  function templates based on the run time check
  'hba_mpi_version_belonged'.

* Moved mpt2sas_warpdrive.c file from mpt2sas to mpt3sas folder and
  renamed it as mpt3sas_warpdrive.c.

* Also renamed the functions in mpt3sas_warpdrive.c file to follow
  current driver function name convention.

* Updated the Makefile to build mpt3sas_warpdrive.o file for these
  WarpDrive-specific functions.

* Also in function mpt3sas_setup_direct_io(), used sector_div() API
  instead of division operator (which gives compilation errors on 32 bit
  machines).

* Removed mpt2sas files, mpt2sas directory & mpt3sas_module.c file.

* Added module parameter 'hbas_to_enumerate' which permits using this
  merged driver as a legacy mpt2sas driver or as a legacy mpt3sas
  driver.

  Here are the available options for this module parameter:

   0 - Merged driver which enumerates both SAS 2.0 & SAS 3.0 HBAs
   1 - Acts as legacy mpt2sas driver, which enumerates only SAS 2.0 HBAs
   2 - Acts as legacy mpt3sas driver, which enumerates only SAS 3.0 HBAs

* Removed mpt2sas entries from SCSI's Kconfig and Makefile files.

Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2015-11-11 19:50:11 -05:00

345 lines
11 KiB
C

/*
* Scsi Host Layer for MPT (Message Passing Technology) based controllers
*
* Copyright (C) 2012-2014 LSI Corporation
* Copyright (C) 2013-2015 Avago Technologies
* (mailto: MPT-FusionLinux.pdl@avagotech.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <asm/unaligned.h>
#include "mpt3sas_base.h"
/**
* _warpdrive_disable_ddio - Disable direct I/O for all the volumes
* @ioc: per adapter object
*/
static void
_warpdrive_disable_ddio(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2RaidVolPage1_t vol_pg1;
Mpi2ConfigReply_t mpi_reply;
struct _raid_device *raid_device;
u16 handle;
u16 ioc_status;
unsigned long flags;
handle = 0xFFFF;
while (!(mpt3sas_config_get_raid_volume_pg1(ioc, &mpi_reply,
&vol_pg1, MPI2_RAID_VOLUME_PGAD_FORM_GET_NEXT_HANDLE, handle))) {
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
break;
handle = le16_to_cpu(vol_pg1.DevHandle);
spin_lock_irqsave(&ioc->raid_device_lock, flags);
raid_device = mpt3sas_raid_device_find_by_handle(ioc, handle);
if (raid_device)
raid_device->direct_io_enabled = 0;
spin_unlock_irqrestore(&ioc->raid_device_lock, flags);
}
return;
}
/**
* mpt3sas_get_num_volumes - Get number of volumes in the ioc
* @ioc: per adapter object
*/
u8
mpt3sas_get_num_volumes(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2RaidVolPage1_t vol_pg1;
Mpi2ConfigReply_t mpi_reply;
u16 handle;
u8 vol_cnt = 0;
u16 ioc_status;
handle = 0xFFFF;
while (!(mpt3sas_config_get_raid_volume_pg1(ioc, &mpi_reply,
&vol_pg1, MPI2_RAID_VOLUME_PGAD_FORM_GET_NEXT_HANDLE, handle))) {
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
break;
vol_cnt++;
handle = le16_to_cpu(vol_pg1.DevHandle);
}
return vol_cnt;
}
/**
* mpt3sas_init_warpdrive_properties - Set properties for warpdrive direct I/O.
* @ioc: per adapter object
* @raid_device: the raid_device object
*/
void
mpt3sas_init_warpdrive_properties(struct MPT3SAS_ADAPTER *ioc,
struct _raid_device *raid_device)
{
Mpi2RaidVolPage0_t *vol_pg0;
Mpi2RaidPhysDiskPage0_t pd_pg0;
Mpi2ConfigReply_t mpi_reply;
u16 sz;
u8 num_pds, count;
unsigned long stripe_sz, block_sz;
u8 stripe_exp, block_exp;
u64 dev_max_lba;
if (!ioc->is_warpdrive)
return;
if (ioc->mfg_pg10_hide_flag == MFG_PAGE10_EXPOSE_ALL_DISKS) {
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is disabled "
"globally as drives are exposed\n", ioc->name);
return;
}
if (mpt3sas_get_num_volumes(ioc) > 1) {
_warpdrive_disable_ddio(ioc);
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is disabled "
"globally as number of drives > 1\n", ioc->name);
return;
}
if ((mpt3sas_config_get_number_pds(ioc, raid_device->handle,
&num_pds)) || !num_pds) {
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is disabled "
"Failure in computing number of drives\n", ioc->name);
return;
}
sz = offsetof(Mpi2RaidVolPage0_t, PhysDisk) + (num_pds *
sizeof(Mpi2RaidVol0PhysDisk_t));
vol_pg0 = kzalloc(sz, GFP_KERNEL);
if (!vol_pg0) {
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is disabled "
"Memory allocation failure for RVPG0\n", ioc->name);
return;
}
if ((mpt3sas_config_get_raid_volume_pg0(ioc, &mpi_reply, vol_pg0,
MPI2_RAID_VOLUME_PGAD_FORM_HANDLE, raid_device->handle, sz))) {
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is disabled "
"Failure in retrieving RVPG0\n", ioc->name);
kfree(vol_pg0);
return;
}
/*
* WARPDRIVE:If number of physical disks in a volume exceeds the max pds
* assumed for WARPDRIVE, disable direct I/O
*/
if (num_pds > MPT_MAX_WARPDRIVE_PDS) {
pr_warn(MPT3SAS_FMT "WarpDrive : Direct IO is disabled "
"for the drive with handle(0x%04x): num_mem=%d, "
"max_mem_allowed=%d\n", ioc->name, raid_device->handle,
num_pds, MPT_MAX_WARPDRIVE_PDS);
kfree(vol_pg0);
return;
}
for (count = 0; count < num_pds; count++) {
if (mpt3sas_config_get_phys_disk_pg0(ioc, &mpi_reply,
&pd_pg0, MPI2_PHYSDISK_PGAD_FORM_PHYSDISKNUM,
vol_pg0->PhysDisk[count].PhysDiskNum) ||
pd_pg0.DevHandle == MPT3SAS_INVALID_DEVICE_HANDLE) {
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is "
"disabled for the drive with handle(0x%04x) member"
"handle retrieval failed for member number=%d\n",
ioc->name, raid_device->handle,
vol_pg0->PhysDisk[count].PhysDiskNum);
goto out_error;
}
/* Disable direct I/O if member drive lba exceeds 4 bytes */
dev_max_lba = le64_to_cpu(pd_pg0.DeviceMaxLBA);
if (dev_max_lba >> 32) {
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is "
"disabled for the drive with handle(0x%04x) member"
" handle (0x%04x) unsupported max lba 0x%016llx\n",
ioc->name, raid_device->handle,
le16_to_cpu(pd_pg0.DevHandle),
(unsigned long long)dev_max_lba);
goto out_error;
}
raid_device->pd_handle[count] = le16_to_cpu(pd_pg0.DevHandle);
}
/*
* Assumption for WD: Direct I/O is not supported if the volume is
* not RAID0
*/
if (raid_device->volume_type != MPI2_RAID_VOL_TYPE_RAID0) {
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is disabled "
"for the drive with handle(0x%04x): type=%d, "
"s_sz=%uK, blk_size=%u\n", ioc->name,
raid_device->handle, raid_device->volume_type,
(le32_to_cpu(vol_pg0->StripeSize) *
le16_to_cpu(vol_pg0->BlockSize)) / 1024,
le16_to_cpu(vol_pg0->BlockSize));
goto out_error;
}
stripe_sz = le32_to_cpu(vol_pg0->StripeSize);
stripe_exp = find_first_bit(&stripe_sz, 32);
if (stripe_exp == 32) {
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is disabled "
"for the drive with handle(0x%04x) invalid stripe sz %uK\n",
ioc->name, raid_device->handle,
(le32_to_cpu(vol_pg0->StripeSize) *
le16_to_cpu(vol_pg0->BlockSize)) / 1024);
goto out_error;
}
raid_device->stripe_exponent = stripe_exp;
block_sz = le16_to_cpu(vol_pg0->BlockSize);
block_exp = find_first_bit(&block_sz, 16);
if (block_exp == 16) {
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is disabled "
"for the drive with handle(0x%04x) invalid block sz %u\n",
ioc->name, raid_device->handle,
le16_to_cpu(vol_pg0->BlockSize));
goto out_error;
}
raid_device->block_exponent = block_exp;
raid_device->direct_io_enabled = 1;
pr_info(MPT3SAS_FMT "WarpDrive : Direct IO is Enabled for the drive"
" with handle(0x%04x)\n", ioc->name, raid_device->handle);
/*
* WARPDRIVE: Though the following fields are not used for direct IO,
* stored for future purpose:
*/
raid_device->max_lba = le64_to_cpu(vol_pg0->MaxLBA);
raid_device->stripe_sz = le32_to_cpu(vol_pg0->StripeSize);
raid_device->block_sz = le16_to_cpu(vol_pg0->BlockSize);
kfree(vol_pg0);
return;
out_error:
raid_device->direct_io_enabled = 0;
for (count = 0; count < num_pds; count++)
raid_device->pd_handle[count] = 0;
kfree(vol_pg0);
return;
}
/**
* mpt3sas_scsi_direct_io_get - returns direct io flag
* @ioc: per adapter object
* @smid: system request message index
*
* Returns the smid stored scmd pointer.
*/
inline u8
mpt3sas_scsi_direct_io_get(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return ioc->scsi_lookup[smid - 1].direct_io;
}
/**
* mpt3sas_scsi_direct_io_set - sets direct io flag
* @ioc: per adapter object
* @smid: system request message index
* @direct_io: Zero or non-zero value to set in the direct_io flag
*
* Returns Nothing.
*/
inline void
mpt3sas_scsi_direct_io_set(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 direct_io)
{
ioc->scsi_lookup[smid - 1].direct_io = direct_io;
}
/**
* mpt3sas_setup_direct_io - setup MPI request for WARPDRIVE Direct I/O
* @ioc: per adapter object
* @scmd: pointer to scsi command object
* @raid_device: pointer to raid device data structure
* @mpi_request: pointer to the SCSI_IO reqest message frame
* @smid: system request message index
*
* Returns nothing
*/
void
mpt3sas_setup_direct_io(struct MPT3SAS_ADAPTER *ioc, struct scsi_cmnd *scmd,
struct _raid_device *raid_device, Mpi2SCSIIORequest_t *mpi_request,
u16 smid)
{
sector_t v_lba, p_lba, stripe_off, column, io_size;
u32 stripe_sz, stripe_exp;
u8 num_pds, cmd = scmd->cmnd[0];
if (cmd != READ_10 && cmd != WRITE_10 &&
cmd != READ_16 && cmd != WRITE_16)
return;
if (cmd == READ_10 || cmd == WRITE_10)
v_lba = get_unaligned_be32(&mpi_request->CDB.CDB32[2]);
else
v_lba = get_unaligned_be64(&mpi_request->CDB.CDB32[2]);
io_size = scsi_bufflen(scmd) >> raid_device->block_exponent;
if (v_lba + io_size - 1 > raid_device->max_lba)
return;
stripe_sz = raid_device->stripe_sz;
stripe_exp = raid_device->stripe_exponent;
stripe_off = v_lba & (stripe_sz - 1);
/* Return unless IO falls within a stripe */
if (stripe_off + io_size > stripe_sz)
return;
num_pds = raid_device->num_pds;
p_lba = v_lba >> stripe_exp;
column = sector_div(p_lba, num_pds);
p_lba = (p_lba << stripe_exp) + stripe_off;
mpi_request->DevHandle = cpu_to_le16(raid_device->pd_handle[column]);
if (cmd == READ_10 || cmd == WRITE_10)
put_unaligned_be32(lower_32_bits(p_lba),
&mpi_request->CDB.CDB32[2]);
else
put_unaligned_be64(p_lba, &mpi_request->CDB.CDB32[2]);
mpt3sas_scsi_direct_io_set(ioc, smid, 1);
}