mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-15 09:03:59 +08:00
3b3ee43da4
The `val' variable in ath5k_eeprom_read_turbo_modes() is used uninitialized. gcc 4.4.1 with -fno-inline-functions-called-once reports it: eeprom.c: In function 'ath5k_eeprom_read_turbo_modes': eeprom.c:441: warning: 'val' may be used uninitialized in this function Comparing the code to the Atheros HAL, it's clear that the split between ath5k_eeprom_read_modes() and ath5k_eeprom_read_turbo_modes() was incorrect. The Atheros HAL reads both turbo and non-turbo data from EEPROM in one function. Some turbo mode parameters are derived from the same EEPROM values as non-turbo parameters, just from different bits. Merge ath5k_eeprom_read_turbo_modes() into ath5k_eeprom_read_modes() to fix the warning. The actual values and offsets have been cross-checked against Atheros HAL. Signed-off-by: Pavel Roskin <proski@gnu.org> Acked-by: Bob Copeland <me@bobcopeland.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1794 lines
48 KiB
C
1794 lines
48 KiB
C
/*
|
|
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
|
|
* Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
|
|
* Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
/*************************************\
|
|
* EEPROM access functions and helpers *
|
|
\*************************************/
|
|
|
|
#include "ath5k.h"
|
|
#include "reg.h"
|
|
#include "debug.h"
|
|
#include "base.h"
|
|
|
|
/*
|
|
* Read from eeprom
|
|
*/
|
|
static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
|
|
{
|
|
u32 status, timeout;
|
|
|
|
ATH5K_TRACE(ah->ah_sc);
|
|
/*
|
|
* Initialize EEPROM access
|
|
*/
|
|
if (ah->ah_version == AR5K_AR5210) {
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
|
|
(void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
|
|
} else {
|
|
ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
|
|
AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
|
|
AR5K_EEPROM_CMD_READ);
|
|
}
|
|
|
|
for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
|
|
status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
|
|
if (status & AR5K_EEPROM_STAT_RDDONE) {
|
|
if (status & AR5K_EEPROM_STAT_RDERR)
|
|
return -EIO;
|
|
*data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
|
|
0xffff);
|
|
return 0;
|
|
}
|
|
udelay(15);
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/*
|
|
* Translate binary channel representation in EEPROM to frequency
|
|
*/
|
|
static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
|
|
unsigned int mode)
|
|
{
|
|
u16 val;
|
|
|
|
if (bin == AR5K_EEPROM_CHANNEL_DIS)
|
|
return bin;
|
|
|
|
if (mode == AR5K_EEPROM_MODE_11A) {
|
|
if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
|
|
val = (5 * bin) + 4800;
|
|
else
|
|
val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
|
|
(bin * 10) + 5100;
|
|
} else {
|
|
if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
|
|
val = bin + 2300;
|
|
else
|
|
val = bin + 2400;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Initialize eeprom & capabilities structs
|
|
*/
|
|
static int
|
|
ath5k_eeprom_init_header(struct ath5k_hw *ah)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
int ret;
|
|
u16 val;
|
|
|
|
/*
|
|
* Read values from EEPROM and store them in the capability structure
|
|
*/
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
|
|
|
|
/* Return if we have an old EEPROM */
|
|
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
|
|
return 0;
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* Validate the checksum of the EEPROM date. There are some
|
|
* devices with invalid EEPROMs.
|
|
*/
|
|
for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
|
|
AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
|
|
cksum ^= val;
|
|
}
|
|
if (cksum != AR5K_EEPROM_INFO_CKSUM) {
|
|
ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
|
|
return -EIO;
|
|
}
|
|
#endif
|
|
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
|
|
ee_ant_gain);
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
|
|
|
|
/* XXX: Don't know which versions include these two */
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
|
|
|
|
if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
|
|
|
|
if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
|
|
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
|
|
}
|
|
}
|
|
|
|
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
|
|
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
|
|
ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
|
|
ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
|
|
|
|
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
|
|
ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
|
|
ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
|
|
}
|
|
|
|
AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
|
|
|
|
if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
|
|
ee->ee_is_hb63 = true;
|
|
else
|
|
ee->ee_is_hb63 = false;
|
|
|
|
AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
|
|
ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
|
|
ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
|
|
|
|
/* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
|
|
* and enable serdes programming if needed.
|
|
*
|
|
* XXX: Serdes values seem to be fixed so
|
|
* no need to read them here, we write them
|
|
* during ath5k_hw_attach */
|
|
AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
|
|
ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
|
|
true : false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Read antenna infos from eeprom
|
|
*/
|
|
static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
|
|
unsigned int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
u32 o = *offset;
|
|
u16 val;
|
|
int ret, i = 0;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
|
|
ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
|
|
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
|
|
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
|
|
ee->ee_ant_control[mode][i++] = val & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
|
|
ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
|
|
ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
|
|
ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
|
|
ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
|
|
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
|
|
ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
|
|
ee->ee_ant_control[mode][i++] = val & 0x3f;
|
|
|
|
/* Get antenna switch tables */
|
|
ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
|
|
(ee->ee_ant_control[mode][0] << 4);
|
|
ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
|
|
ee->ee_ant_control[mode][1] |
|
|
(ee->ee_ant_control[mode][2] << 6) |
|
|
(ee->ee_ant_control[mode][3] << 12) |
|
|
(ee->ee_ant_control[mode][4] << 18) |
|
|
(ee->ee_ant_control[mode][5] << 24);
|
|
ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
|
|
ee->ee_ant_control[mode][6] |
|
|
(ee->ee_ant_control[mode][7] << 6) |
|
|
(ee->ee_ant_control[mode][8] << 12) |
|
|
(ee->ee_ant_control[mode][9] << 18) |
|
|
(ee->ee_ant_control[mode][10] << 24);
|
|
|
|
/* return new offset */
|
|
*offset = o;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read supported modes and some mode-specific calibration data
|
|
* from eeprom
|
|
*/
|
|
static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
|
|
unsigned int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
u32 o = *offset;
|
|
u16 val;
|
|
int ret;
|
|
|
|
ee->ee_n_piers[mode] = 0;
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
|
|
switch(mode) {
|
|
case AR5K_EEPROM_MODE_11A:
|
|
ee->ee_ob[mode][3] = (val >> 5) & 0x7;
|
|
ee->ee_db[mode][3] = (val >> 2) & 0x7;
|
|
ee->ee_ob[mode][2] = (val << 1) & 0x7;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
|
|
ee->ee_db[mode][2] = (val >> 12) & 0x7;
|
|
ee->ee_ob[mode][1] = (val >> 9) & 0x7;
|
|
ee->ee_db[mode][1] = (val >> 6) & 0x7;
|
|
ee->ee_ob[mode][0] = (val >> 3) & 0x7;
|
|
ee->ee_db[mode][0] = val & 0x7;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11G:
|
|
case AR5K_EEPROM_MODE_11B:
|
|
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
|
|
ee->ee_db[mode][1] = val & 0x7;
|
|
break;
|
|
}
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
|
|
ee->ee_thr_62[mode] = val & 0xff;
|
|
|
|
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
|
|
ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
|
|
ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
|
|
|
|
if ((val & 0xff) & 0x80)
|
|
ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
|
|
else
|
|
ee->ee_noise_floor_thr[mode] = val & 0xff;
|
|
|
|
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
|
|
ee->ee_noise_floor_thr[mode] =
|
|
mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
|
|
ee->ee_x_gain[mode] = (val >> 1) & 0xf;
|
|
ee->ee_xpd[mode] = val & 0x1;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
|
|
ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
|
|
|
|
if (mode == AR5K_EEPROM_MODE_11A)
|
|
ee->ee_xr_power[mode] = val & 0x3f;
|
|
else {
|
|
ee->ee_ob[mode][0] = val & 0x7;
|
|
ee->ee_db[mode][0] = (val >> 3) & 0x7;
|
|
}
|
|
}
|
|
|
|
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
|
|
ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
|
|
ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
|
|
} else {
|
|
ee->ee_i_gain[mode] = (val >> 13) & 0x7;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_i_gain[mode] |= (val << 3) & 0x38;
|
|
|
|
if (mode == AR5K_EEPROM_MODE_11G) {
|
|
ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
|
|
ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
|
|
}
|
|
}
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
|
|
mode == AR5K_EEPROM_MODE_11A) {
|
|
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
|
|
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
|
|
}
|
|
|
|
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
|
|
goto done;
|
|
|
|
/* Note: >= v5 have bg freq piers on another location
|
|
* so these freq piers are ignored for >= v5 (should be 0xff
|
|
* anyway) */
|
|
switch(mode) {
|
|
case AR5K_EEPROM_MODE_11A:
|
|
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
|
|
break;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_margin_tx_rx[mode] = val & 0x3f;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11B:
|
|
AR5K_EEPROM_READ(o++, val);
|
|
|
|
ee->ee_pwr_cal_b[0].freq =
|
|
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
|
|
if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
|
|
ee->ee_n_piers[mode]++;
|
|
|
|
ee->ee_pwr_cal_b[1].freq =
|
|
ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
|
|
if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
|
|
ee->ee_n_piers[mode]++;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_pwr_cal_b[2].freq =
|
|
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
|
|
if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
|
|
ee->ee_n_piers[mode]++;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
|
|
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11G:
|
|
AR5K_EEPROM_READ(o++, val);
|
|
|
|
ee->ee_pwr_cal_g[0].freq =
|
|
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
|
|
if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
|
|
ee->ee_n_piers[mode]++;
|
|
|
|
ee->ee_pwr_cal_g[1].freq =
|
|
ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
|
|
if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
|
|
ee->ee_n_piers[mode]++;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_turbo_max_power[mode] = val & 0x7f;
|
|
ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_pwr_cal_g[2].freq =
|
|
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
|
|
if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
|
|
ee->ee_n_piers[mode]++;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
|
|
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
|
|
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_cck_ofdm_gain_delta = val & 0xff;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Read turbo mode information on newer EEPROM versions
|
|
*/
|
|
if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
|
|
goto done;
|
|
|
|
switch (mode){
|
|
case AR5K_EEPROM_MODE_11A:
|
|
ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
|
|
|
|
ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
|
|
ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
|
|
|
|
ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
|
|
ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
|
|
|
|
if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
|
|
ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11G:
|
|
ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
|
|
|
|
ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
|
|
ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
|
|
|
|
ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
|
|
AR5K_EEPROM_READ(o++, val);
|
|
ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
|
|
ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
|
|
break;
|
|
}
|
|
|
|
done:
|
|
/* return new offset */
|
|
*offset = o;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read mode-specific data (except power calibration data) */
|
|
static int
|
|
ath5k_eeprom_init_modes(struct ath5k_hw *ah)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
u32 mode_offset[3];
|
|
unsigned int mode;
|
|
u32 offset;
|
|
int ret;
|
|
|
|
/*
|
|
* Get values for all modes
|
|
*/
|
|
mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
|
|
mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
|
|
mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
|
|
|
|
ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
|
|
AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
|
|
|
|
for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
|
|
offset = mode_offset[mode];
|
|
|
|
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* override for older eeprom versions for better performance */
|
|
if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
|
|
ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
|
|
ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
|
|
ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
|
|
* frequency mask) */
|
|
static inline int
|
|
ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
|
|
struct ath5k_chan_pcal_info *pc, unsigned int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
int o = *offset;
|
|
int i = 0;
|
|
u8 freq1, freq2;
|
|
int ret;
|
|
u16 val;
|
|
|
|
ee->ee_n_piers[mode] = 0;
|
|
while(i < max) {
|
|
AR5K_EEPROM_READ(o++, val);
|
|
|
|
freq1 = val & 0xff;
|
|
if (!freq1)
|
|
break;
|
|
|
|
pc[i++].freq = ath5k_eeprom_bin2freq(ee,
|
|
freq1, mode);
|
|
ee->ee_n_piers[mode]++;
|
|
|
|
freq2 = (val >> 8) & 0xff;
|
|
if (!freq2)
|
|
break;
|
|
|
|
pc[i++].freq = ath5k_eeprom_bin2freq(ee,
|
|
freq2, mode);
|
|
ee->ee_n_piers[mode]++;
|
|
}
|
|
|
|
/* return new offset */
|
|
*offset = o;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read frequency piers for 802.11a */
|
|
static int
|
|
ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
|
|
int i, ret;
|
|
u16 val;
|
|
u8 mask;
|
|
|
|
if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
|
|
ath5k_eeprom_read_freq_list(ah, &offset,
|
|
AR5K_EEPROM_N_5GHZ_CHAN, pcal,
|
|
AR5K_EEPROM_MODE_11A);
|
|
} else {
|
|
mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcal[0].freq = (val >> 9) & mask;
|
|
pcal[1].freq = (val >> 2) & mask;
|
|
pcal[2].freq = (val << 5) & mask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcal[2].freq |= (val >> 11) & 0x1f;
|
|
pcal[3].freq = (val >> 4) & mask;
|
|
pcal[4].freq = (val << 3) & mask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcal[4].freq |= (val >> 13) & 0x7;
|
|
pcal[5].freq = (val >> 6) & mask;
|
|
pcal[6].freq = (val << 1) & mask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcal[6].freq |= (val >> 15) & 0x1;
|
|
pcal[7].freq = (val >> 8) & mask;
|
|
pcal[8].freq = (val >> 1) & mask;
|
|
pcal[9].freq = (val << 6) & mask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcal[9].freq |= (val >> 10) & 0x3f;
|
|
|
|
/* Fixed number of piers */
|
|
ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
|
|
|
|
for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
|
|
pcal[i].freq = ath5k_eeprom_bin2freq(ee,
|
|
pcal[i].freq, AR5K_EEPROM_MODE_11A);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
|
|
static inline int
|
|
ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_chan_pcal_info *pcal;
|
|
|
|
switch(mode) {
|
|
case AR5K_EEPROM_MODE_11B:
|
|
pcal = ee->ee_pwr_cal_b;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11G:
|
|
pcal = ee->ee_pwr_cal_g;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ath5k_eeprom_read_freq_list(ah, &offset,
|
|
AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
|
|
mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read power calibration for RF5111 chips
|
|
*
|
|
* For RF5111 we have an XPD -eXternal Power Detector- curve
|
|
* for each calibrated channel. Each curve has 0,5dB Power steps
|
|
* on x axis and PCDAC steps (offsets) on y axis and looks like an
|
|
* exponential function. To recreate the curve we read 11 points
|
|
* here and interpolate later.
|
|
*/
|
|
|
|
/* Used to match PCDAC steps with power values on RF5111 chips
|
|
* (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
|
|
* steps that match with the power values we read from eeprom. On
|
|
* older eeprom versions (< 3.2) these steps are equaly spaced at
|
|
* 10% of the pcdac curve -until the curve reaches it's maximum-
|
|
* (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
|
|
* these 11 steps are spaced in a different way. This function returns
|
|
* the pcdac steps based on eeprom version and curve min/max so that we
|
|
* can have pcdac/pwr points.
|
|
*/
|
|
static inline void
|
|
ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
|
|
{
|
|
static const u16 intercepts3[] =
|
|
{ 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
|
|
static const u16 intercepts3_2[] =
|
|
{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
|
|
const u16 *ip;
|
|
int i;
|
|
|
|
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
|
|
ip = intercepts3_2;
|
|
else
|
|
ip = intercepts3;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
|
|
vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
|
|
}
|
|
|
|
/* Convert RF5111 specific data to generic raw data
|
|
* used by interpolation code */
|
|
static int
|
|
ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
|
|
struct ath5k_chan_pcal_info *chinfo)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_chan_pcal_info_rf5111 *pcinfo;
|
|
struct ath5k_pdgain_info *pd;
|
|
u8 pier, point, idx;
|
|
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
|
|
|
|
/* Fill raw data for each calibration pier */
|
|
for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
|
|
|
|
pcinfo = &chinfo[pier].rf5111_info;
|
|
|
|
/* Allocate pd_curves for this cal pier */
|
|
chinfo[pier].pd_curves =
|
|
kcalloc(AR5K_EEPROM_N_PD_CURVES,
|
|
sizeof(struct ath5k_pdgain_info),
|
|
GFP_KERNEL);
|
|
|
|
if (!chinfo[pier].pd_curves)
|
|
return -ENOMEM;
|
|
|
|
/* Only one curve for RF5111
|
|
* find out which one and place
|
|
* in in pd_curves.
|
|
* Note: ee_x_gain is reversed here */
|
|
for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
|
|
|
|
if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
|
|
pdgain_idx[0] = idx;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ee->ee_pd_gains[mode] = 1;
|
|
|
|
pd = &chinfo[pier].pd_curves[idx];
|
|
|
|
pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
|
|
|
|
/* Allocate pd points for this curve */
|
|
pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
|
|
sizeof(u8), GFP_KERNEL);
|
|
if (!pd->pd_step)
|
|
return -ENOMEM;
|
|
|
|
pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
|
|
sizeof(s16), GFP_KERNEL);
|
|
if (!pd->pd_pwr)
|
|
return -ENOMEM;
|
|
|
|
/* Fill raw dataset
|
|
* (convert power to 0.25dB units
|
|
* for RF5112 combatibility) */
|
|
for (point = 0; point < pd->pd_points; point++) {
|
|
|
|
/* Absolute values */
|
|
pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
|
|
|
|
/* Already sorted */
|
|
pd->pd_step[point] = pcinfo->pcdac[point];
|
|
}
|
|
|
|
/* Set min/max pwr */
|
|
chinfo[pier].min_pwr = pd->pd_pwr[0];
|
|
chinfo[pier].max_pwr = pd->pd_pwr[10];
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Parse EEPROM data */
|
|
static int
|
|
ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_chan_pcal_info *pcal;
|
|
int offset, ret;
|
|
int i;
|
|
u16 val;
|
|
|
|
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
|
|
switch(mode) {
|
|
case AR5K_EEPROM_MODE_11A:
|
|
if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
|
|
return 0;
|
|
|
|
ret = ath5k_eeprom_init_11a_pcal_freq(ah,
|
|
offset + AR5K_EEPROM_GROUP1_OFFSET);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
offset += AR5K_EEPROM_GROUP2_OFFSET;
|
|
pcal = ee->ee_pwr_cal_a;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11B:
|
|
if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
|
|
!AR5K_EEPROM_HDR_11G(ee->ee_header))
|
|
return 0;
|
|
|
|
pcal = ee->ee_pwr_cal_b;
|
|
offset += AR5K_EEPROM_GROUP3_OFFSET;
|
|
|
|
/* fixed piers */
|
|
pcal[0].freq = 2412;
|
|
pcal[1].freq = 2447;
|
|
pcal[2].freq = 2484;
|
|
ee->ee_n_piers[mode] = 3;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11G:
|
|
if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
|
|
return 0;
|
|
|
|
pcal = ee->ee_pwr_cal_g;
|
|
offset += AR5K_EEPROM_GROUP4_OFFSET;
|
|
|
|
/* fixed piers */
|
|
pcal[0].freq = 2312;
|
|
pcal[1].freq = 2412;
|
|
pcal[2].freq = 2484;
|
|
ee->ee_n_piers[mode] = 3;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < ee->ee_n_piers[mode]; i++) {
|
|
struct ath5k_chan_pcal_info_rf5111 *cdata =
|
|
&pcal[i].rf5111_info;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
|
|
cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
|
|
cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
cdata->pwr[0] |= ((val >> 14) & 0x3);
|
|
cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
|
|
cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
|
|
cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
cdata->pwr[3] |= ((val >> 12) & 0xf);
|
|
cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
|
|
cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
|
|
cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
|
|
cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
cdata->pwr[8] |= ((val >> 14) & 0x3);
|
|
cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
|
|
cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
|
|
|
|
ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
|
|
cdata->pcdac_max, cdata->pcdac);
|
|
}
|
|
|
|
return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read power calibration for RF5112 chips
|
|
*
|
|
* For RF5112 we have 4 XPD -eXternal Power Detector- curves
|
|
* for each calibrated channel on 0, -6, -12 and -18dbm but we only
|
|
* use the higher (3) and the lower (0) curves. Each curve has 0.5dB
|
|
* power steps on x axis and PCDAC steps on y axis and looks like a
|
|
* linear function. To recreate the curve and pass the power values
|
|
* on hw, we read 4 points for xpd 0 (lower gain -> max power)
|
|
* and 3 points for xpd 3 (higher gain -> lower power) here and
|
|
* interpolate later.
|
|
*
|
|
* Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
|
|
*/
|
|
|
|
/* Convert RF5112 specific data to generic raw data
|
|
* used by interpolation code */
|
|
static int
|
|
ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
|
|
struct ath5k_chan_pcal_info *chinfo)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_chan_pcal_info_rf5112 *pcinfo;
|
|
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
|
|
unsigned int pier, pdg, point;
|
|
|
|
/* Fill raw data for each calibration pier */
|
|
for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
|
|
|
|
pcinfo = &chinfo[pier].rf5112_info;
|
|
|
|
/* Allocate pd_curves for this cal pier */
|
|
chinfo[pier].pd_curves =
|
|
kcalloc(AR5K_EEPROM_N_PD_CURVES,
|
|
sizeof(struct ath5k_pdgain_info),
|
|
GFP_KERNEL);
|
|
|
|
if (!chinfo[pier].pd_curves)
|
|
return -ENOMEM;
|
|
|
|
/* Fill pd_curves */
|
|
for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
|
|
|
|
u8 idx = pdgain_idx[pdg];
|
|
struct ath5k_pdgain_info *pd =
|
|
&chinfo[pier].pd_curves[idx];
|
|
|
|
/* Lowest gain curve (max power) */
|
|
if (pdg == 0) {
|
|
/* One more point for better accuracy */
|
|
pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
|
|
|
|
/* Allocate pd points for this curve */
|
|
pd->pd_step = kcalloc(pd->pd_points,
|
|
sizeof(u8), GFP_KERNEL);
|
|
|
|
if (!pd->pd_step)
|
|
return -ENOMEM;
|
|
|
|
pd->pd_pwr = kcalloc(pd->pd_points,
|
|
sizeof(s16), GFP_KERNEL);
|
|
|
|
if (!pd->pd_pwr)
|
|
return -ENOMEM;
|
|
|
|
|
|
/* Fill raw dataset
|
|
* (all power levels are in 0.25dB units) */
|
|
pd->pd_step[0] = pcinfo->pcdac_x0[0];
|
|
pd->pd_pwr[0] = pcinfo->pwr_x0[0];
|
|
|
|
for (point = 1; point < pd->pd_points;
|
|
point++) {
|
|
/* Absolute values */
|
|
pd->pd_pwr[point] =
|
|
pcinfo->pwr_x0[point];
|
|
|
|
/* Deltas */
|
|
pd->pd_step[point] =
|
|
pd->pd_step[point - 1] +
|
|
pcinfo->pcdac_x0[point];
|
|
}
|
|
|
|
/* Set min power for this frequency */
|
|
chinfo[pier].min_pwr = pd->pd_pwr[0];
|
|
|
|
/* Highest gain curve (min power) */
|
|
} else if (pdg == 1) {
|
|
|
|
pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
|
|
|
|
/* Allocate pd points for this curve */
|
|
pd->pd_step = kcalloc(pd->pd_points,
|
|
sizeof(u8), GFP_KERNEL);
|
|
|
|
if (!pd->pd_step)
|
|
return -ENOMEM;
|
|
|
|
pd->pd_pwr = kcalloc(pd->pd_points,
|
|
sizeof(s16), GFP_KERNEL);
|
|
|
|
if (!pd->pd_pwr)
|
|
return -ENOMEM;
|
|
|
|
/* Fill raw dataset
|
|
* (all power levels are in 0.25dB units) */
|
|
for (point = 0; point < pd->pd_points;
|
|
point++) {
|
|
/* Absolute values */
|
|
pd->pd_pwr[point] =
|
|
pcinfo->pwr_x3[point];
|
|
|
|
/* Fixed points */
|
|
pd->pd_step[point] =
|
|
pcinfo->pcdac_x3[point];
|
|
}
|
|
|
|
/* Since we have a higher gain curve
|
|
* override min power */
|
|
chinfo[pier].min_pwr = pd->pd_pwr[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Parse EEPROM data */
|
|
static int
|
|
ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
|
|
struct ath5k_chan_pcal_info *gen_chan_info;
|
|
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
|
|
u32 offset;
|
|
u8 i, c;
|
|
u16 val;
|
|
int ret;
|
|
u8 pd_gains = 0;
|
|
|
|
/* Count how many curves we have and
|
|
* identify them (which one of the 4
|
|
* available curves we have on each count).
|
|
* Curves are stored from lower (x0) to
|
|
* higher (x3) gain */
|
|
for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
|
|
/* ee_x_gain[mode] is x gain mask */
|
|
if ((ee->ee_x_gain[mode] >> i) & 0x1)
|
|
pdgain_idx[pd_gains++] = i;
|
|
}
|
|
ee->ee_pd_gains[mode] = pd_gains;
|
|
|
|
if (pd_gains == 0 || pd_gains > 2)
|
|
return -EINVAL;
|
|
|
|
switch (mode) {
|
|
case AR5K_EEPROM_MODE_11A:
|
|
/*
|
|
* Read 5GHz EEPROM channels
|
|
*/
|
|
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
|
|
ath5k_eeprom_init_11a_pcal_freq(ah, offset);
|
|
|
|
offset += AR5K_EEPROM_GROUP2_OFFSET;
|
|
gen_chan_info = ee->ee_pwr_cal_a;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11B:
|
|
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
|
|
if (AR5K_EEPROM_HDR_11A(ee->ee_header))
|
|
offset += AR5K_EEPROM_GROUP3_OFFSET;
|
|
|
|
/* NB: frequency piers parsed during mode init */
|
|
gen_chan_info = ee->ee_pwr_cal_b;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11G:
|
|
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
|
|
if (AR5K_EEPROM_HDR_11A(ee->ee_header))
|
|
offset += AR5K_EEPROM_GROUP4_OFFSET;
|
|
else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
|
|
offset += AR5K_EEPROM_GROUP2_OFFSET;
|
|
|
|
/* NB: frequency piers parsed during mode init */
|
|
gen_chan_info = ee->ee_pwr_cal_g;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < ee->ee_n_piers[mode]; i++) {
|
|
chan_pcal_info = &gen_chan_info[i].rf5112_info;
|
|
|
|
/* Power values in quarter dB
|
|
* for the lower xpd gain curve
|
|
* (0 dBm -> higher output power) */
|
|
for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
|
|
chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
|
|
}
|
|
|
|
/* PCDAC steps
|
|
* corresponding to the above power
|
|
* measurements */
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
|
|
chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
|
|
chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
|
|
|
|
/* Power values in quarter dB
|
|
* for the higher xpd gain curve
|
|
* (18 dBm -> lower output power) */
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
|
|
chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
chan_pcal_info->pwr_x3[2] = (val & 0xff);
|
|
|
|
/* PCDAC steps
|
|
* corresponding to the above power
|
|
* measurements (fixed) */
|
|
chan_pcal_info->pcdac_x3[0] = 20;
|
|
chan_pcal_info->pcdac_x3[1] = 35;
|
|
chan_pcal_info->pcdac_x3[2] = 63;
|
|
|
|
if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
|
|
chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
|
|
|
|
/* Last xpd0 power level is also channel maximum */
|
|
gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
|
|
} else {
|
|
chan_pcal_info->pcdac_x0[0] = 1;
|
|
gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
|
|
}
|
|
|
|
}
|
|
|
|
return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read power calibration for RF2413 chips
|
|
*
|
|
* For RF2413 we have a Power to PDDAC table (Power Detector)
|
|
* instead of a PCDAC and 4 pd gain curves for each calibrated channel.
|
|
* Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
|
|
* axis and looks like an exponential function like the RF5111 curve.
|
|
*
|
|
* To recreate the curves we read here the points and interpolate
|
|
* later. Note that in most cases only 2 (higher and lower) curves are
|
|
* used (like RF5112) but vendors have the oportunity to include all
|
|
* 4 curves on eeprom. The final curve (higher power) has an extra
|
|
* point for better accuracy like RF5112.
|
|
*/
|
|
|
|
/* For RF2413 power calibration data doesn't start on a fixed location and
|
|
* if a mode is not supported, it's section is missing -not zeroed-.
|
|
* So we need to calculate the starting offset for each section by using
|
|
* these two functions */
|
|
|
|
/* Return the size of each section based on the mode and the number of pd
|
|
* gains available (maximum 4). */
|
|
static inline unsigned int
|
|
ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
|
|
{
|
|
static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
|
|
unsigned int sz;
|
|
|
|
sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
|
|
sz *= ee->ee_n_piers[mode];
|
|
|
|
return sz;
|
|
}
|
|
|
|
/* Return the starting offset for a section based on the modes supported
|
|
* and each section's size. */
|
|
static unsigned int
|
|
ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
|
|
{
|
|
u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
|
|
|
|
switch(mode) {
|
|
case AR5K_EEPROM_MODE_11G:
|
|
if (AR5K_EEPROM_HDR_11B(ee->ee_header))
|
|
offset += ath5k_pdgains_size_2413(ee,
|
|
AR5K_EEPROM_MODE_11B) +
|
|
AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
|
|
/* fall through */
|
|
case AR5K_EEPROM_MODE_11B:
|
|
if (AR5K_EEPROM_HDR_11A(ee->ee_header))
|
|
offset += ath5k_pdgains_size_2413(ee,
|
|
AR5K_EEPROM_MODE_11A) +
|
|
AR5K_EEPROM_N_5GHZ_CHAN / 2;
|
|
/* fall through */
|
|
case AR5K_EEPROM_MODE_11A:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
/* Convert RF2413 specific data to generic raw data
|
|
* used by interpolation code */
|
|
static int
|
|
ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
|
|
struct ath5k_chan_pcal_info *chinfo)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_chan_pcal_info_rf2413 *pcinfo;
|
|
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
|
|
unsigned int pier, pdg, point;
|
|
|
|
/* Fill raw data for each calibration pier */
|
|
for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
|
|
|
|
pcinfo = &chinfo[pier].rf2413_info;
|
|
|
|
/* Allocate pd_curves for this cal pier */
|
|
chinfo[pier].pd_curves =
|
|
kcalloc(AR5K_EEPROM_N_PD_CURVES,
|
|
sizeof(struct ath5k_pdgain_info),
|
|
GFP_KERNEL);
|
|
|
|
if (!chinfo[pier].pd_curves)
|
|
return -ENOMEM;
|
|
|
|
/* Fill pd_curves */
|
|
for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
|
|
|
|
u8 idx = pdgain_idx[pdg];
|
|
struct ath5k_pdgain_info *pd =
|
|
&chinfo[pier].pd_curves[idx];
|
|
|
|
/* One more point for the highest power
|
|
* curve (lowest gain) */
|
|
if (pdg == ee->ee_pd_gains[mode] - 1)
|
|
pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
|
|
else
|
|
pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
|
|
|
|
/* Allocate pd points for this curve */
|
|
pd->pd_step = kcalloc(pd->pd_points,
|
|
sizeof(u8), GFP_KERNEL);
|
|
|
|
if (!pd->pd_step)
|
|
return -ENOMEM;
|
|
|
|
pd->pd_pwr = kcalloc(pd->pd_points,
|
|
sizeof(s16), GFP_KERNEL);
|
|
|
|
if (!pd->pd_pwr)
|
|
return -ENOMEM;
|
|
|
|
/* Fill raw dataset
|
|
* convert all pwr levels to
|
|
* quarter dB for RF5112 combatibility */
|
|
pd->pd_step[0] = pcinfo->pddac_i[pdg];
|
|
pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
|
|
|
|
for (point = 1; point < pd->pd_points; point++) {
|
|
|
|
pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
|
|
2 * pcinfo->pwr[pdg][point - 1];
|
|
|
|
pd->pd_step[point] = pd->pd_step[point - 1] +
|
|
pcinfo->pddac[pdg][point - 1];
|
|
|
|
}
|
|
|
|
/* Highest gain curve -> min power */
|
|
if (pdg == 0)
|
|
chinfo[pier].min_pwr = pd->pd_pwr[0];
|
|
|
|
/* Lowest gain curve -> max power */
|
|
if (pdg == ee->ee_pd_gains[mode] - 1)
|
|
chinfo[pier].max_pwr =
|
|
pd->pd_pwr[pd->pd_points - 1];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Parse EEPROM data */
|
|
static int
|
|
ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_chan_pcal_info_rf2413 *pcinfo;
|
|
struct ath5k_chan_pcal_info *chinfo;
|
|
u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
|
|
u32 offset;
|
|
int idx, i, ret;
|
|
u16 val;
|
|
u8 pd_gains = 0;
|
|
|
|
/* Count how many curves we have and
|
|
* identify them (which one of the 4
|
|
* available curves we have on each count).
|
|
* Curves are stored from higher to
|
|
* lower gain so we go backwards */
|
|
for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
|
|
/* ee_x_gain[mode] is x gain mask */
|
|
if ((ee->ee_x_gain[mode] >> idx) & 0x1)
|
|
pdgain_idx[pd_gains++] = idx;
|
|
|
|
}
|
|
ee->ee_pd_gains[mode] = pd_gains;
|
|
|
|
if (pd_gains == 0)
|
|
return -EINVAL;
|
|
|
|
offset = ath5k_cal_data_offset_2413(ee, mode);
|
|
switch (mode) {
|
|
case AR5K_EEPROM_MODE_11A:
|
|
if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
|
|
return 0;
|
|
|
|
ath5k_eeprom_init_11a_pcal_freq(ah, offset);
|
|
offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
|
|
chinfo = ee->ee_pwr_cal_a;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11B:
|
|
if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
|
|
return 0;
|
|
|
|
ath5k_eeprom_init_11bg_2413(ah, mode, offset);
|
|
offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
|
|
chinfo = ee->ee_pwr_cal_b;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11G:
|
|
if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
|
|
return 0;
|
|
|
|
ath5k_eeprom_init_11bg_2413(ah, mode, offset);
|
|
offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
|
|
chinfo = ee->ee_pwr_cal_g;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < ee->ee_n_piers[mode]; i++) {
|
|
pcinfo = &chinfo[i].rf2413_info;
|
|
|
|
/*
|
|
* Read pwr_i, pddac_i and the first
|
|
* 2 pd points (pwr, pddac)
|
|
*/
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pwr_i[0] = val & 0x1f;
|
|
pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
|
|
pcinfo->pwr[0][0] = (val >> 12) & 0xf;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pddac[0][0] = val & 0x3f;
|
|
pcinfo->pwr[0][1] = (val >> 6) & 0xf;
|
|
pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pwr[0][2] = val & 0xf;
|
|
pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
|
|
|
|
pcinfo->pwr[0][3] = 0;
|
|
pcinfo->pddac[0][3] = 0;
|
|
|
|
if (pd_gains > 1) {
|
|
/*
|
|
* Pd gain 0 is not the last pd gain
|
|
* so it only has 2 pd points.
|
|
* Continue wih pd gain 1.
|
|
*/
|
|
pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
|
|
|
|
pcinfo->pddac_i[1] = (val >> 15) & 0x1;
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
|
|
|
|
pcinfo->pwr[1][0] = (val >> 6) & 0xf;
|
|
pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pwr[1][1] = val & 0xf;
|
|
pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
|
|
pcinfo->pwr[1][2] = (val >> 10) & 0xf;
|
|
|
|
pcinfo->pddac[1][2] = (val >> 14) & 0x3;
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pddac[1][2] |= (val & 0xF) << 2;
|
|
|
|
pcinfo->pwr[1][3] = 0;
|
|
pcinfo->pddac[1][3] = 0;
|
|
} else if (pd_gains == 1) {
|
|
/*
|
|
* Pd gain 0 is the last one so
|
|
* read the extra point.
|
|
*/
|
|
pcinfo->pwr[0][3] = (val >> 10) & 0xf;
|
|
|
|
pcinfo->pddac[0][3] = (val >> 14) & 0x3;
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pddac[0][3] |= (val & 0xF) << 2;
|
|
}
|
|
|
|
/*
|
|
* Proceed with the other pd_gains
|
|
* as above.
|
|
*/
|
|
if (pd_gains > 2) {
|
|
pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
|
|
pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pwr[2][0] = (val >> 0) & 0xf;
|
|
pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
|
|
pcinfo->pwr[2][1] = (val >> 10) & 0xf;
|
|
|
|
pcinfo->pddac[2][1] = (val >> 14) & 0x3;
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pddac[2][1] |= (val & 0xF) << 2;
|
|
|
|
pcinfo->pwr[2][2] = (val >> 4) & 0xf;
|
|
pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
|
|
|
|
pcinfo->pwr[2][3] = 0;
|
|
pcinfo->pddac[2][3] = 0;
|
|
} else if (pd_gains == 2) {
|
|
pcinfo->pwr[1][3] = (val >> 4) & 0xf;
|
|
pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
|
|
}
|
|
|
|
if (pd_gains > 3) {
|
|
pcinfo->pwr_i[3] = (val >> 14) & 0x3;
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
|
|
|
|
pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
|
|
pcinfo->pwr[3][0] = (val >> 10) & 0xf;
|
|
pcinfo->pddac[3][0] = (val >> 14) & 0x3;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pddac[3][0] |= (val & 0xF) << 2;
|
|
pcinfo->pwr[3][1] = (val >> 4) & 0xf;
|
|
pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
|
|
|
|
pcinfo->pwr[3][2] = (val >> 14) & 0x3;
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
|
|
|
|
pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
|
|
pcinfo->pwr[3][3] = (val >> 8) & 0xf;
|
|
|
|
pcinfo->pddac[3][3] = (val >> 12) & 0xF;
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
|
|
} else if (pd_gains == 3) {
|
|
pcinfo->pwr[2][3] = (val >> 14) & 0x3;
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
|
|
|
|
pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
|
|
}
|
|
}
|
|
|
|
return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read per rate target power (this is the maximum tx power
|
|
* supported by the card). This info is used when setting
|
|
* tx power, no matter the channel.
|
|
*
|
|
* This also works for v5 EEPROMs.
|
|
*/
|
|
static int
|
|
ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_rate_pcal_info *rate_pcal_info;
|
|
u8 *rate_target_pwr_num;
|
|
u32 offset;
|
|
u16 val;
|
|
int ret, i;
|
|
|
|
offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
|
|
rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
|
|
switch (mode) {
|
|
case AR5K_EEPROM_MODE_11A:
|
|
offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
|
|
rate_pcal_info = ee->ee_rate_tpwr_a;
|
|
ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11B:
|
|
offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
|
|
rate_pcal_info = ee->ee_rate_tpwr_b;
|
|
ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
|
|
break;
|
|
case AR5K_EEPROM_MODE_11G:
|
|
offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
|
|
rate_pcal_info = ee->ee_rate_tpwr_g;
|
|
ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Different freq mask for older eeproms (<= v3.2) */
|
|
if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
|
|
for (i = 0; i < (*rate_target_pwr_num); i++) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rate_pcal_info[i].freq =
|
|
ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
|
|
|
|
rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
|
|
rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
|
|
if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
|
|
val == 0) {
|
|
(*rate_target_pwr_num) = i;
|
|
break;
|
|
}
|
|
|
|
rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
|
|
rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
|
|
rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
|
|
}
|
|
} else {
|
|
for (i = 0; i < (*rate_target_pwr_num); i++) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rate_pcal_info[i].freq =
|
|
ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
|
|
|
|
rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
|
|
rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
|
|
if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
|
|
val == 0) {
|
|
(*rate_target_pwr_num) = i;
|
|
break;
|
|
}
|
|
|
|
rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
|
|
rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
|
|
rate_pcal_info[i].target_power_54 = (val & 0x3f);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read per channel calibration info from EEPROM
|
|
*
|
|
* This info is used to calibrate the baseband power table. Imagine
|
|
* that for each channel there is a power curve that's hw specific
|
|
* (depends on amplifier etc) and we try to "correct" this curve using
|
|
* offests we pass on to phy chip (baseband -> before amplifier) so that
|
|
* it can use accurate power values when setting tx power (takes amplifier's
|
|
* performance on each channel into account).
|
|
*
|
|
* EEPROM provides us with the offsets for some pre-calibrated channels
|
|
* and we have to interpolate to create the full table for these channels and
|
|
* also the table for any channel.
|
|
*/
|
|
static int
|
|
ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
int (*read_pcal)(struct ath5k_hw *hw, int mode);
|
|
int mode;
|
|
int err;
|
|
|
|
if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
|
|
(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
|
|
read_pcal = ath5k_eeprom_read_pcal_info_5112;
|
|
else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
|
|
(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
|
|
read_pcal = ath5k_eeprom_read_pcal_info_2413;
|
|
else
|
|
read_pcal = ath5k_eeprom_read_pcal_info_5111;
|
|
|
|
|
|
for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
|
|
mode++) {
|
|
err = read_pcal(ah, mode);
|
|
if (err)
|
|
return err;
|
|
|
|
err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_chan_pcal_info *chinfo;
|
|
u8 pier, pdg;
|
|
|
|
switch (mode) {
|
|
case AR5K_EEPROM_MODE_11A:
|
|
if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
|
|
return 0;
|
|
chinfo = ee->ee_pwr_cal_a;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11B:
|
|
if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
|
|
return 0;
|
|
chinfo = ee->ee_pwr_cal_b;
|
|
break;
|
|
case AR5K_EEPROM_MODE_11G:
|
|
if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
|
|
return 0;
|
|
chinfo = ee->ee_pwr_cal_g;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
|
|
if (!chinfo[pier].pd_curves)
|
|
continue;
|
|
|
|
for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
|
|
struct ath5k_pdgain_info *pd =
|
|
&chinfo[pier].pd_curves[pdg];
|
|
|
|
if (pd != NULL) {
|
|
kfree(pd->pd_step);
|
|
kfree(pd->pd_pwr);
|
|
}
|
|
}
|
|
|
|
kfree(chinfo[pier].pd_curves);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ath5k_eeprom_detach(struct ath5k_hw *ah)
|
|
{
|
|
u8 mode;
|
|
|
|
for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
|
|
ath5k_eeprom_free_pcal_info(ah, mode);
|
|
}
|
|
|
|
/* Read conformance test limits used for regulatory control */
|
|
static int
|
|
ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
struct ath5k_edge_power *rep;
|
|
unsigned int fmask, pmask;
|
|
unsigned int ctl_mode;
|
|
int ret, i, j;
|
|
u32 offset;
|
|
u16 val;
|
|
|
|
pmask = AR5K_EEPROM_POWER_M;
|
|
fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
|
|
offset = AR5K_EEPROM_CTL(ee->ee_version);
|
|
ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
|
|
for (i = 0; i < ee->ee_ctls; i += 2) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
ee->ee_ctl[i] = (val >> 8) & 0xff;
|
|
ee->ee_ctl[i + 1] = val & 0xff;
|
|
}
|
|
|
|
offset = AR5K_EEPROM_GROUP8_OFFSET;
|
|
if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
|
|
offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
|
|
AR5K_EEPROM_GROUP5_OFFSET;
|
|
else
|
|
offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
|
|
|
|
rep = ee->ee_ctl_pwr;
|
|
for(i = 0; i < ee->ee_ctls; i++) {
|
|
switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
|
|
case AR5K_CTL_11A:
|
|
case AR5K_CTL_TURBO:
|
|
ctl_mode = AR5K_EEPROM_MODE_11A;
|
|
break;
|
|
default:
|
|
ctl_mode = AR5K_EEPROM_MODE_11G;
|
|
break;
|
|
}
|
|
if (ee->ee_ctl[i] == 0) {
|
|
if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
|
|
offset += 8;
|
|
else
|
|
offset += 7;
|
|
rep += AR5K_EEPROM_N_EDGES;
|
|
continue;
|
|
}
|
|
if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
|
|
for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rep[j].freq = (val >> 8) & fmask;
|
|
rep[j + 1].freq = val & fmask;
|
|
}
|
|
for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rep[j].edge = (val >> 8) & pmask;
|
|
rep[j].flag = (val >> 14) & 1;
|
|
rep[j + 1].edge = val & pmask;
|
|
rep[j + 1].flag = (val >> 6) & 1;
|
|
}
|
|
} else {
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rep[0].freq = (val >> 9) & fmask;
|
|
rep[1].freq = (val >> 2) & fmask;
|
|
rep[2].freq = (val << 5) & fmask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rep[2].freq |= (val >> 11) & 0x1f;
|
|
rep[3].freq = (val >> 4) & fmask;
|
|
rep[4].freq = (val << 3) & fmask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rep[4].freq |= (val >> 13) & 0x7;
|
|
rep[5].freq = (val >> 6) & fmask;
|
|
rep[6].freq = (val << 1) & fmask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rep[6].freq |= (val >> 15) & 0x1;
|
|
rep[7].freq = (val >> 8) & fmask;
|
|
|
|
rep[0].edge = (val >> 2) & pmask;
|
|
rep[1].edge = (val << 4) & pmask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rep[1].edge |= (val >> 12) & 0xf;
|
|
rep[2].edge = (val >> 6) & pmask;
|
|
rep[3].edge = val & pmask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rep[4].edge = (val >> 10) & pmask;
|
|
rep[5].edge = (val >> 4) & pmask;
|
|
rep[6].edge = (val << 2) & pmask;
|
|
|
|
AR5K_EEPROM_READ(offset++, val);
|
|
rep[6].edge |= (val >> 14) & 0x3;
|
|
rep[7].edge = (val >> 8) & pmask;
|
|
}
|
|
for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
|
|
rep[j].freq = ath5k_eeprom_bin2freq(ee,
|
|
rep[j].freq, ctl_mode);
|
|
}
|
|
rep += AR5K_EEPROM_N_EDGES;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
|
|
{
|
|
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
|
|
u32 offset;
|
|
u16 val;
|
|
int ret = 0, i;
|
|
|
|
offset = AR5K_EEPROM_CTL(ee->ee_version) +
|
|
AR5K_EEPROM_N_CTLS(ee->ee_version);
|
|
|
|
if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
|
|
/* No spur info for 5GHz */
|
|
ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
|
|
/* 2 channels for 2GHz (2464/2420) */
|
|
ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
|
|
ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
|
|
ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
|
|
} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
|
|
for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
|
|
AR5K_EEPROM_READ(offset, val);
|
|
ee->ee_spur_chans[i][0] = val;
|
|
AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
|
|
val);
|
|
ee->ee_spur_chans[i][1] = val;
|
|
offset++;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Initialize eeprom data structure
|
|
*/
|
|
int
|
|
ath5k_eeprom_init(struct ath5k_hw *ah)
|
|
{
|
|
int err;
|
|
|
|
err = ath5k_eeprom_init_header(ah);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = ath5k_eeprom_init_modes(ah);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = ath5k_eeprom_read_pcal_info(ah);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = ath5k_eeprom_read_ctl_info(ah);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
err = ath5k_eeprom_read_spur_chans(ah);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the MAC address from eeprom
|
|
*/
|
|
int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
|
|
{
|
|
u8 mac_d[ETH_ALEN] = {};
|
|
u32 total, offset;
|
|
u16 data;
|
|
int octet, ret;
|
|
|
|
ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
|
|
ret = ath5k_hw_eeprom_read(ah, offset, &data);
|
|
if (ret)
|
|
return ret;
|
|
|
|
total += data;
|
|
mac_d[octet + 1] = data & 0xff;
|
|
mac_d[octet] = data >> 8;
|
|
octet += 2;
|
|
}
|
|
|
|
if (!total || total == 3 * 0xffff)
|
|
return -EINVAL;
|
|
|
|
memcpy(mac, mac_d, ETH_ALEN);
|
|
|
|
return 0;
|
|
}
|