2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 05:34:00 +08:00
linux-next/drivers/net/wireless/b43legacy/dma.c
Larry Finger d2d8cda7fc b43legacy: Fix DMA TX bounce buffer copying
This patch is adapted from the submission by Michael Buesch <mb@bu3sch.de>
for a bounce-buffer copying problem with b43.

Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-10-30 16:50:40 -04:00

1710 lines
44 KiB
C

/*
Broadcom B43legacy wireless driver
DMA ringbuffer and descriptor allocation/management
Copyright (c) 2005, 2006 Michael Buesch <mb@bu3sch.de>
Some code in this file is derived from the b44.c driver
Copyright (C) 2002 David S. Miller
Copyright (C) Pekka Pietikainen
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "b43legacy.h"
#include "dma.h"
#include "main.h"
#include "debugfs.h"
#include "xmit.h"
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <net/dst.h>
/* 32bit DMA ops. */
static
struct b43legacy_dmadesc_generic *op32_idx2desc(
struct b43legacy_dmaring *ring,
int slot,
struct b43legacy_dmadesc_meta **meta)
{
struct b43legacy_dmadesc32 *desc;
*meta = &(ring->meta[slot]);
desc = ring->descbase;
desc = &(desc[slot]);
return (struct b43legacy_dmadesc_generic *)desc;
}
static void op32_fill_descriptor(struct b43legacy_dmaring *ring,
struct b43legacy_dmadesc_generic *desc,
dma_addr_t dmaaddr, u16 bufsize,
int start, int end, int irq)
{
struct b43legacy_dmadesc32 *descbase = ring->descbase;
int slot;
u32 ctl;
u32 addr;
u32 addrext;
slot = (int)(&(desc->dma32) - descbase);
B43legacy_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
addr = (u32)(dmaaddr & ~SSB_DMA_TRANSLATION_MASK);
addrext = (u32)(dmaaddr & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
addr |= ssb_dma_translation(ring->dev->dev);
ctl = (bufsize - ring->frameoffset)
& B43legacy_DMA32_DCTL_BYTECNT;
if (slot == ring->nr_slots - 1)
ctl |= B43legacy_DMA32_DCTL_DTABLEEND;
if (start)
ctl |= B43legacy_DMA32_DCTL_FRAMESTART;
if (end)
ctl |= B43legacy_DMA32_DCTL_FRAMEEND;
if (irq)
ctl |= B43legacy_DMA32_DCTL_IRQ;
ctl |= (addrext << B43legacy_DMA32_DCTL_ADDREXT_SHIFT)
& B43legacy_DMA32_DCTL_ADDREXT_MASK;
desc->dma32.control = cpu_to_le32(ctl);
desc->dma32.address = cpu_to_le32(addr);
}
static void op32_poke_tx(struct b43legacy_dmaring *ring, int slot)
{
b43legacy_dma_write(ring, B43legacy_DMA32_TXINDEX,
(u32)(slot * sizeof(struct b43legacy_dmadesc32)));
}
static void op32_tx_suspend(struct b43legacy_dmaring *ring)
{
b43legacy_dma_write(ring, B43legacy_DMA32_TXCTL,
b43legacy_dma_read(ring, B43legacy_DMA32_TXCTL)
| B43legacy_DMA32_TXSUSPEND);
}
static void op32_tx_resume(struct b43legacy_dmaring *ring)
{
b43legacy_dma_write(ring, B43legacy_DMA32_TXCTL,
b43legacy_dma_read(ring, B43legacy_DMA32_TXCTL)
& ~B43legacy_DMA32_TXSUSPEND);
}
static int op32_get_current_rxslot(struct b43legacy_dmaring *ring)
{
u32 val;
val = b43legacy_dma_read(ring, B43legacy_DMA32_RXSTATUS);
val &= B43legacy_DMA32_RXDPTR;
return (val / sizeof(struct b43legacy_dmadesc32));
}
static void op32_set_current_rxslot(struct b43legacy_dmaring *ring,
int slot)
{
b43legacy_dma_write(ring, B43legacy_DMA32_RXINDEX,
(u32)(slot * sizeof(struct b43legacy_dmadesc32)));
}
static const struct b43legacy_dma_ops dma32_ops = {
.idx2desc = op32_idx2desc,
.fill_descriptor = op32_fill_descriptor,
.poke_tx = op32_poke_tx,
.tx_suspend = op32_tx_suspend,
.tx_resume = op32_tx_resume,
.get_current_rxslot = op32_get_current_rxslot,
.set_current_rxslot = op32_set_current_rxslot,
};
/* 64bit DMA ops. */
static
struct b43legacy_dmadesc_generic *op64_idx2desc(
struct b43legacy_dmaring *ring,
int slot,
struct b43legacy_dmadesc_meta
**meta)
{
struct b43legacy_dmadesc64 *desc;
*meta = &(ring->meta[slot]);
desc = ring->descbase;
desc = &(desc[slot]);
return (struct b43legacy_dmadesc_generic *)desc;
}
static void op64_fill_descriptor(struct b43legacy_dmaring *ring,
struct b43legacy_dmadesc_generic *desc,
dma_addr_t dmaaddr, u16 bufsize,
int start, int end, int irq)
{
struct b43legacy_dmadesc64 *descbase = ring->descbase;
int slot;
u32 ctl0 = 0;
u32 ctl1 = 0;
u32 addrlo;
u32 addrhi;
u32 addrext;
slot = (int)(&(desc->dma64) - descbase);
B43legacy_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
addrlo = (u32)(dmaaddr & 0xFFFFFFFF);
addrhi = (((u64)dmaaddr >> 32) & ~SSB_DMA_TRANSLATION_MASK);
addrext = (((u64)dmaaddr >> 32) & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
addrhi |= ssb_dma_translation(ring->dev->dev);
if (slot == ring->nr_slots - 1)
ctl0 |= B43legacy_DMA64_DCTL0_DTABLEEND;
if (start)
ctl0 |= B43legacy_DMA64_DCTL0_FRAMESTART;
if (end)
ctl0 |= B43legacy_DMA64_DCTL0_FRAMEEND;
if (irq)
ctl0 |= B43legacy_DMA64_DCTL0_IRQ;
ctl1 |= (bufsize - ring->frameoffset)
& B43legacy_DMA64_DCTL1_BYTECNT;
ctl1 |= (addrext << B43legacy_DMA64_DCTL1_ADDREXT_SHIFT)
& B43legacy_DMA64_DCTL1_ADDREXT_MASK;
desc->dma64.control0 = cpu_to_le32(ctl0);
desc->dma64.control1 = cpu_to_le32(ctl1);
desc->dma64.address_low = cpu_to_le32(addrlo);
desc->dma64.address_high = cpu_to_le32(addrhi);
}
static void op64_poke_tx(struct b43legacy_dmaring *ring, int slot)
{
b43legacy_dma_write(ring, B43legacy_DMA64_TXINDEX,
(u32)(slot * sizeof(struct b43legacy_dmadesc64)));
}
static void op64_tx_suspend(struct b43legacy_dmaring *ring)
{
b43legacy_dma_write(ring, B43legacy_DMA64_TXCTL,
b43legacy_dma_read(ring, B43legacy_DMA64_TXCTL)
| B43legacy_DMA64_TXSUSPEND);
}
static void op64_tx_resume(struct b43legacy_dmaring *ring)
{
b43legacy_dma_write(ring, B43legacy_DMA64_TXCTL,
b43legacy_dma_read(ring, B43legacy_DMA64_TXCTL)
& ~B43legacy_DMA64_TXSUSPEND);
}
static int op64_get_current_rxslot(struct b43legacy_dmaring *ring)
{
u32 val;
val = b43legacy_dma_read(ring, B43legacy_DMA64_RXSTATUS);
val &= B43legacy_DMA64_RXSTATDPTR;
return (val / sizeof(struct b43legacy_dmadesc64));
}
static void op64_set_current_rxslot(struct b43legacy_dmaring *ring,
int slot)
{
b43legacy_dma_write(ring, B43legacy_DMA64_RXINDEX,
(u32)(slot * sizeof(struct b43legacy_dmadesc64)));
}
static const struct b43legacy_dma_ops dma64_ops = {
.idx2desc = op64_idx2desc,
.fill_descriptor = op64_fill_descriptor,
.poke_tx = op64_poke_tx,
.tx_suspend = op64_tx_suspend,
.tx_resume = op64_tx_resume,
.get_current_rxslot = op64_get_current_rxslot,
.set_current_rxslot = op64_set_current_rxslot,
};
static inline int free_slots(struct b43legacy_dmaring *ring)
{
return (ring->nr_slots - ring->used_slots);
}
static inline int next_slot(struct b43legacy_dmaring *ring, int slot)
{
B43legacy_WARN_ON(!(slot >= -1 && slot <= ring->nr_slots - 1));
if (slot == ring->nr_slots - 1)
return 0;
return slot + 1;
}
static inline int prev_slot(struct b43legacy_dmaring *ring, int slot)
{
B43legacy_WARN_ON(!(slot >= 0 && slot <= ring->nr_slots - 1));
if (slot == 0)
return ring->nr_slots - 1;
return slot - 1;
}
#ifdef CONFIG_B43LEGACY_DEBUG
static void update_max_used_slots(struct b43legacy_dmaring *ring,
int current_used_slots)
{
if (current_used_slots <= ring->max_used_slots)
return;
ring->max_used_slots = current_used_slots;
if (b43legacy_debug(ring->dev, B43legacy_DBG_DMAVERBOSE))
b43legacydbg(ring->dev->wl,
"max_used_slots increased to %d on %s ring %d\n",
ring->max_used_slots,
ring->tx ? "TX" : "RX",
ring->index);
}
#else
static inline
void update_max_used_slots(struct b43legacy_dmaring *ring,
int current_used_slots)
{ }
#endif /* DEBUG */
/* Request a slot for usage. */
static inline
int request_slot(struct b43legacy_dmaring *ring)
{
int slot;
B43legacy_WARN_ON(!ring->tx);
B43legacy_WARN_ON(ring->stopped);
B43legacy_WARN_ON(free_slots(ring) == 0);
slot = next_slot(ring, ring->current_slot);
ring->current_slot = slot;
ring->used_slots++;
update_max_used_slots(ring, ring->used_slots);
return slot;
}
/* Mac80211-queue to b43legacy-ring mapping */
static struct b43legacy_dmaring *priority_to_txring(
struct b43legacy_wldev *dev,
int queue_priority)
{
struct b43legacy_dmaring *ring;
/*FIXME: For now we always run on TX-ring-1 */
return dev->dma.tx_ring1;
/* 0 = highest priority */
switch (queue_priority) {
default:
B43legacy_WARN_ON(1);
/* fallthrough */
case 0:
ring = dev->dma.tx_ring3;
break;
case 1:
ring = dev->dma.tx_ring2;
break;
case 2:
ring = dev->dma.tx_ring1;
break;
case 3:
ring = dev->dma.tx_ring0;
break;
case 4:
ring = dev->dma.tx_ring4;
break;
case 5:
ring = dev->dma.tx_ring5;
break;
}
return ring;
}
/* Bcm4301-ring to mac80211-queue mapping */
static inline int txring_to_priority(struct b43legacy_dmaring *ring)
{
static const u8 idx_to_prio[] =
{ 3, 2, 1, 0, 4, 5, };
/*FIXME: have only one queue, for now */
return 0;
return idx_to_prio[ring->index];
}
static u16 b43legacy_dmacontroller_base(enum b43legacy_dmatype type,
int controller_idx)
{
static const u16 map64[] = {
B43legacy_MMIO_DMA64_BASE0,
B43legacy_MMIO_DMA64_BASE1,
B43legacy_MMIO_DMA64_BASE2,
B43legacy_MMIO_DMA64_BASE3,
B43legacy_MMIO_DMA64_BASE4,
B43legacy_MMIO_DMA64_BASE5,
};
static const u16 map32[] = {
B43legacy_MMIO_DMA32_BASE0,
B43legacy_MMIO_DMA32_BASE1,
B43legacy_MMIO_DMA32_BASE2,
B43legacy_MMIO_DMA32_BASE3,
B43legacy_MMIO_DMA32_BASE4,
B43legacy_MMIO_DMA32_BASE5,
};
if (type == B43legacy_DMA_64BIT) {
B43legacy_WARN_ON(!(controller_idx >= 0 &&
controller_idx < ARRAY_SIZE(map64)));
return map64[controller_idx];
}
B43legacy_WARN_ON(!(controller_idx >= 0 &&
controller_idx < ARRAY_SIZE(map32)));
return map32[controller_idx];
}
static inline
dma_addr_t map_descbuffer(struct b43legacy_dmaring *ring,
unsigned char *buf,
size_t len,
int tx)
{
dma_addr_t dmaaddr;
if (tx)
dmaaddr = ssb_dma_map_single(ring->dev->dev,
buf, len,
DMA_TO_DEVICE);
else
dmaaddr = ssb_dma_map_single(ring->dev->dev,
buf, len,
DMA_FROM_DEVICE);
return dmaaddr;
}
static inline
void unmap_descbuffer(struct b43legacy_dmaring *ring,
dma_addr_t addr,
size_t len,
int tx)
{
if (tx)
ssb_dma_unmap_single(ring->dev->dev,
addr, len,
DMA_TO_DEVICE);
else
ssb_dma_unmap_single(ring->dev->dev,
addr, len,
DMA_FROM_DEVICE);
}
static inline
void sync_descbuffer_for_cpu(struct b43legacy_dmaring *ring,
dma_addr_t addr,
size_t len)
{
B43legacy_WARN_ON(ring->tx);
ssb_dma_sync_single_for_cpu(ring->dev->dev,
addr, len, DMA_FROM_DEVICE);
}
static inline
void sync_descbuffer_for_device(struct b43legacy_dmaring *ring,
dma_addr_t addr,
size_t len)
{
B43legacy_WARN_ON(ring->tx);
ssb_dma_sync_single_for_device(ring->dev->dev,
addr, len, DMA_FROM_DEVICE);
}
static inline
void free_descriptor_buffer(struct b43legacy_dmaring *ring,
struct b43legacy_dmadesc_meta *meta,
int irq_context)
{
if (meta->skb) {
if (irq_context)
dev_kfree_skb_irq(meta->skb);
else
dev_kfree_skb(meta->skb);
meta->skb = NULL;
}
}
static int alloc_ringmemory(struct b43legacy_dmaring *ring)
{
/* GFP flags must match the flags in free_ringmemory()! */
ring->descbase = ssb_dma_alloc_consistent(ring->dev->dev,
B43legacy_DMA_RINGMEMSIZE,
&(ring->dmabase),
GFP_KERNEL);
if (!ring->descbase) {
b43legacyerr(ring->dev->wl, "DMA ringmemory allocation"
" failed\n");
return -ENOMEM;
}
memset(ring->descbase, 0, B43legacy_DMA_RINGMEMSIZE);
return 0;
}
static void free_ringmemory(struct b43legacy_dmaring *ring)
{
ssb_dma_free_consistent(ring->dev->dev, B43legacy_DMA_RINGMEMSIZE,
ring->descbase, ring->dmabase, GFP_KERNEL);
}
/* Reset the RX DMA channel */
static int b43legacy_dmacontroller_rx_reset(struct b43legacy_wldev *dev,
u16 mmio_base,
enum b43legacy_dmatype type)
{
int i;
u32 value;
u16 offset;
might_sleep();
offset = (type == B43legacy_DMA_64BIT) ?
B43legacy_DMA64_RXCTL : B43legacy_DMA32_RXCTL;
b43legacy_write32(dev, mmio_base + offset, 0);
for (i = 0; i < 10; i++) {
offset = (type == B43legacy_DMA_64BIT) ?
B43legacy_DMA64_RXSTATUS : B43legacy_DMA32_RXSTATUS;
value = b43legacy_read32(dev, mmio_base + offset);
if (type == B43legacy_DMA_64BIT) {
value &= B43legacy_DMA64_RXSTAT;
if (value == B43legacy_DMA64_RXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= B43legacy_DMA32_RXSTATE;
if (value == B43legacy_DMA32_RXSTAT_DISABLED) {
i = -1;
break;
}
}
msleep(1);
}
if (i != -1) {
b43legacyerr(dev->wl, "DMA RX reset timed out\n");
return -ENODEV;
}
return 0;
}
/* Reset the RX DMA channel */
static int b43legacy_dmacontroller_tx_reset(struct b43legacy_wldev *dev,
u16 mmio_base,
enum b43legacy_dmatype type)
{
int i;
u32 value;
u16 offset;
might_sleep();
for (i = 0; i < 10; i++) {
offset = (type == B43legacy_DMA_64BIT) ?
B43legacy_DMA64_TXSTATUS : B43legacy_DMA32_TXSTATUS;
value = b43legacy_read32(dev, mmio_base + offset);
if (type == B43legacy_DMA_64BIT) {
value &= B43legacy_DMA64_TXSTAT;
if (value == B43legacy_DMA64_TXSTAT_DISABLED ||
value == B43legacy_DMA64_TXSTAT_IDLEWAIT ||
value == B43legacy_DMA64_TXSTAT_STOPPED)
break;
} else {
value &= B43legacy_DMA32_TXSTATE;
if (value == B43legacy_DMA32_TXSTAT_DISABLED ||
value == B43legacy_DMA32_TXSTAT_IDLEWAIT ||
value == B43legacy_DMA32_TXSTAT_STOPPED)
break;
}
msleep(1);
}
offset = (type == B43legacy_DMA_64BIT) ? B43legacy_DMA64_TXCTL :
B43legacy_DMA32_TXCTL;
b43legacy_write32(dev, mmio_base + offset, 0);
for (i = 0; i < 10; i++) {
offset = (type == B43legacy_DMA_64BIT) ?
B43legacy_DMA64_TXSTATUS : B43legacy_DMA32_TXSTATUS;
value = b43legacy_read32(dev, mmio_base + offset);
if (type == B43legacy_DMA_64BIT) {
value &= B43legacy_DMA64_TXSTAT;
if (value == B43legacy_DMA64_TXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= B43legacy_DMA32_TXSTATE;
if (value == B43legacy_DMA32_TXSTAT_DISABLED) {
i = -1;
break;
}
}
msleep(1);
}
if (i != -1) {
b43legacyerr(dev->wl, "DMA TX reset timed out\n");
return -ENODEV;
}
/* ensure the reset is completed. */
msleep(1);
return 0;
}
/* Check if a DMA mapping address is invalid. */
static bool b43legacy_dma_mapping_error(struct b43legacy_dmaring *ring,
dma_addr_t addr,
size_t buffersize,
bool dma_to_device)
{
if (unlikely(ssb_dma_mapping_error(ring->dev->dev, addr)))
return 1;
switch (ring->type) {
case B43legacy_DMA_30BIT:
if ((u64)addr + buffersize > (1ULL << 30))
goto address_error;
break;
case B43legacy_DMA_32BIT:
if ((u64)addr + buffersize > (1ULL << 32))
goto address_error;
break;
case B43legacy_DMA_64BIT:
/* Currently we can't have addresses beyond 64 bits in the kernel. */
break;
}
/* The address is OK. */
return 0;
address_error:
/* We can't support this address. Unmap it again. */
unmap_descbuffer(ring, addr, buffersize, dma_to_device);
return 1;
}
static int setup_rx_descbuffer(struct b43legacy_dmaring *ring,
struct b43legacy_dmadesc_generic *desc,
struct b43legacy_dmadesc_meta *meta,
gfp_t gfp_flags)
{
struct b43legacy_rxhdr_fw3 *rxhdr;
struct b43legacy_hwtxstatus *txstat;
dma_addr_t dmaaddr;
struct sk_buff *skb;
B43legacy_WARN_ON(ring->tx);
skb = __dev_alloc_skb(ring->rx_buffersize, gfp_flags);
if (unlikely(!skb))
return -ENOMEM;
dmaaddr = map_descbuffer(ring, skb->data,
ring->rx_buffersize, 0);
if (b43legacy_dma_mapping_error(ring, dmaaddr, ring->rx_buffersize, 0)) {
/* ugh. try to realloc in zone_dma */
gfp_flags |= GFP_DMA;
dev_kfree_skb_any(skb);
skb = __dev_alloc_skb(ring->rx_buffersize, gfp_flags);
if (unlikely(!skb))
return -ENOMEM;
dmaaddr = map_descbuffer(ring, skb->data,
ring->rx_buffersize, 0);
}
if (b43legacy_dma_mapping_error(ring, dmaaddr, ring->rx_buffersize, 0)) {
dev_kfree_skb_any(skb);
return -EIO;
}
meta->skb = skb;
meta->dmaaddr = dmaaddr;
ring->ops->fill_descriptor(ring, desc, dmaaddr,
ring->rx_buffersize, 0, 0, 0);
rxhdr = (struct b43legacy_rxhdr_fw3 *)(skb->data);
rxhdr->frame_len = 0;
txstat = (struct b43legacy_hwtxstatus *)(skb->data);
txstat->cookie = 0;
return 0;
}
/* Allocate the initial descbuffers.
* This is used for an RX ring only.
*/
static int alloc_initial_descbuffers(struct b43legacy_dmaring *ring)
{
int i;
int err = -ENOMEM;
struct b43legacy_dmadesc_generic *desc;
struct b43legacy_dmadesc_meta *meta;
for (i = 0; i < ring->nr_slots; i++) {
desc = ring->ops->idx2desc(ring, i, &meta);
err = setup_rx_descbuffer(ring, desc, meta, GFP_KERNEL);
if (err) {
b43legacyerr(ring->dev->wl,
"Failed to allocate initial descbuffers\n");
goto err_unwind;
}
}
mb(); /* all descbuffer setup before next line */
ring->used_slots = ring->nr_slots;
err = 0;
out:
return err;
err_unwind:
for (i--; i >= 0; i--) {
desc = ring->ops->idx2desc(ring, i, &meta);
unmap_descbuffer(ring, meta->dmaaddr, ring->rx_buffersize, 0);
dev_kfree_skb(meta->skb);
}
goto out;
}
/* Do initial setup of the DMA controller.
* Reset the controller, write the ring busaddress
* and switch the "enable" bit on.
*/
static int dmacontroller_setup(struct b43legacy_dmaring *ring)
{
int err = 0;
u32 value;
u32 addrext;
u32 trans = ssb_dma_translation(ring->dev->dev);
if (ring->tx) {
if (ring->type == B43legacy_DMA_64BIT) {
u64 ringbase = (u64)(ring->dmabase);
addrext = ((ringbase >> 32) & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = B43legacy_DMA64_TXENABLE;
value |= (addrext << B43legacy_DMA64_TXADDREXT_SHIFT)
& B43legacy_DMA64_TXADDREXT_MASK;
b43legacy_dma_write(ring, B43legacy_DMA64_TXCTL,
value);
b43legacy_dma_write(ring, B43legacy_DMA64_TXRINGLO,
(ringbase & 0xFFFFFFFF));
b43legacy_dma_write(ring, B43legacy_DMA64_TXRINGHI,
((ringbase >> 32)
& ~SSB_DMA_TRANSLATION_MASK)
| trans);
} else {
u32 ringbase = (u32)(ring->dmabase);
addrext = (ringbase & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = B43legacy_DMA32_TXENABLE;
value |= (addrext << B43legacy_DMA32_TXADDREXT_SHIFT)
& B43legacy_DMA32_TXADDREXT_MASK;
b43legacy_dma_write(ring, B43legacy_DMA32_TXCTL,
value);
b43legacy_dma_write(ring, B43legacy_DMA32_TXRING,
(ringbase &
~SSB_DMA_TRANSLATION_MASK)
| trans);
}
} else {
err = alloc_initial_descbuffers(ring);
if (err)
goto out;
if (ring->type == B43legacy_DMA_64BIT) {
u64 ringbase = (u64)(ring->dmabase);
addrext = ((ringbase >> 32) & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = (ring->frameoffset <<
B43legacy_DMA64_RXFROFF_SHIFT);
value |= B43legacy_DMA64_RXENABLE;
value |= (addrext << B43legacy_DMA64_RXADDREXT_SHIFT)
& B43legacy_DMA64_RXADDREXT_MASK;
b43legacy_dma_write(ring, B43legacy_DMA64_RXCTL,
value);
b43legacy_dma_write(ring, B43legacy_DMA64_RXRINGLO,
(ringbase & 0xFFFFFFFF));
b43legacy_dma_write(ring, B43legacy_DMA64_RXRINGHI,
((ringbase >> 32) &
~SSB_DMA_TRANSLATION_MASK) |
trans);
b43legacy_dma_write(ring, B43legacy_DMA64_RXINDEX,
200);
} else {
u32 ringbase = (u32)(ring->dmabase);
addrext = (ringbase & SSB_DMA_TRANSLATION_MASK)
>> SSB_DMA_TRANSLATION_SHIFT;
value = (ring->frameoffset <<
B43legacy_DMA32_RXFROFF_SHIFT);
value |= B43legacy_DMA32_RXENABLE;
value |= (addrext <<
B43legacy_DMA32_RXADDREXT_SHIFT)
& B43legacy_DMA32_RXADDREXT_MASK;
b43legacy_dma_write(ring, B43legacy_DMA32_RXCTL,
value);
b43legacy_dma_write(ring, B43legacy_DMA32_RXRING,
(ringbase &
~SSB_DMA_TRANSLATION_MASK)
| trans);
b43legacy_dma_write(ring, B43legacy_DMA32_RXINDEX,
200);
}
}
out:
return err;
}
/* Shutdown the DMA controller. */
static void dmacontroller_cleanup(struct b43legacy_dmaring *ring)
{
if (ring->tx) {
b43legacy_dmacontroller_tx_reset(ring->dev, ring->mmio_base,
ring->type);
if (ring->type == B43legacy_DMA_64BIT) {
b43legacy_dma_write(ring, B43legacy_DMA64_TXRINGLO, 0);
b43legacy_dma_write(ring, B43legacy_DMA64_TXRINGHI, 0);
} else
b43legacy_dma_write(ring, B43legacy_DMA32_TXRING, 0);
} else {
b43legacy_dmacontroller_rx_reset(ring->dev, ring->mmio_base,
ring->type);
if (ring->type == B43legacy_DMA_64BIT) {
b43legacy_dma_write(ring, B43legacy_DMA64_RXRINGLO, 0);
b43legacy_dma_write(ring, B43legacy_DMA64_RXRINGHI, 0);
} else
b43legacy_dma_write(ring, B43legacy_DMA32_RXRING, 0);
}
}
static void free_all_descbuffers(struct b43legacy_dmaring *ring)
{
struct b43legacy_dmadesc_generic *desc;
struct b43legacy_dmadesc_meta *meta;
int i;
if (!ring->used_slots)
return;
for (i = 0; i < ring->nr_slots; i++) {
desc = ring->ops->idx2desc(ring, i, &meta);
if (!meta->skb) {
B43legacy_WARN_ON(!ring->tx);
continue;
}
if (ring->tx)
unmap_descbuffer(ring, meta->dmaaddr,
meta->skb->len, 1);
else
unmap_descbuffer(ring, meta->dmaaddr,
ring->rx_buffersize, 0);
free_descriptor_buffer(ring, meta, 0);
}
}
static u64 supported_dma_mask(struct b43legacy_wldev *dev)
{
u32 tmp;
u16 mmio_base;
tmp = b43legacy_read32(dev, SSB_TMSHIGH);
if (tmp & SSB_TMSHIGH_DMA64)
return DMA_BIT_MASK(64);
mmio_base = b43legacy_dmacontroller_base(0, 0);
b43legacy_write32(dev,
mmio_base + B43legacy_DMA32_TXCTL,
B43legacy_DMA32_TXADDREXT_MASK);
tmp = b43legacy_read32(dev, mmio_base +
B43legacy_DMA32_TXCTL);
if (tmp & B43legacy_DMA32_TXADDREXT_MASK)
return DMA_BIT_MASK(32);
return DMA_BIT_MASK(30);
}
static enum b43legacy_dmatype dma_mask_to_engine_type(u64 dmamask)
{
if (dmamask == DMA_BIT_MASK(30))
return B43legacy_DMA_30BIT;
if (dmamask == DMA_BIT_MASK(32))
return B43legacy_DMA_32BIT;
if (dmamask == DMA_BIT_MASK(64))
return B43legacy_DMA_64BIT;
B43legacy_WARN_ON(1);
return B43legacy_DMA_30BIT;
}
/* Main initialization function. */
static
struct b43legacy_dmaring *b43legacy_setup_dmaring(struct b43legacy_wldev *dev,
int controller_index,
int for_tx,
enum b43legacy_dmatype type)
{
struct b43legacy_dmaring *ring;
int err;
int nr_slots;
dma_addr_t dma_test;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto out;
ring->type = type;
ring->dev = dev;
nr_slots = B43legacy_RXRING_SLOTS;
if (for_tx)
nr_slots = B43legacy_TXRING_SLOTS;
ring->meta = kcalloc(nr_slots, sizeof(struct b43legacy_dmadesc_meta),
GFP_KERNEL);
if (!ring->meta)
goto err_kfree_ring;
if (for_tx) {
ring->txhdr_cache = kcalloc(nr_slots,
sizeof(struct b43legacy_txhdr_fw3),
GFP_KERNEL);
if (!ring->txhdr_cache)
goto err_kfree_meta;
/* test for ability to dma to txhdr_cache */
dma_test = ssb_dma_map_single(dev->dev, ring->txhdr_cache,
sizeof(struct b43legacy_txhdr_fw3),
DMA_TO_DEVICE);
if (b43legacy_dma_mapping_error(ring, dma_test,
sizeof(struct b43legacy_txhdr_fw3), 1)) {
/* ugh realloc */
kfree(ring->txhdr_cache);
ring->txhdr_cache = kcalloc(nr_slots,
sizeof(struct b43legacy_txhdr_fw3),
GFP_KERNEL | GFP_DMA);
if (!ring->txhdr_cache)
goto err_kfree_meta;
dma_test = ssb_dma_map_single(dev->dev,
ring->txhdr_cache,
sizeof(struct b43legacy_txhdr_fw3),
DMA_TO_DEVICE);
if (b43legacy_dma_mapping_error(ring, dma_test,
sizeof(struct b43legacy_txhdr_fw3), 1))
goto err_kfree_txhdr_cache;
}
ssb_dma_unmap_single(dev->dev, dma_test,
sizeof(struct b43legacy_txhdr_fw3),
DMA_TO_DEVICE);
}
ring->nr_slots = nr_slots;
ring->mmio_base = b43legacy_dmacontroller_base(type, controller_index);
ring->index = controller_index;
if (type == B43legacy_DMA_64BIT)
ring->ops = &dma64_ops;
else
ring->ops = &dma32_ops;
if (for_tx) {
ring->tx = 1;
ring->current_slot = -1;
} else {
if (ring->index == 0) {
ring->rx_buffersize = B43legacy_DMA0_RX_BUFFERSIZE;
ring->frameoffset = B43legacy_DMA0_RX_FRAMEOFFSET;
} else if (ring->index == 3) {
ring->rx_buffersize = B43legacy_DMA3_RX_BUFFERSIZE;
ring->frameoffset = B43legacy_DMA3_RX_FRAMEOFFSET;
} else
B43legacy_WARN_ON(1);
}
spin_lock_init(&ring->lock);
#ifdef CONFIG_B43LEGACY_DEBUG
ring->last_injected_overflow = jiffies;
#endif
err = alloc_ringmemory(ring);
if (err)
goto err_kfree_txhdr_cache;
err = dmacontroller_setup(ring);
if (err)
goto err_free_ringmemory;
out:
return ring;
err_free_ringmemory:
free_ringmemory(ring);
err_kfree_txhdr_cache:
kfree(ring->txhdr_cache);
err_kfree_meta:
kfree(ring->meta);
err_kfree_ring:
kfree(ring);
ring = NULL;
goto out;
}
/* Main cleanup function. */
static void b43legacy_destroy_dmaring(struct b43legacy_dmaring *ring)
{
if (!ring)
return;
b43legacydbg(ring->dev->wl, "DMA-%u 0x%04X (%s) max used slots:"
" %d/%d\n", (unsigned int)(ring->type), ring->mmio_base,
(ring->tx) ? "TX" : "RX", ring->max_used_slots,
ring->nr_slots);
/* Device IRQs are disabled prior entering this function,
* so no need to take care of concurrency with rx handler stuff.
*/
dmacontroller_cleanup(ring);
free_all_descbuffers(ring);
free_ringmemory(ring);
kfree(ring->txhdr_cache);
kfree(ring->meta);
kfree(ring);
}
void b43legacy_dma_free(struct b43legacy_wldev *dev)
{
struct b43legacy_dma *dma;
if (b43legacy_using_pio(dev))
return;
dma = &dev->dma;
b43legacy_destroy_dmaring(dma->rx_ring3);
dma->rx_ring3 = NULL;
b43legacy_destroy_dmaring(dma->rx_ring0);
dma->rx_ring0 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring5);
dma->tx_ring5 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring4);
dma->tx_ring4 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring3);
dma->tx_ring3 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring2);
dma->tx_ring2 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring1);
dma->tx_ring1 = NULL;
b43legacy_destroy_dmaring(dma->tx_ring0);
dma->tx_ring0 = NULL;
}
static int b43legacy_dma_set_mask(struct b43legacy_wldev *dev, u64 mask)
{
u64 orig_mask = mask;
bool fallback = 0;
int err;
/* Try to set the DMA mask. If it fails, try falling back to a
* lower mask, as we can always also support a lower one. */
while (1) {
err = ssb_dma_set_mask(dev->dev, mask);
if (!err)
break;
if (mask == DMA_BIT_MASK(64)) {
mask = DMA_BIT_MASK(32);
fallback = 1;
continue;
}
if (mask == DMA_BIT_MASK(32)) {
mask = DMA_BIT_MASK(30);
fallback = 1;
continue;
}
b43legacyerr(dev->wl, "The machine/kernel does not support "
"the required %u-bit DMA mask\n",
(unsigned int)dma_mask_to_engine_type(orig_mask));
return -EOPNOTSUPP;
}
if (fallback) {
b43legacyinfo(dev->wl, "DMA mask fallback from %u-bit to %u-"
"bit\n",
(unsigned int)dma_mask_to_engine_type(orig_mask),
(unsigned int)dma_mask_to_engine_type(mask));
}
return 0;
}
int b43legacy_dma_init(struct b43legacy_wldev *dev)
{
struct b43legacy_dma *dma = &dev->dma;
struct b43legacy_dmaring *ring;
int err;
u64 dmamask;
enum b43legacy_dmatype type;
dmamask = supported_dma_mask(dev);
type = dma_mask_to_engine_type(dmamask);
err = b43legacy_dma_set_mask(dev, dmamask);
if (err) {
#ifdef CONFIG_B43LEGACY_PIO
b43legacywarn(dev->wl, "DMA for this device not supported. "
"Falling back to PIO\n");
dev->__using_pio = 1;
return -EAGAIN;
#else
b43legacyerr(dev->wl, "DMA for this device not supported and "
"no PIO support compiled in\n");
return -EOPNOTSUPP;
#endif
}
err = -ENOMEM;
/* setup TX DMA channels. */
ring = b43legacy_setup_dmaring(dev, 0, 1, type);
if (!ring)
goto out;
dma->tx_ring0 = ring;
ring = b43legacy_setup_dmaring(dev, 1, 1, type);
if (!ring)
goto err_destroy_tx0;
dma->tx_ring1 = ring;
ring = b43legacy_setup_dmaring(dev, 2, 1, type);
if (!ring)
goto err_destroy_tx1;
dma->tx_ring2 = ring;
ring = b43legacy_setup_dmaring(dev, 3, 1, type);
if (!ring)
goto err_destroy_tx2;
dma->tx_ring3 = ring;
ring = b43legacy_setup_dmaring(dev, 4, 1, type);
if (!ring)
goto err_destroy_tx3;
dma->tx_ring4 = ring;
ring = b43legacy_setup_dmaring(dev, 5, 1, type);
if (!ring)
goto err_destroy_tx4;
dma->tx_ring5 = ring;
/* setup RX DMA channels. */
ring = b43legacy_setup_dmaring(dev, 0, 0, type);
if (!ring)
goto err_destroy_tx5;
dma->rx_ring0 = ring;
if (dev->dev->id.revision < 5) {
ring = b43legacy_setup_dmaring(dev, 3, 0, type);
if (!ring)
goto err_destroy_rx0;
dma->rx_ring3 = ring;
}
b43legacydbg(dev->wl, "%u-bit DMA initialized\n", (unsigned int)type);
err = 0;
out:
return err;
err_destroy_rx0:
b43legacy_destroy_dmaring(dma->rx_ring0);
dma->rx_ring0 = NULL;
err_destroy_tx5:
b43legacy_destroy_dmaring(dma->tx_ring5);
dma->tx_ring5 = NULL;
err_destroy_tx4:
b43legacy_destroy_dmaring(dma->tx_ring4);
dma->tx_ring4 = NULL;
err_destroy_tx3:
b43legacy_destroy_dmaring(dma->tx_ring3);
dma->tx_ring3 = NULL;
err_destroy_tx2:
b43legacy_destroy_dmaring(dma->tx_ring2);
dma->tx_ring2 = NULL;
err_destroy_tx1:
b43legacy_destroy_dmaring(dma->tx_ring1);
dma->tx_ring1 = NULL;
err_destroy_tx0:
b43legacy_destroy_dmaring(dma->tx_ring0);
dma->tx_ring0 = NULL;
goto out;
}
/* Generate a cookie for the TX header. */
static u16 generate_cookie(struct b43legacy_dmaring *ring,
int slot)
{
u16 cookie = 0x1000;
/* Use the upper 4 bits of the cookie as
* DMA controller ID and store the slot number
* in the lower 12 bits.
* Note that the cookie must never be 0, as this
* is a special value used in RX path.
*/
switch (ring->index) {
case 0:
cookie = 0xA000;
break;
case 1:
cookie = 0xB000;
break;
case 2:
cookie = 0xC000;
break;
case 3:
cookie = 0xD000;
break;
case 4:
cookie = 0xE000;
break;
case 5:
cookie = 0xF000;
break;
}
B43legacy_WARN_ON(!(((u16)slot & 0xF000) == 0x0000));
cookie |= (u16)slot;
return cookie;
}
/* Inspect a cookie and find out to which controller/slot it belongs. */
static
struct b43legacy_dmaring *parse_cookie(struct b43legacy_wldev *dev,
u16 cookie, int *slot)
{
struct b43legacy_dma *dma = &dev->dma;
struct b43legacy_dmaring *ring = NULL;
switch (cookie & 0xF000) {
case 0xA000:
ring = dma->tx_ring0;
break;
case 0xB000:
ring = dma->tx_ring1;
break;
case 0xC000:
ring = dma->tx_ring2;
break;
case 0xD000:
ring = dma->tx_ring3;
break;
case 0xE000:
ring = dma->tx_ring4;
break;
case 0xF000:
ring = dma->tx_ring5;
break;
default:
B43legacy_WARN_ON(1);
}
*slot = (cookie & 0x0FFF);
B43legacy_WARN_ON(!(ring && *slot >= 0 && *slot < ring->nr_slots));
return ring;
}
static int dma_tx_fragment(struct b43legacy_dmaring *ring,
struct sk_buff **in_skb)
{
struct sk_buff *skb = *in_skb;
const struct b43legacy_dma_ops *ops = ring->ops;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
u8 *header;
int slot, old_top_slot, old_used_slots;
int err;
struct b43legacy_dmadesc_generic *desc;
struct b43legacy_dmadesc_meta *meta;
struct b43legacy_dmadesc_meta *meta_hdr;
struct sk_buff *bounce_skb;
#define SLOTS_PER_PACKET 2
B43legacy_WARN_ON(skb_shinfo(skb)->nr_frags != 0);
old_top_slot = ring->current_slot;
old_used_slots = ring->used_slots;
/* Get a slot for the header. */
slot = request_slot(ring);
desc = ops->idx2desc(ring, slot, &meta_hdr);
memset(meta_hdr, 0, sizeof(*meta_hdr));
header = &(ring->txhdr_cache[slot * sizeof(
struct b43legacy_txhdr_fw3)]);
err = b43legacy_generate_txhdr(ring->dev, header,
skb->data, skb->len, info,
generate_cookie(ring, slot));
if (unlikely(err)) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
return err;
}
meta_hdr->dmaaddr = map_descbuffer(ring, (unsigned char *)header,
sizeof(struct b43legacy_txhdr_fw3), 1);
if (b43legacy_dma_mapping_error(ring, meta_hdr->dmaaddr,
sizeof(struct b43legacy_txhdr_fw3), 1)) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
return -EIO;
}
ops->fill_descriptor(ring, desc, meta_hdr->dmaaddr,
sizeof(struct b43legacy_txhdr_fw3), 1, 0, 0);
/* Get a slot for the payload. */
slot = request_slot(ring);
desc = ops->idx2desc(ring, slot, &meta);
memset(meta, 0, sizeof(*meta));
meta->skb = skb;
meta->is_last_fragment = 1;
meta->dmaaddr = map_descbuffer(ring, skb->data, skb->len, 1);
/* create a bounce buffer in zone_dma on mapping failure. */
if (b43legacy_dma_mapping_error(ring, meta->dmaaddr, skb->len, 1)) {
bounce_skb = __dev_alloc_skb(skb->len, GFP_ATOMIC | GFP_DMA);
if (!bounce_skb) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
err = -ENOMEM;
goto out_unmap_hdr;
}
memcpy(skb_put(bounce_skb, skb->len), skb->data, skb->len);
memcpy(bounce_skb->cb, skb->cb, sizeof(skb->cb));
bounce_skb->dev = skb->dev;
skb_set_queue_mapping(bounce_skb, skb_get_queue_mapping(skb));
info = IEEE80211_SKB_CB(bounce_skb);
dev_kfree_skb_any(skb);
skb = bounce_skb;
*in_skb = bounce_skb;
meta->skb = skb;
meta->dmaaddr = map_descbuffer(ring, skb->data, skb->len, 1);
if (b43legacy_dma_mapping_error(ring, meta->dmaaddr, skb->len, 1)) {
ring->current_slot = old_top_slot;
ring->used_slots = old_used_slots;
err = -EIO;
goto out_free_bounce;
}
}
ops->fill_descriptor(ring, desc, meta->dmaaddr,
skb->len, 0, 1, 1);
wmb(); /* previous stuff MUST be done */
/* Now transfer the whole frame. */
ops->poke_tx(ring, next_slot(ring, slot));
return 0;
out_free_bounce:
dev_kfree_skb_any(skb);
out_unmap_hdr:
unmap_descbuffer(ring, meta_hdr->dmaaddr,
sizeof(struct b43legacy_txhdr_fw3), 1);
return err;
}
static inline
int should_inject_overflow(struct b43legacy_dmaring *ring)
{
#ifdef CONFIG_B43LEGACY_DEBUG
if (unlikely(b43legacy_debug(ring->dev,
B43legacy_DBG_DMAOVERFLOW))) {
/* Check if we should inject another ringbuffer overflow
* to test handling of this situation in the stack. */
unsigned long next_overflow;
next_overflow = ring->last_injected_overflow + HZ;
if (time_after(jiffies, next_overflow)) {
ring->last_injected_overflow = jiffies;
b43legacydbg(ring->dev->wl,
"Injecting TX ring overflow on "
"DMA controller %d\n", ring->index);
return 1;
}
}
#endif /* CONFIG_B43LEGACY_DEBUG */
return 0;
}
int b43legacy_dma_tx(struct b43legacy_wldev *dev,
struct sk_buff *skb)
{
struct b43legacy_dmaring *ring;
struct ieee80211_hdr *hdr;
int err = 0;
unsigned long flags;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
ring = priority_to_txring(dev, skb_get_queue_mapping(skb));
spin_lock_irqsave(&ring->lock, flags);
B43legacy_WARN_ON(!ring->tx);
if (unlikely(ring->stopped)) {
/* We get here only because of a bug in mac80211.
* Because of a race, one packet may be queued after
* the queue is stopped, thus we got called when we shouldn't.
* For now, just refuse the transmit. */
if (b43legacy_debug(dev, B43legacy_DBG_DMAVERBOSE))
b43legacyerr(dev->wl, "Packet after queue stopped\n");
err = -ENOSPC;
goto out_unlock;
}
if (unlikely(WARN_ON(free_slots(ring) < SLOTS_PER_PACKET))) {
/* If we get here, we have a real error with the queue
* full, but queues not stopped. */
b43legacyerr(dev->wl, "DMA queue overflow\n");
err = -ENOSPC;
goto out_unlock;
}
/* dma_tx_fragment might reallocate the skb, so invalidate pointers pointing
* into the skb data or cb now. */
hdr = NULL;
info = NULL;
err = dma_tx_fragment(ring, &skb);
if (unlikely(err == -ENOKEY)) {
/* Drop this packet, as we don't have the encryption key
* anymore and must not transmit it unencrypted. */
dev_kfree_skb_any(skb);
err = 0;
goto out_unlock;
}
if (unlikely(err)) {
b43legacyerr(dev->wl, "DMA tx mapping failure\n");
goto out_unlock;
}
ring->nr_tx_packets++;
if ((free_slots(ring) < SLOTS_PER_PACKET) ||
should_inject_overflow(ring)) {
/* This TX ring is full. */
ieee80211_stop_queue(dev->wl->hw, txring_to_priority(ring));
ring->stopped = 1;
if (b43legacy_debug(dev, B43legacy_DBG_DMAVERBOSE))
b43legacydbg(dev->wl, "Stopped TX ring %d\n",
ring->index);
}
out_unlock:
spin_unlock_irqrestore(&ring->lock, flags);
return err;
}
void b43legacy_dma_handle_txstatus(struct b43legacy_wldev *dev,
const struct b43legacy_txstatus *status)
{
const struct b43legacy_dma_ops *ops;
struct b43legacy_dmaring *ring;
struct b43legacy_dmadesc_generic *desc;
struct b43legacy_dmadesc_meta *meta;
int retry_limit;
int slot;
ring = parse_cookie(dev, status->cookie, &slot);
if (unlikely(!ring))
return;
B43legacy_WARN_ON(!irqs_disabled());
spin_lock(&ring->lock);
B43legacy_WARN_ON(!ring->tx);
ops = ring->ops;
while (1) {
B43legacy_WARN_ON(!(slot >= 0 && slot < ring->nr_slots));
desc = ops->idx2desc(ring, slot, &meta);
if (meta->skb)
unmap_descbuffer(ring, meta->dmaaddr,
meta->skb->len, 1);
else
unmap_descbuffer(ring, meta->dmaaddr,
sizeof(struct b43legacy_txhdr_fw3),
1);
if (meta->is_last_fragment) {
struct ieee80211_tx_info *info;
BUG_ON(!meta->skb);
info = IEEE80211_SKB_CB(meta->skb);
/* preserve the confiured retry limit before clearing the status
* The xmit function has overwritten the rc's value with the actual
* retry limit done by the hardware */
retry_limit = info->status.rates[0].count;
ieee80211_tx_info_clear_status(info);
if (status->acked)
info->flags |= IEEE80211_TX_STAT_ACK;
if (status->rts_count > dev->wl->hw->conf.short_frame_max_tx_count) {
/*
* If the short retries (RTS, not data frame) have exceeded
* the limit, the hw will not have tried the selected rate,
* but will have used the fallback rate instead.
* Don't let the rate control count attempts for the selected
* rate in this case, otherwise the statistics will be off.
*/
info->status.rates[0].count = 0;
info->status.rates[1].count = status->frame_count;
} else {
if (status->frame_count > retry_limit) {
info->status.rates[0].count = retry_limit;
info->status.rates[1].count = status->frame_count -
retry_limit;
} else {
info->status.rates[0].count = status->frame_count;
info->status.rates[1].idx = -1;
}
}
/* Call back to inform the ieee80211 subsystem about the
* status of the transmission.
* Some fields of txstat are already filled in dma_tx().
*/
ieee80211_tx_status_irqsafe(dev->wl->hw, meta->skb);
/* skb is freed by ieee80211_tx_status_irqsafe() */
meta->skb = NULL;
} else {
/* No need to call free_descriptor_buffer here, as
* this is only the txhdr, which is not allocated.
*/
B43legacy_WARN_ON(meta->skb != NULL);
}
/* Everything unmapped and free'd. So it's not used anymore. */
ring->used_slots--;
if (meta->is_last_fragment)
break;
slot = next_slot(ring, slot);
}
dev->stats.last_tx = jiffies;
if (ring->stopped) {
B43legacy_WARN_ON(free_slots(ring) < SLOTS_PER_PACKET);
ieee80211_wake_queue(dev->wl->hw, txring_to_priority(ring));
ring->stopped = 0;
if (b43legacy_debug(dev, B43legacy_DBG_DMAVERBOSE))
b43legacydbg(dev->wl, "Woke up TX ring %d\n",
ring->index);
}
spin_unlock(&ring->lock);
}
void b43legacy_dma_get_tx_stats(struct b43legacy_wldev *dev,
struct ieee80211_tx_queue_stats *stats)
{
const int nr_queues = dev->wl->hw->queues;
struct b43legacy_dmaring *ring;
unsigned long flags;
int i;
for (i = 0; i < nr_queues; i++) {
ring = priority_to_txring(dev, i);
spin_lock_irqsave(&ring->lock, flags);
stats[i].len = ring->used_slots / SLOTS_PER_PACKET;
stats[i].limit = ring->nr_slots / SLOTS_PER_PACKET;
stats[i].count = ring->nr_tx_packets;
spin_unlock_irqrestore(&ring->lock, flags);
}
}
static void dma_rx(struct b43legacy_dmaring *ring,
int *slot)
{
const struct b43legacy_dma_ops *ops = ring->ops;
struct b43legacy_dmadesc_generic *desc;
struct b43legacy_dmadesc_meta *meta;
struct b43legacy_rxhdr_fw3 *rxhdr;
struct sk_buff *skb;
u16 len;
int err;
dma_addr_t dmaaddr;
desc = ops->idx2desc(ring, *slot, &meta);
sync_descbuffer_for_cpu(ring, meta->dmaaddr, ring->rx_buffersize);
skb = meta->skb;
if (ring->index == 3) {
/* We received an xmit status. */
struct b43legacy_hwtxstatus *hw =
(struct b43legacy_hwtxstatus *)skb->data;
int i = 0;
while (hw->cookie == 0) {
if (i > 100)
break;
i++;
udelay(2);
barrier();
}
b43legacy_handle_hwtxstatus(ring->dev, hw);
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
return;
}
rxhdr = (struct b43legacy_rxhdr_fw3 *)skb->data;
len = le16_to_cpu(rxhdr->frame_len);
if (len == 0) {
int i = 0;
do {
udelay(2);
barrier();
len = le16_to_cpu(rxhdr->frame_len);
} while (len == 0 && i++ < 5);
if (unlikely(len == 0)) {
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
goto drop;
}
}
if (unlikely(len > ring->rx_buffersize)) {
/* The data did not fit into one descriptor buffer
* and is split over multiple buffers.
* This should never happen, as we try to allocate buffers
* big enough. So simply ignore this packet.
*/
int cnt = 0;
s32 tmp = len;
while (1) {
desc = ops->idx2desc(ring, *slot, &meta);
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
*slot = next_slot(ring, *slot);
cnt++;
tmp -= ring->rx_buffersize;
if (tmp <= 0)
break;
}
b43legacyerr(ring->dev->wl, "DMA RX buffer too small "
"(len: %u, buffer: %u, nr-dropped: %d)\n",
len, ring->rx_buffersize, cnt);
goto drop;
}
dmaaddr = meta->dmaaddr;
err = setup_rx_descbuffer(ring, desc, meta, GFP_ATOMIC);
if (unlikely(err)) {
b43legacydbg(ring->dev->wl, "DMA RX: setup_rx_descbuffer()"
" failed\n");
sync_descbuffer_for_device(ring, dmaaddr,
ring->rx_buffersize);
goto drop;
}
unmap_descbuffer(ring, dmaaddr, ring->rx_buffersize, 0);
skb_put(skb, len + ring->frameoffset);
skb_pull(skb, ring->frameoffset);
b43legacy_rx(ring->dev, skb, rxhdr);
drop:
return;
}
void b43legacy_dma_rx(struct b43legacy_dmaring *ring)
{
const struct b43legacy_dma_ops *ops = ring->ops;
int slot;
int current_slot;
int used_slots = 0;
B43legacy_WARN_ON(ring->tx);
current_slot = ops->get_current_rxslot(ring);
B43legacy_WARN_ON(!(current_slot >= 0 && current_slot <
ring->nr_slots));
slot = ring->current_slot;
for (; slot != current_slot; slot = next_slot(ring, slot)) {
dma_rx(ring, &slot);
update_max_used_slots(ring, ++used_slots);
}
ops->set_current_rxslot(ring, slot);
ring->current_slot = slot;
}
static void b43legacy_dma_tx_suspend_ring(struct b43legacy_dmaring *ring)
{
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
B43legacy_WARN_ON(!ring->tx);
ring->ops->tx_suspend(ring);
spin_unlock_irqrestore(&ring->lock, flags);
}
static void b43legacy_dma_tx_resume_ring(struct b43legacy_dmaring *ring)
{
unsigned long flags;
spin_lock_irqsave(&ring->lock, flags);
B43legacy_WARN_ON(!ring->tx);
ring->ops->tx_resume(ring);
spin_unlock_irqrestore(&ring->lock, flags);
}
void b43legacy_dma_tx_suspend(struct b43legacy_wldev *dev)
{
b43legacy_power_saving_ctl_bits(dev, -1, 1);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring0);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring1);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring2);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring3);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring4);
b43legacy_dma_tx_suspend_ring(dev->dma.tx_ring5);
}
void b43legacy_dma_tx_resume(struct b43legacy_wldev *dev)
{
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring5);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring4);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring3);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring2);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring1);
b43legacy_dma_tx_resume_ring(dev->dma.tx_ring0);
b43legacy_power_saving_ctl_bits(dev, -1, -1);
}