mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-07 21:24:00 +08:00
979e0d7465
This fixes CVE-2014-0102. The following command sequence produces an oops: keyctl new_session i=`keyctl newring _ses @s` keyctl link @s $i The problem is that search_nested_keyrings() sees two keyrings that have matching type and description, so keyring_compare_object() returns true. s_n_k() then passes the key to the iterator function - keyring_detect_cycle_iterator() - which *should* check to see whether this is the keyring of interest, not just one with the same name. Because assoc_array_find() will return one and only one match, I assumed that the iterator function would only see an exact match or never be called - but the iterator isn't only called from assoc_array_find()... The oops looks something like this: kernel BUG at /data/fs/linux-2.6-fscache/security/keys/keyring.c:1003! invalid opcode: 0000 [#1] SMP ... RIP: keyring_detect_cycle_iterator+0xe/0x1f ... Call Trace: search_nested_keyrings+0x76/0x2aa __key_link_check_live_key+0x50/0x5f key_link+0x4e/0x85 keyctl_keyring_link+0x60/0x81 SyS_keyctl+0x65/0xe4 tracesys+0xdd/0xe2 The fix is to make keyring_detect_cycle_iterator() check that the key it has is the key it was actually looking for rather than calling BUG_ON(). A testcase has been included in the keyutils testsuite for this: http://git.kernel.org/cgit/linux/kernel/git/dhowells/keyutils.git/commit/?id=891f3365d07f1996778ade0e3428f01878a1790b Reported-by: Tommi Rantala <tt.rantala@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <james.l.morris@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1365 lines
36 KiB
C
1365 lines
36 KiB
C
/* Keyring handling
|
|
*
|
|
* Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/security.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/err.h>
|
|
#include <keys/keyring-type.h>
|
|
#include <keys/user-type.h>
|
|
#include <linux/assoc_array_priv.h>
|
|
#include <linux/uaccess.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* When plumbing the depths of the key tree, this sets a hard limit
|
|
* set on how deep we're willing to go.
|
|
*/
|
|
#define KEYRING_SEARCH_MAX_DEPTH 6
|
|
|
|
/*
|
|
* We keep all named keyrings in a hash to speed looking them up.
|
|
*/
|
|
#define KEYRING_NAME_HASH_SIZE (1 << 5)
|
|
|
|
/*
|
|
* We mark pointers we pass to the associative array with bit 1 set if
|
|
* they're keyrings and clear otherwise.
|
|
*/
|
|
#define KEYRING_PTR_SUBTYPE 0x2UL
|
|
|
|
static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
|
|
{
|
|
return (unsigned long)x & KEYRING_PTR_SUBTYPE;
|
|
}
|
|
static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
|
|
{
|
|
void *object = assoc_array_ptr_to_leaf(x);
|
|
return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
|
|
}
|
|
static inline void *keyring_key_to_ptr(struct key *key)
|
|
{
|
|
if (key->type == &key_type_keyring)
|
|
return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
|
|
return key;
|
|
}
|
|
|
|
static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
|
|
static DEFINE_RWLOCK(keyring_name_lock);
|
|
|
|
static inline unsigned keyring_hash(const char *desc)
|
|
{
|
|
unsigned bucket = 0;
|
|
|
|
for (; *desc; desc++)
|
|
bucket += (unsigned char)*desc;
|
|
|
|
return bucket & (KEYRING_NAME_HASH_SIZE - 1);
|
|
}
|
|
|
|
/*
|
|
* The keyring key type definition. Keyrings are simply keys of this type and
|
|
* can be treated as ordinary keys in addition to having their own special
|
|
* operations.
|
|
*/
|
|
static int keyring_instantiate(struct key *keyring,
|
|
struct key_preparsed_payload *prep);
|
|
static void keyring_revoke(struct key *keyring);
|
|
static void keyring_destroy(struct key *keyring);
|
|
static void keyring_describe(const struct key *keyring, struct seq_file *m);
|
|
static long keyring_read(const struct key *keyring,
|
|
char __user *buffer, size_t buflen);
|
|
|
|
struct key_type key_type_keyring = {
|
|
.name = "keyring",
|
|
.def_datalen = 0,
|
|
.instantiate = keyring_instantiate,
|
|
.match = user_match,
|
|
.revoke = keyring_revoke,
|
|
.destroy = keyring_destroy,
|
|
.describe = keyring_describe,
|
|
.read = keyring_read,
|
|
};
|
|
EXPORT_SYMBOL(key_type_keyring);
|
|
|
|
/*
|
|
* Semaphore to serialise link/link calls to prevent two link calls in parallel
|
|
* introducing a cycle.
|
|
*/
|
|
static DECLARE_RWSEM(keyring_serialise_link_sem);
|
|
|
|
/*
|
|
* Publish the name of a keyring so that it can be found by name (if it has
|
|
* one).
|
|
*/
|
|
static void keyring_publish_name(struct key *keyring)
|
|
{
|
|
int bucket;
|
|
|
|
if (keyring->description) {
|
|
bucket = keyring_hash(keyring->description);
|
|
|
|
write_lock(&keyring_name_lock);
|
|
|
|
if (!keyring_name_hash[bucket].next)
|
|
INIT_LIST_HEAD(&keyring_name_hash[bucket]);
|
|
|
|
list_add_tail(&keyring->type_data.link,
|
|
&keyring_name_hash[bucket]);
|
|
|
|
write_unlock(&keyring_name_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise a keyring.
|
|
*
|
|
* Returns 0 on success, -EINVAL if given any data.
|
|
*/
|
|
static int keyring_instantiate(struct key *keyring,
|
|
struct key_preparsed_payload *prep)
|
|
{
|
|
int ret;
|
|
|
|
ret = -EINVAL;
|
|
if (prep->datalen == 0) {
|
|
assoc_array_init(&keyring->keys);
|
|
/* make the keyring available by name if it has one */
|
|
keyring_publish_name(keyring);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
|
|
* fold the carry back too, but that requires inline asm.
|
|
*/
|
|
static u64 mult_64x32_and_fold(u64 x, u32 y)
|
|
{
|
|
u64 hi = (u64)(u32)(x >> 32) * y;
|
|
u64 lo = (u64)(u32)(x) * y;
|
|
return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
|
|
}
|
|
|
|
/*
|
|
* Hash a key type and description.
|
|
*/
|
|
static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
|
|
{
|
|
const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
|
|
const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
|
|
const char *description = index_key->description;
|
|
unsigned long hash, type;
|
|
u32 piece;
|
|
u64 acc;
|
|
int n, desc_len = index_key->desc_len;
|
|
|
|
type = (unsigned long)index_key->type;
|
|
|
|
acc = mult_64x32_and_fold(type, desc_len + 13);
|
|
acc = mult_64x32_and_fold(acc, 9207);
|
|
for (;;) {
|
|
n = desc_len;
|
|
if (n <= 0)
|
|
break;
|
|
if (n > 4)
|
|
n = 4;
|
|
piece = 0;
|
|
memcpy(&piece, description, n);
|
|
description += n;
|
|
desc_len -= n;
|
|
acc = mult_64x32_and_fold(acc, piece);
|
|
acc = mult_64x32_and_fold(acc, 9207);
|
|
}
|
|
|
|
/* Fold the hash down to 32 bits if need be. */
|
|
hash = acc;
|
|
if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
|
|
hash ^= acc >> 32;
|
|
|
|
/* Squidge all the keyrings into a separate part of the tree to
|
|
* ordinary keys by making sure the lowest level segment in the hash is
|
|
* zero for keyrings and non-zero otherwise.
|
|
*/
|
|
if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
|
|
return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
|
|
if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
|
|
return (hash + (hash << level_shift)) & ~fan_mask;
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* Build the next index key chunk.
|
|
*
|
|
* On 32-bit systems the index key is laid out as:
|
|
*
|
|
* 0 4 5 9...
|
|
* hash desclen typeptr desc[]
|
|
*
|
|
* On 64-bit systems:
|
|
*
|
|
* 0 8 9 17...
|
|
* hash desclen typeptr desc[]
|
|
*
|
|
* We return it one word-sized chunk at a time.
|
|
*/
|
|
static unsigned long keyring_get_key_chunk(const void *data, int level)
|
|
{
|
|
const struct keyring_index_key *index_key = data;
|
|
unsigned long chunk = 0;
|
|
long offset = 0;
|
|
int desc_len = index_key->desc_len, n = sizeof(chunk);
|
|
|
|
level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
|
|
switch (level) {
|
|
case 0:
|
|
return hash_key_type_and_desc(index_key);
|
|
case 1:
|
|
return ((unsigned long)index_key->type << 8) | desc_len;
|
|
case 2:
|
|
if (desc_len == 0)
|
|
return (u8)((unsigned long)index_key->type >>
|
|
(ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
|
|
n--;
|
|
offset = 1;
|
|
default:
|
|
offset += sizeof(chunk) - 1;
|
|
offset += (level - 3) * sizeof(chunk);
|
|
if (offset >= desc_len)
|
|
return 0;
|
|
desc_len -= offset;
|
|
if (desc_len > n)
|
|
desc_len = n;
|
|
offset += desc_len;
|
|
do {
|
|
chunk <<= 8;
|
|
chunk |= ((u8*)index_key->description)[--offset];
|
|
} while (--desc_len > 0);
|
|
|
|
if (level == 2) {
|
|
chunk <<= 8;
|
|
chunk |= (u8)((unsigned long)index_key->type >>
|
|
(ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
|
|
}
|
|
return chunk;
|
|
}
|
|
}
|
|
|
|
static unsigned long keyring_get_object_key_chunk(const void *object, int level)
|
|
{
|
|
const struct key *key = keyring_ptr_to_key(object);
|
|
return keyring_get_key_chunk(&key->index_key, level);
|
|
}
|
|
|
|
static bool keyring_compare_object(const void *object, const void *data)
|
|
{
|
|
const struct keyring_index_key *index_key = data;
|
|
const struct key *key = keyring_ptr_to_key(object);
|
|
|
|
return key->index_key.type == index_key->type &&
|
|
key->index_key.desc_len == index_key->desc_len &&
|
|
memcmp(key->index_key.description, index_key->description,
|
|
index_key->desc_len) == 0;
|
|
}
|
|
|
|
/*
|
|
* Compare the index keys of a pair of objects and determine the bit position
|
|
* at which they differ - if they differ.
|
|
*/
|
|
static int keyring_diff_objects(const void *object, const void *data)
|
|
{
|
|
const struct key *key_a = keyring_ptr_to_key(object);
|
|
const struct keyring_index_key *a = &key_a->index_key;
|
|
const struct keyring_index_key *b = data;
|
|
unsigned long seg_a, seg_b;
|
|
int level, i;
|
|
|
|
level = 0;
|
|
seg_a = hash_key_type_and_desc(a);
|
|
seg_b = hash_key_type_and_desc(b);
|
|
if ((seg_a ^ seg_b) != 0)
|
|
goto differ;
|
|
|
|
/* The number of bits contributed by the hash is controlled by a
|
|
* constant in the assoc_array headers. Everything else thereafter we
|
|
* can deal with as being machine word-size dependent.
|
|
*/
|
|
level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
|
|
seg_a = a->desc_len;
|
|
seg_b = b->desc_len;
|
|
if ((seg_a ^ seg_b) != 0)
|
|
goto differ;
|
|
|
|
/* The next bit may not work on big endian */
|
|
level++;
|
|
seg_a = (unsigned long)a->type;
|
|
seg_b = (unsigned long)b->type;
|
|
if ((seg_a ^ seg_b) != 0)
|
|
goto differ;
|
|
|
|
level += sizeof(unsigned long);
|
|
if (a->desc_len == 0)
|
|
goto same;
|
|
|
|
i = 0;
|
|
if (((unsigned long)a->description | (unsigned long)b->description) &
|
|
(sizeof(unsigned long) - 1)) {
|
|
do {
|
|
seg_a = *(unsigned long *)(a->description + i);
|
|
seg_b = *(unsigned long *)(b->description + i);
|
|
if ((seg_a ^ seg_b) != 0)
|
|
goto differ_plus_i;
|
|
i += sizeof(unsigned long);
|
|
} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
|
|
}
|
|
|
|
for (; i < a->desc_len; i++) {
|
|
seg_a = *(unsigned char *)(a->description + i);
|
|
seg_b = *(unsigned char *)(b->description + i);
|
|
if ((seg_a ^ seg_b) != 0)
|
|
goto differ_plus_i;
|
|
}
|
|
|
|
same:
|
|
return -1;
|
|
|
|
differ_plus_i:
|
|
level += i;
|
|
differ:
|
|
i = level * 8 + __ffs(seg_a ^ seg_b);
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Free an object after stripping the keyring flag off of the pointer.
|
|
*/
|
|
static void keyring_free_object(void *object)
|
|
{
|
|
key_put(keyring_ptr_to_key(object));
|
|
}
|
|
|
|
/*
|
|
* Operations for keyring management by the index-tree routines.
|
|
*/
|
|
static const struct assoc_array_ops keyring_assoc_array_ops = {
|
|
.get_key_chunk = keyring_get_key_chunk,
|
|
.get_object_key_chunk = keyring_get_object_key_chunk,
|
|
.compare_object = keyring_compare_object,
|
|
.diff_objects = keyring_diff_objects,
|
|
.free_object = keyring_free_object,
|
|
};
|
|
|
|
/*
|
|
* Clean up a keyring when it is destroyed. Unpublish its name if it had one
|
|
* and dispose of its data.
|
|
*
|
|
* The garbage collector detects the final key_put(), removes the keyring from
|
|
* the serial number tree and then does RCU synchronisation before coming here,
|
|
* so we shouldn't need to worry about code poking around here with the RCU
|
|
* readlock held by this time.
|
|
*/
|
|
static void keyring_destroy(struct key *keyring)
|
|
{
|
|
if (keyring->description) {
|
|
write_lock(&keyring_name_lock);
|
|
|
|
if (keyring->type_data.link.next != NULL &&
|
|
!list_empty(&keyring->type_data.link))
|
|
list_del(&keyring->type_data.link);
|
|
|
|
write_unlock(&keyring_name_lock);
|
|
}
|
|
|
|
assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
|
|
}
|
|
|
|
/*
|
|
* Describe a keyring for /proc.
|
|
*/
|
|
static void keyring_describe(const struct key *keyring, struct seq_file *m)
|
|
{
|
|
if (keyring->description)
|
|
seq_puts(m, keyring->description);
|
|
else
|
|
seq_puts(m, "[anon]");
|
|
|
|
if (key_is_instantiated(keyring)) {
|
|
if (keyring->keys.nr_leaves_on_tree != 0)
|
|
seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
|
|
else
|
|
seq_puts(m, ": empty");
|
|
}
|
|
}
|
|
|
|
struct keyring_read_iterator_context {
|
|
size_t qty;
|
|
size_t count;
|
|
key_serial_t __user *buffer;
|
|
};
|
|
|
|
static int keyring_read_iterator(const void *object, void *data)
|
|
{
|
|
struct keyring_read_iterator_context *ctx = data;
|
|
const struct key *key = keyring_ptr_to_key(object);
|
|
int ret;
|
|
|
|
kenter("{%s,%d},,{%zu/%zu}",
|
|
key->type->name, key->serial, ctx->count, ctx->qty);
|
|
|
|
if (ctx->count >= ctx->qty)
|
|
return 1;
|
|
|
|
ret = put_user(key->serial, ctx->buffer);
|
|
if (ret < 0)
|
|
return ret;
|
|
ctx->buffer++;
|
|
ctx->count += sizeof(key->serial);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read a list of key IDs from the keyring's contents in binary form
|
|
*
|
|
* The keyring's semaphore is read-locked by the caller. This prevents someone
|
|
* from modifying it under us - which could cause us to read key IDs multiple
|
|
* times.
|
|
*/
|
|
static long keyring_read(const struct key *keyring,
|
|
char __user *buffer, size_t buflen)
|
|
{
|
|
struct keyring_read_iterator_context ctx;
|
|
unsigned long nr_keys;
|
|
int ret;
|
|
|
|
kenter("{%d},,%zu", key_serial(keyring), buflen);
|
|
|
|
if (buflen & (sizeof(key_serial_t) - 1))
|
|
return -EINVAL;
|
|
|
|
nr_keys = keyring->keys.nr_leaves_on_tree;
|
|
if (nr_keys == 0)
|
|
return 0;
|
|
|
|
/* Calculate how much data we could return */
|
|
ctx.qty = nr_keys * sizeof(key_serial_t);
|
|
|
|
if (!buffer || !buflen)
|
|
return ctx.qty;
|
|
|
|
if (buflen > ctx.qty)
|
|
ctx.qty = buflen;
|
|
|
|
/* Copy the IDs of the subscribed keys into the buffer */
|
|
ctx.buffer = (key_serial_t __user *)buffer;
|
|
ctx.count = 0;
|
|
ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
|
|
if (ret < 0) {
|
|
kleave(" = %d [iterate]", ret);
|
|
return ret;
|
|
}
|
|
|
|
kleave(" = %zu [ok]", ctx.count);
|
|
return ctx.count;
|
|
}
|
|
|
|
/*
|
|
* Allocate a keyring and link into the destination keyring.
|
|
*/
|
|
struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
|
|
const struct cred *cred, key_perm_t perm,
|
|
unsigned long flags, struct key *dest)
|
|
{
|
|
struct key *keyring;
|
|
int ret;
|
|
|
|
keyring = key_alloc(&key_type_keyring, description,
|
|
uid, gid, cred, perm, flags);
|
|
if (!IS_ERR(keyring)) {
|
|
ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
|
|
if (ret < 0) {
|
|
key_put(keyring);
|
|
keyring = ERR_PTR(ret);
|
|
}
|
|
}
|
|
|
|
return keyring;
|
|
}
|
|
EXPORT_SYMBOL(keyring_alloc);
|
|
|
|
/*
|
|
* Iteration function to consider each key found.
|
|
*/
|
|
static int keyring_search_iterator(const void *object, void *iterator_data)
|
|
{
|
|
struct keyring_search_context *ctx = iterator_data;
|
|
const struct key *key = keyring_ptr_to_key(object);
|
|
unsigned long kflags = key->flags;
|
|
|
|
kenter("{%d}", key->serial);
|
|
|
|
/* ignore keys not of this type */
|
|
if (key->type != ctx->index_key.type) {
|
|
kleave(" = 0 [!type]");
|
|
return 0;
|
|
}
|
|
|
|
/* skip invalidated, revoked and expired keys */
|
|
if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
|
|
if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
|
|
(1 << KEY_FLAG_REVOKED))) {
|
|
ctx->result = ERR_PTR(-EKEYREVOKED);
|
|
kleave(" = %d [invrev]", ctx->skipped_ret);
|
|
goto skipped;
|
|
}
|
|
|
|
if (key->expiry && ctx->now.tv_sec >= key->expiry) {
|
|
ctx->result = ERR_PTR(-EKEYEXPIRED);
|
|
kleave(" = %d [expire]", ctx->skipped_ret);
|
|
goto skipped;
|
|
}
|
|
}
|
|
|
|
/* keys that don't match */
|
|
if (!ctx->match(key, ctx->match_data)) {
|
|
kleave(" = 0 [!match]");
|
|
return 0;
|
|
}
|
|
|
|
/* key must have search permissions */
|
|
if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
|
|
key_task_permission(make_key_ref(key, ctx->possessed),
|
|
ctx->cred, KEY_SEARCH) < 0) {
|
|
ctx->result = ERR_PTR(-EACCES);
|
|
kleave(" = %d [!perm]", ctx->skipped_ret);
|
|
goto skipped;
|
|
}
|
|
|
|
if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
|
|
/* we set a different error code if we pass a negative key */
|
|
if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
|
|
smp_rmb();
|
|
ctx->result = ERR_PTR(key->type_data.reject_error);
|
|
kleave(" = %d [neg]", ctx->skipped_ret);
|
|
goto skipped;
|
|
}
|
|
}
|
|
|
|
/* Found */
|
|
ctx->result = make_key_ref(key, ctx->possessed);
|
|
kleave(" = 1 [found]");
|
|
return 1;
|
|
|
|
skipped:
|
|
return ctx->skipped_ret;
|
|
}
|
|
|
|
/*
|
|
* Search inside a keyring for a key. We can search by walking to it
|
|
* directly based on its index-key or we can iterate over the entire
|
|
* tree looking for it, based on the match function.
|
|
*/
|
|
static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
|
|
{
|
|
if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
|
|
KEYRING_SEARCH_LOOKUP_DIRECT) {
|
|
const void *object;
|
|
|
|
object = assoc_array_find(&keyring->keys,
|
|
&keyring_assoc_array_ops,
|
|
&ctx->index_key);
|
|
return object ? ctx->iterator(object, ctx) : 0;
|
|
}
|
|
return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
|
|
}
|
|
|
|
/*
|
|
* Search a tree of keyrings that point to other keyrings up to the maximum
|
|
* depth.
|
|
*/
|
|
static bool search_nested_keyrings(struct key *keyring,
|
|
struct keyring_search_context *ctx)
|
|
{
|
|
struct {
|
|
struct key *keyring;
|
|
struct assoc_array_node *node;
|
|
int slot;
|
|
} stack[KEYRING_SEARCH_MAX_DEPTH];
|
|
|
|
struct assoc_array_shortcut *shortcut;
|
|
struct assoc_array_node *node;
|
|
struct assoc_array_ptr *ptr;
|
|
struct key *key;
|
|
int sp = 0, slot;
|
|
|
|
kenter("{%d},{%s,%s}",
|
|
keyring->serial,
|
|
ctx->index_key.type->name,
|
|
ctx->index_key.description);
|
|
|
|
if (ctx->index_key.description)
|
|
ctx->index_key.desc_len = strlen(ctx->index_key.description);
|
|
|
|
/* Check to see if this top-level keyring is what we are looking for
|
|
* and whether it is valid or not.
|
|
*/
|
|
if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
|
|
keyring_compare_object(keyring, &ctx->index_key)) {
|
|
ctx->skipped_ret = 2;
|
|
ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
|
|
switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
|
|
case 1:
|
|
goto found;
|
|
case 2:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ctx->skipped_ret = 0;
|
|
if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
|
|
ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
|
|
|
|
/* Start processing a new keyring */
|
|
descend_to_keyring:
|
|
kdebug("descend to %d", keyring->serial);
|
|
if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
|
|
(1 << KEY_FLAG_REVOKED)))
|
|
goto not_this_keyring;
|
|
|
|
/* Search through the keys in this keyring before its searching its
|
|
* subtrees.
|
|
*/
|
|
if (search_keyring(keyring, ctx))
|
|
goto found;
|
|
|
|
/* Then manually iterate through the keyrings nested in this one.
|
|
*
|
|
* Start from the root node of the index tree. Because of the way the
|
|
* hash function has been set up, keyrings cluster on the leftmost
|
|
* branch of the root node (root slot 0) or in the root node itself.
|
|
* Non-keyrings avoid the leftmost branch of the root entirely (root
|
|
* slots 1-15).
|
|
*/
|
|
ptr = ACCESS_ONCE(keyring->keys.root);
|
|
if (!ptr)
|
|
goto not_this_keyring;
|
|
|
|
if (assoc_array_ptr_is_shortcut(ptr)) {
|
|
/* If the root is a shortcut, either the keyring only contains
|
|
* keyring pointers (everything clusters behind root slot 0) or
|
|
* doesn't contain any keyring pointers.
|
|
*/
|
|
shortcut = assoc_array_ptr_to_shortcut(ptr);
|
|
smp_read_barrier_depends();
|
|
if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
|
|
goto not_this_keyring;
|
|
|
|
ptr = ACCESS_ONCE(shortcut->next_node);
|
|
node = assoc_array_ptr_to_node(ptr);
|
|
goto begin_node;
|
|
}
|
|
|
|
node = assoc_array_ptr_to_node(ptr);
|
|
smp_read_barrier_depends();
|
|
|
|
ptr = node->slots[0];
|
|
if (!assoc_array_ptr_is_meta(ptr))
|
|
goto begin_node;
|
|
|
|
descend_to_node:
|
|
/* Descend to a more distal node in this keyring's content tree and go
|
|
* through that.
|
|
*/
|
|
kdebug("descend");
|
|
if (assoc_array_ptr_is_shortcut(ptr)) {
|
|
shortcut = assoc_array_ptr_to_shortcut(ptr);
|
|
smp_read_barrier_depends();
|
|
ptr = ACCESS_ONCE(shortcut->next_node);
|
|
BUG_ON(!assoc_array_ptr_is_node(ptr));
|
|
}
|
|
node = assoc_array_ptr_to_node(ptr);
|
|
|
|
begin_node:
|
|
kdebug("begin_node");
|
|
smp_read_barrier_depends();
|
|
slot = 0;
|
|
ascend_to_node:
|
|
/* Go through the slots in a node */
|
|
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
|
|
ptr = ACCESS_ONCE(node->slots[slot]);
|
|
|
|
if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
|
|
goto descend_to_node;
|
|
|
|
if (!keyring_ptr_is_keyring(ptr))
|
|
continue;
|
|
|
|
key = keyring_ptr_to_key(ptr);
|
|
|
|
if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
|
|
if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
|
|
ctx->result = ERR_PTR(-ELOOP);
|
|
return false;
|
|
}
|
|
goto not_this_keyring;
|
|
}
|
|
|
|
/* Search a nested keyring */
|
|
if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
|
|
key_task_permission(make_key_ref(key, ctx->possessed),
|
|
ctx->cred, KEY_SEARCH) < 0)
|
|
continue;
|
|
|
|
/* stack the current position */
|
|
stack[sp].keyring = keyring;
|
|
stack[sp].node = node;
|
|
stack[sp].slot = slot;
|
|
sp++;
|
|
|
|
/* begin again with the new keyring */
|
|
keyring = key;
|
|
goto descend_to_keyring;
|
|
}
|
|
|
|
/* We've dealt with all the slots in the current node, so now we need
|
|
* to ascend to the parent and continue processing there.
|
|
*/
|
|
ptr = ACCESS_ONCE(node->back_pointer);
|
|
slot = node->parent_slot;
|
|
|
|
if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
|
|
shortcut = assoc_array_ptr_to_shortcut(ptr);
|
|
smp_read_barrier_depends();
|
|
ptr = ACCESS_ONCE(shortcut->back_pointer);
|
|
slot = shortcut->parent_slot;
|
|
}
|
|
if (!ptr)
|
|
goto not_this_keyring;
|
|
node = assoc_array_ptr_to_node(ptr);
|
|
smp_read_barrier_depends();
|
|
slot++;
|
|
|
|
/* If we've ascended to the root (zero backpointer), we must have just
|
|
* finished processing the leftmost branch rather than the root slots -
|
|
* so there can't be any more keyrings for us to find.
|
|
*/
|
|
if (node->back_pointer) {
|
|
kdebug("ascend %d", slot);
|
|
goto ascend_to_node;
|
|
}
|
|
|
|
/* The keyring we're looking at was disqualified or didn't contain a
|
|
* matching key.
|
|
*/
|
|
not_this_keyring:
|
|
kdebug("not_this_keyring %d", sp);
|
|
if (sp <= 0) {
|
|
kleave(" = false");
|
|
return false;
|
|
}
|
|
|
|
/* Resume the processing of a keyring higher up in the tree */
|
|
sp--;
|
|
keyring = stack[sp].keyring;
|
|
node = stack[sp].node;
|
|
slot = stack[sp].slot + 1;
|
|
kdebug("ascend to %d [%d]", keyring->serial, slot);
|
|
goto ascend_to_node;
|
|
|
|
/* We found a viable match */
|
|
found:
|
|
key = key_ref_to_ptr(ctx->result);
|
|
key_check(key);
|
|
if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
|
|
key->last_used_at = ctx->now.tv_sec;
|
|
keyring->last_used_at = ctx->now.tv_sec;
|
|
while (sp > 0)
|
|
stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
|
|
}
|
|
kleave(" = true");
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* keyring_search_aux - Search a keyring tree for a key matching some criteria
|
|
* @keyring_ref: A pointer to the keyring with possession indicator.
|
|
* @ctx: The keyring search context.
|
|
*
|
|
* Search the supplied keyring tree for a key that matches the criteria given.
|
|
* The root keyring and any linked keyrings must grant Search permission to the
|
|
* caller to be searchable and keys can only be found if they too grant Search
|
|
* to the caller. The possession flag on the root keyring pointer controls use
|
|
* of the possessor bits in permissions checking of the entire tree. In
|
|
* addition, the LSM gets to forbid keyring searches and key matches.
|
|
*
|
|
* The search is performed as a breadth-then-depth search up to the prescribed
|
|
* limit (KEYRING_SEARCH_MAX_DEPTH).
|
|
*
|
|
* Keys are matched to the type provided and are then filtered by the match
|
|
* function, which is given the description to use in any way it sees fit. The
|
|
* match function may use any attributes of a key that it wishes to to
|
|
* determine the match. Normally the match function from the key type would be
|
|
* used.
|
|
*
|
|
* RCU can be used to prevent the keyring key lists from disappearing without
|
|
* the need to take lots of locks.
|
|
*
|
|
* Returns a pointer to the found key and increments the key usage count if
|
|
* successful; -EAGAIN if no matching keys were found, or if expired or revoked
|
|
* keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
|
|
* specified keyring wasn't a keyring.
|
|
*
|
|
* In the case of a successful return, the possession attribute from
|
|
* @keyring_ref is propagated to the returned key reference.
|
|
*/
|
|
key_ref_t keyring_search_aux(key_ref_t keyring_ref,
|
|
struct keyring_search_context *ctx)
|
|
{
|
|
struct key *keyring;
|
|
long err;
|
|
|
|
ctx->iterator = keyring_search_iterator;
|
|
ctx->possessed = is_key_possessed(keyring_ref);
|
|
ctx->result = ERR_PTR(-EAGAIN);
|
|
|
|
keyring = key_ref_to_ptr(keyring_ref);
|
|
key_check(keyring);
|
|
|
|
if (keyring->type != &key_type_keyring)
|
|
return ERR_PTR(-ENOTDIR);
|
|
|
|
if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
|
|
err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH);
|
|
if (err < 0)
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
rcu_read_lock();
|
|
ctx->now = current_kernel_time();
|
|
if (search_nested_keyrings(keyring, ctx))
|
|
__key_get(key_ref_to_ptr(ctx->result));
|
|
rcu_read_unlock();
|
|
return ctx->result;
|
|
}
|
|
|
|
/**
|
|
* keyring_search - Search the supplied keyring tree for a matching key
|
|
* @keyring: The root of the keyring tree to be searched.
|
|
* @type: The type of keyring we want to find.
|
|
* @description: The name of the keyring we want to find.
|
|
*
|
|
* As keyring_search_aux() above, but using the current task's credentials and
|
|
* type's default matching function and preferred search method.
|
|
*/
|
|
key_ref_t keyring_search(key_ref_t keyring,
|
|
struct key_type *type,
|
|
const char *description)
|
|
{
|
|
struct keyring_search_context ctx = {
|
|
.index_key.type = type,
|
|
.index_key.description = description,
|
|
.cred = current_cred(),
|
|
.match = type->match,
|
|
.match_data = description,
|
|
.flags = (type->def_lookup_type |
|
|
KEYRING_SEARCH_DO_STATE_CHECK),
|
|
};
|
|
|
|
if (!ctx.match)
|
|
return ERR_PTR(-ENOKEY);
|
|
|
|
return keyring_search_aux(keyring, &ctx);
|
|
}
|
|
EXPORT_SYMBOL(keyring_search);
|
|
|
|
/*
|
|
* Search the given keyring for a key that might be updated.
|
|
*
|
|
* The caller must guarantee that the keyring is a keyring and that the
|
|
* permission is granted to modify the keyring as no check is made here. The
|
|
* caller must also hold a lock on the keyring semaphore.
|
|
*
|
|
* Returns a pointer to the found key with usage count incremented if
|
|
* successful and returns NULL if not found. Revoked and invalidated keys are
|
|
* skipped over.
|
|
*
|
|
* If successful, the possession indicator is propagated from the keyring ref
|
|
* to the returned key reference.
|
|
*/
|
|
key_ref_t find_key_to_update(key_ref_t keyring_ref,
|
|
const struct keyring_index_key *index_key)
|
|
{
|
|
struct key *keyring, *key;
|
|
const void *object;
|
|
|
|
keyring = key_ref_to_ptr(keyring_ref);
|
|
|
|
kenter("{%d},{%s,%s}",
|
|
keyring->serial, index_key->type->name, index_key->description);
|
|
|
|
object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
|
|
index_key);
|
|
|
|
if (object)
|
|
goto found;
|
|
|
|
kleave(" = NULL");
|
|
return NULL;
|
|
|
|
found:
|
|
key = keyring_ptr_to_key(object);
|
|
if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
|
|
(1 << KEY_FLAG_REVOKED))) {
|
|
kleave(" = NULL [x]");
|
|
return NULL;
|
|
}
|
|
__key_get(key);
|
|
kleave(" = {%d}", key->serial);
|
|
return make_key_ref(key, is_key_possessed(keyring_ref));
|
|
}
|
|
|
|
/*
|
|
* Find a keyring with the specified name.
|
|
*
|
|
* All named keyrings in the current user namespace are searched, provided they
|
|
* grant Search permission directly to the caller (unless this check is
|
|
* skipped). Keyrings whose usage points have reached zero or who have been
|
|
* revoked are skipped.
|
|
*
|
|
* Returns a pointer to the keyring with the keyring's refcount having being
|
|
* incremented on success. -ENOKEY is returned if a key could not be found.
|
|
*/
|
|
struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
|
|
{
|
|
struct key *keyring;
|
|
int bucket;
|
|
|
|
if (!name)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
bucket = keyring_hash(name);
|
|
|
|
read_lock(&keyring_name_lock);
|
|
|
|
if (keyring_name_hash[bucket].next) {
|
|
/* search this hash bucket for a keyring with a matching name
|
|
* that's readable and that hasn't been revoked */
|
|
list_for_each_entry(keyring,
|
|
&keyring_name_hash[bucket],
|
|
type_data.link
|
|
) {
|
|
if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
|
|
continue;
|
|
|
|
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
|
|
continue;
|
|
|
|
if (strcmp(keyring->description, name) != 0)
|
|
continue;
|
|
|
|
if (!skip_perm_check &&
|
|
key_permission(make_key_ref(keyring, 0),
|
|
KEY_SEARCH) < 0)
|
|
continue;
|
|
|
|
/* we've got a match but we might end up racing with
|
|
* key_cleanup() if the keyring is currently 'dead'
|
|
* (ie. it has a zero usage count) */
|
|
if (!atomic_inc_not_zero(&keyring->usage))
|
|
continue;
|
|
keyring->last_used_at = current_kernel_time().tv_sec;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
keyring = ERR_PTR(-ENOKEY);
|
|
out:
|
|
read_unlock(&keyring_name_lock);
|
|
return keyring;
|
|
}
|
|
|
|
static int keyring_detect_cycle_iterator(const void *object,
|
|
void *iterator_data)
|
|
{
|
|
struct keyring_search_context *ctx = iterator_data;
|
|
const struct key *key = keyring_ptr_to_key(object);
|
|
|
|
kenter("{%d}", key->serial);
|
|
|
|
/* We might get a keyring with matching index-key that is nonetheless a
|
|
* different keyring. */
|
|
if (key != ctx->match_data)
|
|
return 0;
|
|
|
|
ctx->result = ERR_PTR(-EDEADLK);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* See if a cycle will will be created by inserting acyclic tree B in acyclic
|
|
* tree A at the topmost level (ie: as a direct child of A).
|
|
*
|
|
* Since we are adding B to A at the top level, checking for cycles should just
|
|
* be a matter of seeing if node A is somewhere in tree B.
|
|
*/
|
|
static int keyring_detect_cycle(struct key *A, struct key *B)
|
|
{
|
|
struct keyring_search_context ctx = {
|
|
.index_key = A->index_key,
|
|
.match_data = A,
|
|
.iterator = keyring_detect_cycle_iterator,
|
|
.flags = (KEYRING_SEARCH_LOOKUP_DIRECT |
|
|
KEYRING_SEARCH_NO_STATE_CHECK |
|
|
KEYRING_SEARCH_NO_UPDATE_TIME |
|
|
KEYRING_SEARCH_NO_CHECK_PERM |
|
|
KEYRING_SEARCH_DETECT_TOO_DEEP),
|
|
};
|
|
|
|
rcu_read_lock();
|
|
search_nested_keyrings(B, &ctx);
|
|
rcu_read_unlock();
|
|
return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
|
|
}
|
|
|
|
/*
|
|
* Preallocate memory so that a key can be linked into to a keyring.
|
|
*/
|
|
int __key_link_begin(struct key *keyring,
|
|
const struct keyring_index_key *index_key,
|
|
struct assoc_array_edit **_edit)
|
|
__acquires(&keyring->sem)
|
|
__acquires(&keyring_serialise_link_sem)
|
|
{
|
|
struct assoc_array_edit *edit;
|
|
int ret;
|
|
|
|
kenter("%d,%s,%s,",
|
|
keyring->serial, index_key->type->name, index_key->description);
|
|
|
|
BUG_ON(index_key->desc_len == 0);
|
|
|
|
if (keyring->type != &key_type_keyring)
|
|
return -ENOTDIR;
|
|
|
|
down_write(&keyring->sem);
|
|
|
|
ret = -EKEYREVOKED;
|
|
if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
|
|
goto error_krsem;
|
|
|
|
/* serialise link/link calls to prevent parallel calls causing a cycle
|
|
* when linking two keyring in opposite orders */
|
|
if (index_key->type == &key_type_keyring)
|
|
down_write(&keyring_serialise_link_sem);
|
|
|
|
/* Create an edit script that will insert/replace the key in the
|
|
* keyring tree.
|
|
*/
|
|
edit = assoc_array_insert(&keyring->keys,
|
|
&keyring_assoc_array_ops,
|
|
index_key,
|
|
NULL);
|
|
if (IS_ERR(edit)) {
|
|
ret = PTR_ERR(edit);
|
|
goto error_sem;
|
|
}
|
|
|
|
/* If we're not replacing a link in-place then we're going to need some
|
|
* extra quota.
|
|
*/
|
|
if (!edit->dead_leaf) {
|
|
ret = key_payload_reserve(keyring,
|
|
keyring->datalen + KEYQUOTA_LINK_BYTES);
|
|
if (ret < 0)
|
|
goto error_cancel;
|
|
}
|
|
|
|
*_edit = edit;
|
|
kleave(" = 0");
|
|
return 0;
|
|
|
|
error_cancel:
|
|
assoc_array_cancel_edit(edit);
|
|
error_sem:
|
|
if (index_key->type == &key_type_keyring)
|
|
up_write(&keyring_serialise_link_sem);
|
|
error_krsem:
|
|
up_write(&keyring->sem);
|
|
kleave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check already instantiated keys aren't going to be a problem.
|
|
*
|
|
* The caller must have called __key_link_begin(). Don't need to call this for
|
|
* keys that were created since __key_link_begin() was called.
|
|
*/
|
|
int __key_link_check_live_key(struct key *keyring, struct key *key)
|
|
{
|
|
if (key->type == &key_type_keyring)
|
|
/* check that we aren't going to create a cycle by linking one
|
|
* keyring to another */
|
|
return keyring_detect_cycle(keyring, key);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Link a key into to a keyring.
|
|
*
|
|
* Must be called with __key_link_begin() having being called. Discards any
|
|
* already extant link to matching key if there is one, so that each keyring
|
|
* holds at most one link to any given key of a particular type+description
|
|
* combination.
|
|
*/
|
|
void __key_link(struct key *key, struct assoc_array_edit **_edit)
|
|
{
|
|
__key_get(key);
|
|
assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
|
|
assoc_array_apply_edit(*_edit);
|
|
*_edit = NULL;
|
|
}
|
|
|
|
/*
|
|
* Finish linking a key into to a keyring.
|
|
*
|
|
* Must be called with __key_link_begin() having being called.
|
|
*/
|
|
void __key_link_end(struct key *keyring,
|
|
const struct keyring_index_key *index_key,
|
|
struct assoc_array_edit *edit)
|
|
__releases(&keyring->sem)
|
|
__releases(&keyring_serialise_link_sem)
|
|
{
|
|
BUG_ON(index_key->type == NULL);
|
|
kenter("%d,%s,", keyring->serial, index_key->type->name);
|
|
|
|
if (index_key->type == &key_type_keyring)
|
|
up_write(&keyring_serialise_link_sem);
|
|
|
|
if (edit && !edit->dead_leaf) {
|
|
key_payload_reserve(keyring,
|
|
keyring->datalen - KEYQUOTA_LINK_BYTES);
|
|
assoc_array_cancel_edit(edit);
|
|
}
|
|
up_write(&keyring->sem);
|
|
}
|
|
|
|
/**
|
|
* key_link - Link a key to a keyring
|
|
* @keyring: The keyring to make the link in.
|
|
* @key: The key to link to.
|
|
*
|
|
* Make a link in a keyring to a key, such that the keyring holds a reference
|
|
* on that key and the key can potentially be found by searching that keyring.
|
|
*
|
|
* This function will write-lock the keyring's semaphore and will consume some
|
|
* of the user's key data quota to hold the link.
|
|
*
|
|
* Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
|
|
* -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
|
|
* full, -EDQUOT if there is insufficient key data quota remaining to add
|
|
* another link or -ENOMEM if there's insufficient memory.
|
|
*
|
|
* It is assumed that the caller has checked that it is permitted for a link to
|
|
* be made (the keyring should have Write permission and the key Link
|
|
* permission).
|
|
*/
|
|
int key_link(struct key *keyring, struct key *key)
|
|
{
|
|
struct assoc_array_edit *edit;
|
|
int ret;
|
|
|
|
kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
|
|
|
|
key_check(keyring);
|
|
key_check(key);
|
|
|
|
if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
|
|
!test_bit(KEY_FLAG_TRUSTED, &key->flags))
|
|
return -EPERM;
|
|
|
|
ret = __key_link_begin(keyring, &key->index_key, &edit);
|
|
if (ret == 0) {
|
|
kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
|
|
ret = __key_link_check_live_key(keyring, key);
|
|
if (ret == 0)
|
|
__key_link(key, &edit);
|
|
__key_link_end(keyring, &key->index_key, edit);
|
|
}
|
|
|
|
kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(key_link);
|
|
|
|
/**
|
|
* key_unlink - Unlink the first link to a key from a keyring.
|
|
* @keyring: The keyring to remove the link from.
|
|
* @key: The key the link is to.
|
|
*
|
|
* Remove a link from a keyring to a key.
|
|
*
|
|
* This function will write-lock the keyring's semaphore.
|
|
*
|
|
* Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
|
|
* the key isn't linked to by the keyring or -ENOMEM if there's insufficient
|
|
* memory.
|
|
*
|
|
* It is assumed that the caller has checked that it is permitted for a link to
|
|
* be removed (the keyring should have Write permission; no permissions are
|
|
* required on the key).
|
|
*/
|
|
int key_unlink(struct key *keyring, struct key *key)
|
|
{
|
|
struct assoc_array_edit *edit;
|
|
int ret;
|
|
|
|
key_check(keyring);
|
|
key_check(key);
|
|
|
|
if (keyring->type != &key_type_keyring)
|
|
return -ENOTDIR;
|
|
|
|
down_write(&keyring->sem);
|
|
|
|
edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
|
|
&key->index_key);
|
|
if (IS_ERR(edit)) {
|
|
ret = PTR_ERR(edit);
|
|
goto error;
|
|
}
|
|
ret = -ENOENT;
|
|
if (edit == NULL)
|
|
goto error;
|
|
|
|
assoc_array_apply_edit(edit);
|
|
key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
|
|
ret = 0;
|
|
|
|
error:
|
|
up_write(&keyring->sem);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(key_unlink);
|
|
|
|
/**
|
|
* keyring_clear - Clear a keyring
|
|
* @keyring: The keyring to clear.
|
|
*
|
|
* Clear the contents of the specified keyring.
|
|
*
|
|
* Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
|
|
*/
|
|
int keyring_clear(struct key *keyring)
|
|
{
|
|
struct assoc_array_edit *edit;
|
|
int ret;
|
|
|
|
if (keyring->type != &key_type_keyring)
|
|
return -ENOTDIR;
|
|
|
|
down_write(&keyring->sem);
|
|
|
|
edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
|
|
if (IS_ERR(edit)) {
|
|
ret = PTR_ERR(edit);
|
|
} else {
|
|
if (edit)
|
|
assoc_array_apply_edit(edit);
|
|
key_payload_reserve(keyring, 0);
|
|
ret = 0;
|
|
}
|
|
|
|
up_write(&keyring->sem);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(keyring_clear);
|
|
|
|
/*
|
|
* Dispose of the links from a revoked keyring.
|
|
*
|
|
* This is called with the key sem write-locked.
|
|
*/
|
|
static void keyring_revoke(struct key *keyring)
|
|
{
|
|
struct assoc_array_edit *edit;
|
|
|
|
edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
|
|
if (!IS_ERR(edit)) {
|
|
if (edit)
|
|
assoc_array_apply_edit(edit);
|
|
key_payload_reserve(keyring, 0);
|
|
}
|
|
}
|
|
|
|
static bool keyring_gc_select_iterator(void *object, void *iterator_data)
|
|
{
|
|
struct key *key = keyring_ptr_to_key(object);
|
|
time_t *limit = iterator_data;
|
|
|
|
if (key_is_dead(key, *limit))
|
|
return false;
|
|
key_get(key);
|
|
return true;
|
|
}
|
|
|
|
static int keyring_gc_check_iterator(const void *object, void *iterator_data)
|
|
{
|
|
const struct key *key = keyring_ptr_to_key(object);
|
|
time_t *limit = iterator_data;
|
|
|
|
key_check(key);
|
|
return key_is_dead(key, *limit);
|
|
}
|
|
|
|
/*
|
|
* Garbage collect pointers from a keyring.
|
|
*
|
|
* Not called with any locks held. The keyring's key struct will not be
|
|
* deallocated under us as only our caller may deallocate it.
|
|
*/
|
|
void keyring_gc(struct key *keyring, time_t limit)
|
|
{
|
|
int result;
|
|
|
|
kenter("%x{%s}", keyring->serial, keyring->description ?: "");
|
|
|
|
if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
|
|
(1 << KEY_FLAG_REVOKED)))
|
|
goto dont_gc;
|
|
|
|
/* scan the keyring looking for dead keys */
|
|
rcu_read_lock();
|
|
result = assoc_array_iterate(&keyring->keys,
|
|
keyring_gc_check_iterator, &limit);
|
|
rcu_read_unlock();
|
|
if (result == true)
|
|
goto do_gc;
|
|
|
|
dont_gc:
|
|
kleave(" [no gc]");
|
|
return;
|
|
|
|
do_gc:
|
|
down_write(&keyring->sem);
|
|
assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
|
|
keyring_gc_select_iterator, &limit);
|
|
up_write(&keyring->sem);
|
|
kleave(" [gc]");
|
|
}
|