2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-06 20:53:54 +08:00
linux-next/arch/arm/include/asm/spinlock.h
Marc Zyngier 603605abae ARM: 6939/1: fix missing 'cpu_relax()' declaration
ARM build fails with the following symptom:

  CC      arch/arm/kernel/asm-offsets.s
In file included from include/linux/seqlock.h:29,
                 from include/linux/time.h:8,
                 from include/linux/timex.h:56,
                 from include/linux/sched.h:57,
                 from arch/arm/kernel/asm-offsets.c:13:
include/linux/spinlock.h: In function 'spin_unlock_wait':
include/linux/spinlock.h:360: error: implicit declaration of function 'cpu_relax'
make[1]: *** [arch/arm/kernel/asm-offsets.s] Error 1

Fix it by including <asm/processor.h>.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2011-05-23 17:19:26 +01:00

269 lines
5.4 KiB
C

#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H
#if __LINUX_ARM_ARCH__ < 6
#error SMP not supported on pre-ARMv6 CPUs
#endif
#include <asm/processor.h>
/*
* sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K
* extensions, so when running on UP, we have to patch these instructions away.
*/
#define ALT_SMP(smp, up) \
"9998: " smp "\n" \
" .pushsection \".alt.smp.init\", \"a\"\n" \
" .long 9998b\n" \
" " up "\n" \
" .popsection\n"
#ifdef CONFIG_THUMB2_KERNEL
#define SEV ALT_SMP("sev.w", "nop.w")
/*
* For Thumb-2, special care is needed to ensure that the conditional WFE
* instruction really does assemble to exactly 4 bytes (as required by
* the SMP_ON_UP fixup code). By itself "wfene" might cause the
* assembler to insert a extra (16-bit) IT instruction, depending on the
* presence or absence of neighbouring conditional instructions.
*
* To avoid this unpredictableness, an approprite IT is inserted explicitly:
* the assembler won't change IT instructions which are explicitly present
* in the input.
*/
#define WFE(cond) ALT_SMP( \
"it " cond "\n\t" \
"wfe" cond ".n", \
\
"nop.w" \
)
#else
#define SEV ALT_SMP("sev", "nop")
#define WFE(cond) ALT_SMP("wfe" cond, "nop")
#endif
static inline void dsb_sev(void)
{
#if __LINUX_ARM_ARCH__ >= 7
__asm__ __volatile__ (
"dsb\n"
SEV
);
#else
__asm__ __volatile__ (
"mcr p15, 0, %0, c7, c10, 4\n"
SEV
: : "r" (0)
);
#endif
}
/*
* ARMv6 Spin-locking.
*
* We exclusively read the old value. If it is zero, we may have
* won the lock, so we try exclusively storing it. A memory barrier
* is required after we get a lock, and before we release it, because
* V6 CPUs are assumed to have weakly ordered memory.
*
* Unlocked value: 0
* Locked value: 1
*/
#define arch_spin_is_locked(x) ((x)->lock != 0)
#define arch_spin_unlock_wait(lock) \
do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
WFE("ne")
" strexeq %0, %2, [%1]\n"
" teqeq %0, #0\n"
" bne 1b"
: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc");
smp_mb();
}
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned long tmp;
__asm__ __volatile__(
" ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc");
if (tmp == 0) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
smp_mb();
__asm__ __volatile__(
" str %1, [%0]\n"
:
: "r" (&lock->lock), "r" (0)
: "cc");
dsb_sev();
}
/*
* RWLOCKS
*
*
* Write locks are easy - we just set bit 31. When unlocking, we can
* just write zero since the lock is exclusively held.
*/
static inline void arch_write_lock(arch_rwlock_t *rw)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
WFE("ne")
" strexeq %0, %2, [%1]\n"
" teq %0, #0\n"
" bne 1b"
: "=&r" (tmp)
: "r" (&rw->lock), "r" (0x80000000)
: "cc");
smp_mb();
}
static inline int arch_write_trylock(arch_rwlock_t *rw)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&rw->lock), "r" (0x80000000)
: "cc");
if (tmp == 0) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
smp_mb();
__asm__ __volatile__(
"str %1, [%0]\n"
:
: "r" (&rw->lock), "r" (0)
: "cc");
dsb_sev();
}
/* write_can_lock - would write_trylock() succeed? */
#define arch_write_can_lock(x) ((x)->lock == 0)
/*
* Read locks are a bit more hairy:
* - Exclusively load the lock value.
* - Increment it.
* - Store new lock value if positive, and we still own this location.
* If the value is negative, we've already failed.
* - If we failed to store the value, we want a negative result.
* - If we failed, try again.
* Unlocking is similarly hairy. We may have multiple read locks
* currently active. However, we know we won't have any write
* locks.
*/
static inline void arch_read_lock(arch_rwlock_t *rw)
{
unsigned long tmp, tmp2;
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" adds %0, %0, #1\n"
" strexpl %1, %0, [%2]\n"
WFE("mi")
" rsbpls %0, %1, #0\n"
" bmi 1b"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc");
smp_mb();
}
static inline void arch_read_unlock(arch_rwlock_t *rw)
{
unsigned long tmp, tmp2;
smp_mb();
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" sub %0, %0, #1\n"
" strex %1, %0, [%2]\n"
" teq %1, #0\n"
" bne 1b"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc");
if (tmp == 0)
dsb_sev();
}
static inline int arch_read_trylock(arch_rwlock_t *rw)
{
unsigned long tmp, tmp2 = 1;
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" adds %0, %0, #1\n"
" strexpl %1, %0, [%2]\n"
: "=&r" (tmp), "+r" (tmp2)
: "r" (&rw->lock)
: "cc");
smp_mb();
return tmp2 == 0;
}
/* read_can_lock - would read_trylock() succeed? */
#define arch_read_can_lock(x) ((x)->lock < 0x80000000)
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif /* __ASM_SPINLOCK_H */