2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-29 15:43:59 +08:00
linux-next/arch/x86/kernel/irqinit.c
Nicolai Stange 447ae31667 x86: Don't include linux/irq.h from asm/hardirq.h
The next patch in this series will have to make the definition of
irq_cpustat_t available to entering_irq().

Inclusion of asm/hardirq.h into asm/apic.h would cause circular header
dependencies like

  asm/smp.h
    asm/apic.h
      asm/hardirq.h
        linux/irq.h
          linux/topology.h
            linux/smp.h
              asm/smp.h

or

  linux/gfp.h
    linux/mmzone.h
      asm/mmzone.h
        asm/mmzone_64.h
          asm/smp.h
            asm/apic.h
              asm/hardirq.h
                linux/irq.h
                  linux/irqdesc.h
                    linux/kobject.h
                      linux/sysfs.h
                        linux/kernfs.h
                          linux/idr.h
                            linux/gfp.h

and others.

This causes compilation errors because of the header guards becoming
effective in the second inclusion: symbols/macros that had been defined
before wouldn't be available to intermediate headers in the #include chain
anymore.

A possible workaround would be to move the definition of irq_cpustat_t
into its own header and include that from both, asm/hardirq.h and
asm/apic.h.

However, this wouldn't solve the real problem, namely asm/harirq.h
unnecessarily pulling in all the linux/irq.h cruft: nothing in
asm/hardirq.h itself requires it. Also, note that there are some other
archs, like e.g. arm64, which don't have that #include in their
asm/hardirq.h.

Remove the linux/irq.h #include from x86' asm/hardirq.h.

Fix resulting compilation errors by adding appropriate #includes to *.c
files as needed.

Note that some of these *.c files could be cleaned up a bit wrt. to their
set of #includes, but that should better be done from separate patches, if
at all.

Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-08-05 09:53:13 +02:00

110 lines
2.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/linkage.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/timex.h>
#include <linux/random.h>
#include <linux/kprobes.h>
#include <linux/init.h>
#include <linux/kernel_stat.h>
#include <linux/device.h>
#include <linux/bitops.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <asm/timer.h>
#include <asm/hw_irq.h>
#include <asm/pgtable.h>
#include <asm/desc.h>
#include <asm/apic.h>
#include <asm/setup.h>
#include <asm/i8259.h>
#include <asm/traps.h>
#include <asm/prom.h>
/*
* ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
* (these are usually mapped to vectors 0x30-0x3f)
*/
/*
* The IO-APIC gives us many more interrupt sources. Most of these
* are unused but an SMP system is supposed to have enough memory ...
* sometimes (mostly wrt. hw bugs) we get corrupted vectors all
* across the spectrum, so we really want to be prepared to get all
* of these. Plus, more powerful systems might have more than 64
* IO-APIC registers.
*
* (these are usually mapped into the 0x30-0xff vector range)
*/
/*
* IRQ2 is cascade interrupt to second interrupt controller
*/
static struct irqaction irq2 = {
.handler = no_action,
.name = "cascade",
.flags = IRQF_NO_THREAD,
};
DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
[0 ... NR_VECTORS - 1] = VECTOR_UNUSED,
};
void __init init_ISA_irqs(void)
{
struct irq_chip *chip = legacy_pic->chip;
int i;
/*
* Try to set up the through-local-APIC virtual wire mode earlier.
*
* On some 32-bit UP machines, whose APIC has been disabled by BIOS
* and then got re-enabled by "lapic", it hangs at boot time without this.
*/
init_bsp_APIC();
legacy_pic->init(0);
for (i = 0; i < nr_legacy_irqs(); i++)
irq_set_chip_and_handler(i, chip, handle_level_irq);
}
void __init init_IRQ(void)
{
int i;
/*
* On cpu 0, Assign ISA_IRQ_VECTOR(irq) to IRQ 0..15.
* If these IRQ's are handled by legacy interrupt-controllers like PIC,
* then this configuration will likely be static after the boot. If
* these IRQ's are handled by more mordern controllers like IO-APIC,
* then this vector space can be freed and re-used dynamically as the
* irq's migrate etc.
*/
for (i = 0; i < nr_legacy_irqs(); i++)
per_cpu(vector_irq, 0)[ISA_IRQ_VECTOR(i)] = irq_to_desc(i);
x86_init.irqs.intr_init();
}
void __init native_init_IRQ(void)
{
/* Execute any quirks before the call gates are initialised: */
x86_init.irqs.pre_vector_init();
idt_setup_apic_and_irq_gates();
lapic_assign_system_vectors();
if (!acpi_ioapic && !of_ioapic && nr_legacy_irqs())
setup_irq(2, &irq2);
irq_ctx_init(smp_processor_id());
}