2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 21:54:06 +08:00
linux-next/drivers/mtd/mtdpart.c
Boris Brezillon 7e439681af mtd: Fix partition alignment check on multi-erasesize devices
Commit 1eeef2d748 ("mtd: handle partitioning on devices with 0
erasesize") introduced a regression on heterogeneous erase region
devices. Alignment of the partition was tested against the master
eraseblock size which can be bigger than the slave one, thus leading
to some partitions being marked as read-only.

Update wr_alignment to match this slave erasesize after this erasesize
has been determined by picking the biggest erasesize of all the regions
embedded in the MTD partition.

Reported-by: Mathias Thore <Mathias.Thore@infinera.com>
Fixes: 1eeef2d748 ("mtd: handle partitioning on devices with 0 erasesize")
Cc: <stable@vger.kernel.org>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Tested-by: Mathias Thore <Mathias.Thore@infinera.com>
Reviewed-by: Mathias Thore <Mathias.Thore@infinera.com>
2017-09-27 13:53:20 +02:00

993 lines
27 KiB
C

/*
* Simple MTD partitioning layer
*
* Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
* Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
* Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/kmod.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/err.h>
#include "mtdcore.h"
/* Our partition linked list */
static LIST_HEAD(mtd_partitions);
static DEFINE_MUTEX(mtd_partitions_mutex);
/**
* struct mtd_part - our partition node structure
*
* @mtd: struct holding partition details
* @parent: parent mtd - flash device or another partition
* @offset: partition offset relative to the *flash device*
*/
struct mtd_part {
struct mtd_info mtd;
struct mtd_info *parent;
uint64_t offset;
struct list_head list;
};
/*
* Given a pointer to the MTD object in the mtd_part structure, we can retrieve
* the pointer to that structure.
*/
static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
{
return container_of(mtd, struct mtd_part, mtd);
}
/*
* MTD methods which simply translate the effective address and pass through
* to the _real_ device.
*/
static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
struct mtd_ecc_stats stats;
int res;
stats = part->parent->ecc_stats;
res = part->parent->_read(part->parent, from + part->offset, len,
retlen, buf);
if (unlikely(mtd_is_eccerr(res)))
mtd->ecc_stats.failed +=
part->parent->ecc_stats.failed - stats.failed;
else
mtd->ecc_stats.corrected +=
part->parent->ecc_stats.corrected - stats.corrected;
return res;
}
static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, void **virt, resource_size_t *phys)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_point(part->parent, from + part->offset, len,
retlen, virt, phys);
}
static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_unpoint(part->parent, from + part->offset, len);
}
static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
unsigned long len,
unsigned long offset,
unsigned long flags)
{
struct mtd_part *part = mtd_to_part(mtd);
offset += part->offset;
return part->parent->_get_unmapped_area(part->parent, len, offset,
flags);
}
static int part_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct mtd_part *part = mtd_to_part(mtd);
int res;
if (from >= mtd->size)
return -EINVAL;
if (ops->datbuf && from + ops->len > mtd->size)
return -EINVAL;
/*
* If OOB is also requested, make sure that we do not read past the end
* of this partition.
*/
if (ops->oobbuf) {
size_t len, pages;
len = mtd_oobavail(mtd, ops);
pages = mtd_div_by_ws(mtd->size, mtd);
pages -= mtd_div_by_ws(from, mtd);
if (ops->ooboffs + ops->ooblen > pages * len)
return -EINVAL;
}
res = part->parent->_read_oob(part->parent, from + part->offset, ops);
if (unlikely(res)) {
if (mtd_is_bitflip(res))
mtd->ecc_stats.corrected++;
if (mtd_is_eccerr(res))
mtd->ecc_stats.failed++;
}
return res;
}
static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_read_user_prot_reg(part->parent, from, len,
retlen, buf);
}
static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_get_user_prot_info(part->parent, len, retlen,
buf);
}
static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_read_fact_prot_reg(part->parent, from, len,
retlen, buf);
}
static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_get_fact_prot_info(part->parent, len, retlen,
buf);
}
static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_write(part->parent, to + part->offset, len,
retlen, buf);
}
static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_panic_write(part->parent, to + part->offset, len,
retlen, buf);
}
static int part_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct mtd_part *part = mtd_to_part(mtd);
if (to >= mtd->size)
return -EINVAL;
if (ops->datbuf && to + ops->len > mtd->size)
return -EINVAL;
return part->parent->_write_oob(part->parent, to + part->offset, ops);
}
static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_write_user_prot_reg(part->parent, from, len,
retlen, buf);
}
static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_lock_user_prot_reg(part->parent, from, len);
}
static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_writev(part->parent, vecs, count,
to + part->offset, retlen);
}
static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct mtd_part *part = mtd_to_part(mtd);
int ret;
instr->addr += part->offset;
ret = part->parent->_erase(part->parent, instr);
if (ret) {
if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= part->offset;
instr->addr -= part->offset;
}
return ret;
}
void mtd_erase_callback(struct erase_info *instr)
{
if (instr->mtd->_erase == part_erase) {
struct mtd_part *part = mtd_to_part(instr->mtd);
if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= part->offset;
instr->addr -= part->offset;
}
if (instr->callback)
instr->callback(instr);
}
EXPORT_SYMBOL_GPL(mtd_erase_callback);
static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_lock(part->parent, ofs + part->offset, len);
}
static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_unlock(part->parent, ofs + part->offset, len);
}
static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_is_locked(part->parent, ofs + part->offset, len);
}
static void part_sync(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
part->parent->_sync(part->parent);
}
static int part_suspend(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_suspend(part->parent);
}
static void part_resume(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
part->parent->_resume(part->parent);
}
static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_part *part = mtd_to_part(mtd);
ofs += part->offset;
return part->parent->_block_isreserved(part->parent, ofs);
}
static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_part *part = mtd_to_part(mtd);
ofs += part->offset;
return part->parent->_block_isbad(part->parent, ofs);
}
static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_part *part = mtd_to_part(mtd);
int res;
ofs += part->offset;
res = part->parent->_block_markbad(part->parent, ofs);
if (!res)
mtd->ecc_stats.badblocks++;
return res;
}
static int part_get_device(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_get_device(part->parent);
}
static void part_put_device(struct mtd_info *mtd)
{
struct mtd_part *part = mtd_to_part(mtd);
part->parent->_put_device(part->parent);
}
static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct mtd_part *part = mtd_to_part(mtd);
return mtd_ooblayout_ecc(part->parent, section, oobregion);
}
static int part_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct mtd_part *part = mtd_to_part(mtd);
return mtd_ooblayout_free(part->parent, section, oobregion);
}
static const struct mtd_ooblayout_ops part_ooblayout_ops = {
.ecc = part_ooblayout_ecc,
.free = part_ooblayout_free,
};
static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
{
struct mtd_part *part = mtd_to_part(mtd);
return part->parent->_max_bad_blocks(part->parent,
ofs + part->offset, len);
}
static inline void free_partition(struct mtd_part *p)
{
kfree(p->mtd.name);
kfree(p);
}
/**
* mtd_parse_part - parse MTD partition looking for subpartitions
*
* @slave: part that is supposed to be a container and should be parsed
* @types: NULL-terminated array with names of partition parsers to try
*
* Some partitions are kind of containers with extra subpartitions (volumes).
* There can be various formats of such containers. This function tries to use
* specified parsers to analyze given partition and registers found
* subpartitions on success.
*/
static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
{
struct mtd_partitions parsed;
int err;
err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
if (err)
return err;
else if (!parsed.nr_parts)
return -ENOENT;
err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
mtd_part_parser_cleanup(&parsed);
return err;
}
static struct mtd_part *allocate_partition(struct mtd_info *parent,
const struct mtd_partition *part, int partno,
uint64_t cur_offset)
{
int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
parent->erasesize;
struct mtd_part *slave;
u32 remainder;
char *name;
u64 tmp;
/* allocate the partition structure */
slave = kzalloc(sizeof(*slave), GFP_KERNEL);
name = kstrdup(part->name, GFP_KERNEL);
if (!name || !slave) {
printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
parent->name);
kfree(name);
kfree(slave);
return ERR_PTR(-ENOMEM);
}
/* set up the MTD object for this partition */
slave->mtd.type = parent->type;
slave->mtd.flags = parent->flags & ~part->mask_flags;
slave->mtd.size = part->size;
slave->mtd.writesize = parent->writesize;
slave->mtd.writebufsize = parent->writebufsize;
slave->mtd.oobsize = parent->oobsize;
slave->mtd.oobavail = parent->oobavail;
slave->mtd.subpage_sft = parent->subpage_sft;
slave->mtd.pairing = parent->pairing;
slave->mtd.name = name;
slave->mtd.owner = parent->owner;
/* NOTE: Historically, we didn't arrange MTDs as a tree out of
* concern for showing the same data in multiple partitions.
* However, it is very useful to have the master node present,
* so the MTD_PARTITIONED_MASTER option allows that. The master
* will have device nodes etc only if this is set, so make the
* parent conditional on that option. Note, this is a way to
* distinguish between the master and the partition in sysfs.
*/
slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
&parent->dev :
parent->dev.parent;
slave->mtd.dev.of_node = part->of_node;
slave->mtd._read = part_read;
slave->mtd._write = part_write;
if (parent->_panic_write)
slave->mtd._panic_write = part_panic_write;
if (parent->_point && parent->_unpoint) {
slave->mtd._point = part_point;
slave->mtd._unpoint = part_unpoint;
}
if (parent->_get_unmapped_area)
slave->mtd._get_unmapped_area = part_get_unmapped_area;
if (parent->_read_oob)
slave->mtd._read_oob = part_read_oob;
if (parent->_write_oob)
slave->mtd._write_oob = part_write_oob;
if (parent->_read_user_prot_reg)
slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
if (parent->_read_fact_prot_reg)
slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
if (parent->_write_user_prot_reg)
slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
if (parent->_lock_user_prot_reg)
slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
if (parent->_get_user_prot_info)
slave->mtd._get_user_prot_info = part_get_user_prot_info;
if (parent->_get_fact_prot_info)
slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
if (parent->_sync)
slave->mtd._sync = part_sync;
if (!partno && !parent->dev.class && parent->_suspend &&
parent->_resume) {
slave->mtd._suspend = part_suspend;
slave->mtd._resume = part_resume;
}
if (parent->_writev)
slave->mtd._writev = part_writev;
if (parent->_lock)
slave->mtd._lock = part_lock;
if (parent->_unlock)
slave->mtd._unlock = part_unlock;
if (parent->_is_locked)
slave->mtd._is_locked = part_is_locked;
if (parent->_block_isreserved)
slave->mtd._block_isreserved = part_block_isreserved;
if (parent->_block_isbad)
slave->mtd._block_isbad = part_block_isbad;
if (parent->_block_markbad)
slave->mtd._block_markbad = part_block_markbad;
if (parent->_max_bad_blocks)
slave->mtd._max_bad_blocks = part_max_bad_blocks;
if (parent->_get_device)
slave->mtd._get_device = part_get_device;
if (parent->_put_device)
slave->mtd._put_device = part_put_device;
slave->mtd._erase = part_erase;
slave->parent = parent;
slave->offset = part->offset;
if (slave->offset == MTDPART_OFS_APPEND)
slave->offset = cur_offset;
if (slave->offset == MTDPART_OFS_NXTBLK) {
tmp = cur_offset;
slave->offset = cur_offset;
remainder = do_div(tmp, wr_alignment);
if (remainder) {
slave->offset += wr_alignment - remainder;
printk(KERN_NOTICE "Moving partition %d: "
"0x%012llx -> 0x%012llx\n", partno,
(unsigned long long)cur_offset, (unsigned long long)slave->offset);
}
}
if (slave->offset == MTDPART_OFS_RETAIN) {
slave->offset = cur_offset;
if (parent->size - slave->offset >= slave->mtd.size) {
slave->mtd.size = parent->size - slave->offset
- slave->mtd.size;
} else {
printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
part->name, parent->size - slave->offset,
slave->mtd.size);
/* register to preserve ordering */
goto out_register;
}
}
if (slave->mtd.size == MTDPART_SIZ_FULL)
slave->mtd.size = parent->size - slave->offset;
printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
/* let's do some sanity checks */
if (slave->offset >= parent->size) {
/* let's register it anyway to preserve ordering */
slave->offset = 0;
slave->mtd.size = 0;
printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
part->name);
goto out_register;
}
if (slave->offset + slave->mtd.size > parent->size) {
slave->mtd.size = parent->size - slave->offset;
printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
part->name, parent->name, (unsigned long long)slave->mtd.size);
}
if (parent->numeraseregions > 1) {
/* Deal with variable erase size stuff */
int i, max = parent->numeraseregions;
u64 end = slave->offset + slave->mtd.size;
struct mtd_erase_region_info *regions = parent->eraseregions;
/* Find the first erase regions which is part of this
* partition. */
for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
;
/* The loop searched for the region _behind_ the first one */
if (i > 0)
i--;
/* Pick biggest erasesize */
for (; i < max && regions[i].offset < end; i++) {
if (slave->mtd.erasesize < regions[i].erasesize) {
slave->mtd.erasesize = regions[i].erasesize;
}
}
BUG_ON(slave->mtd.erasesize == 0);
} else {
/* Single erase size */
slave->mtd.erasesize = parent->erasesize;
}
/*
* Slave erasesize might differ from the master one if the master
* exposes several regions with different erasesize. Adjust
* wr_alignment accordingly.
*/
if (!(slave->mtd.flags & MTD_NO_ERASE))
wr_alignment = slave->mtd.erasesize;
tmp = slave->offset;
remainder = do_div(tmp, wr_alignment);
if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
/* Doesn't start on a boundary of major erase size */
/* FIXME: Let it be writable if it is on a boundary of
* _minor_ erase size though */
slave->mtd.flags &= ~MTD_WRITEABLE;
printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
part->name);
}
tmp = slave->mtd.size;
remainder = do_div(tmp, wr_alignment);
if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
slave->mtd.flags &= ~MTD_WRITEABLE;
printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
part->name);
}
mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
slave->mtd.ecc_step_size = parent->ecc_step_size;
slave->mtd.ecc_strength = parent->ecc_strength;
slave->mtd.bitflip_threshold = parent->bitflip_threshold;
if (parent->_block_isbad) {
uint64_t offs = 0;
while (offs < slave->mtd.size) {
if (mtd_block_isreserved(parent, offs + slave->offset))
slave->mtd.ecc_stats.bbtblocks++;
else if (mtd_block_isbad(parent, offs + slave->offset))
slave->mtd.ecc_stats.badblocks++;
offs += slave->mtd.erasesize;
}
}
out_register:
return slave;
}
static ssize_t mtd_partition_offset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct mtd_info *mtd = dev_get_drvdata(dev);
struct mtd_part *part = mtd_to_part(mtd);
return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
}
static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
static const struct attribute *mtd_partition_attrs[] = {
&dev_attr_offset.attr,
NULL
};
static int mtd_add_partition_attrs(struct mtd_part *new)
{
int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
if (ret)
printk(KERN_WARNING
"mtd: failed to create partition attrs, err=%d\n", ret);
return ret;
}
int mtd_add_partition(struct mtd_info *parent, const char *name,
long long offset, long long length)
{
struct mtd_partition part;
struct mtd_part *new;
int ret = 0;
/* the direct offset is expected */
if (offset == MTDPART_OFS_APPEND ||
offset == MTDPART_OFS_NXTBLK)
return -EINVAL;
if (length == MTDPART_SIZ_FULL)
length = parent->size - offset;
if (length <= 0)
return -EINVAL;
memset(&part, 0, sizeof(part));
part.name = name;
part.size = length;
part.offset = offset;
new = allocate_partition(parent, &part, -1, offset);
if (IS_ERR(new))
return PTR_ERR(new);
mutex_lock(&mtd_partitions_mutex);
list_add(&new->list, &mtd_partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(&new->mtd);
mtd_add_partition_attrs(new);
return ret;
}
EXPORT_SYMBOL_GPL(mtd_add_partition);
/**
* __mtd_del_partition - delete MTD partition
*
* @priv: internal MTD struct for partition to be deleted
*
* This function must be called with the partitions mutex locked.
*/
static int __mtd_del_partition(struct mtd_part *priv)
{
struct mtd_part *child, *next;
int err;
list_for_each_entry_safe(child, next, &mtd_partitions, list) {
if (child->parent == &priv->mtd) {
err = __mtd_del_partition(child);
if (err)
return err;
}
}
sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
err = del_mtd_device(&priv->mtd);
if (err)
return err;
list_del(&priv->list);
free_partition(priv);
return 0;
}
/*
* This function unregisters and destroy all slave MTD objects which are
* attached to the given MTD object.
*/
int del_mtd_partitions(struct mtd_info *mtd)
{
struct mtd_part *slave, *next;
int ret, err = 0;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry_safe(slave, next, &mtd_partitions, list)
if (slave->parent == mtd) {
ret = __mtd_del_partition(slave);
if (ret < 0)
err = ret;
}
mutex_unlock(&mtd_partitions_mutex);
return err;
}
int mtd_del_partition(struct mtd_info *mtd, int partno)
{
struct mtd_part *slave, *next;
int ret = -EINVAL;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry_safe(slave, next, &mtd_partitions, list)
if ((slave->parent == mtd) &&
(slave->mtd.index == partno)) {
ret = __mtd_del_partition(slave);
break;
}
mutex_unlock(&mtd_partitions_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mtd_del_partition);
/*
* This function, given a master MTD object and a partition table, creates
* and registers slave MTD objects which are bound to the master according to
* the partition definitions.
*
* For historical reasons, this function's caller only registers the master
* if the MTD_PARTITIONED_MASTER config option is set.
*/
int add_mtd_partitions(struct mtd_info *master,
const struct mtd_partition *parts,
int nbparts)
{
struct mtd_part *slave;
uint64_t cur_offset = 0;
int i;
printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
for (i = 0; i < nbparts; i++) {
slave = allocate_partition(master, parts + i, i, cur_offset);
if (IS_ERR(slave)) {
del_mtd_partitions(master);
return PTR_ERR(slave);
}
mutex_lock(&mtd_partitions_mutex);
list_add(&slave->list, &mtd_partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(&slave->mtd);
mtd_add_partition_attrs(slave);
if (parts[i].types)
mtd_parse_part(slave, parts[i].types);
cur_offset = slave->offset + slave->mtd.size;
}
return 0;
}
static DEFINE_SPINLOCK(part_parser_lock);
static LIST_HEAD(part_parsers);
static struct mtd_part_parser *mtd_part_parser_get(const char *name)
{
struct mtd_part_parser *p, *ret = NULL;
spin_lock(&part_parser_lock);
list_for_each_entry(p, &part_parsers, list)
if (!strcmp(p->name, name) && try_module_get(p->owner)) {
ret = p;
break;
}
spin_unlock(&part_parser_lock);
return ret;
}
static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
{
module_put(p->owner);
}
/*
* Many partition parsers just expected the core to kfree() all their data in
* one chunk. Do that by default.
*/
static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
int nr_parts)
{
kfree(pparts);
}
int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
{
p->owner = owner;
if (!p->cleanup)
p->cleanup = &mtd_part_parser_cleanup_default;
spin_lock(&part_parser_lock);
list_add(&p->list, &part_parsers);
spin_unlock(&part_parser_lock);
return 0;
}
EXPORT_SYMBOL_GPL(__register_mtd_parser);
void deregister_mtd_parser(struct mtd_part_parser *p)
{
spin_lock(&part_parser_lock);
list_del(&p->list);
spin_unlock(&part_parser_lock);
}
EXPORT_SYMBOL_GPL(deregister_mtd_parser);
/*
* Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
* are changing this array!
*/
static const char * const default_mtd_part_types[] = {
"cmdlinepart",
"ofpart",
NULL
};
static int mtd_part_do_parse(struct mtd_part_parser *parser,
struct mtd_info *master,
struct mtd_partitions *pparts,
struct mtd_part_parser_data *data)
{
int ret;
ret = (*parser->parse_fn)(master, &pparts->parts, data);
pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
if (ret <= 0)
return ret;
pr_notice("%d %s partitions found on MTD device %s\n", ret,
parser->name, master->name);
pparts->nr_parts = ret;
pparts->parser = parser;
return ret;
}
/**
* parse_mtd_partitions - parse MTD partitions
* @master: the master partition (describes whole MTD device)
* @types: names of partition parsers to try or %NULL
* @pparts: info about partitions found is returned here
* @data: MTD partition parser-specific data
*
* This function tries to find partition on MTD device @master. It uses MTD
* partition parsers, specified in @types. However, if @types is %NULL, then
* the default list of parsers is used. The default list contains only the
* "cmdlinepart" and "ofpart" parsers ATM.
* Note: If there are more then one parser in @types, the kernel only takes the
* partitions parsed out by the first parser.
*
* This function may return:
* o a negative error code in case of failure
* o zero otherwise, and @pparts will describe the partitions, number of
* partitions, and the parser which parsed them. Caller must release
* resources with mtd_part_parser_cleanup() when finished with the returned
* data.
*/
int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
struct mtd_partitions *pparts,
struct mtd_part_parser_data *data)
{
struct mtd_part_parser *parser;
int ret, err = 0;
if (!types)
types = default_mtd_part_types;
for ( ; *types; types++) {
pr_debug("%s: parsing partitions %s\n", master->name, *types);
parser = mtd_part_parser_get(*types);
if (!parser && !request_module("%s", *types))
parser = mtd_part_parser_get(*types);
pr_debug("%s: got parser %s\n", master->name,
parser ? parser->name : NULL);
if (!parser)
continue;
ret = mtd_part_do_parse(parser, master, pparts, data);
/* Found partitions! */
if (ret > 0)
return 0;
mtd_part_parser_put(parser);
/*
* Stash the first error we see; only report it if no parser
* succeeds
*/
if (ret < 0 && !err)
err = ret;
}
return err;
}
void mtd_part_parser_cleanup(struct mtd_partitions *parts)
{
const struct mtd_part_parser *parser;
if (!parts)
return;
parser = parts->parser;
if (parser) {
if (parser->cleanup)
parser->cleanup(parts->parts, parts->nr_parts);
mtd_part_parser_put(parser);
}
}
int mtd_is_partition(const struct mtd_info *mtd)
{
struct mtd_part *part;
int ispart = 0;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry(part, &mtd_partitions, list)
if (&part->mtd == mtd) {
ispart = 1;
break;
}
mutex_unlock(&mtd_partitions_mutex);
return ispart;
}
EXPORT_SYMBOL_GPL(mtd_is_partition);
/* Returns the size of the entire flash chip */
uint64_t mtd_get_device_size(const struct mtd_info *mtd)
{
if (!mtd_is_partition(mtd))
return mtd->size;
return mtd_get_device_size(mtd_to_part(mtd)->parent);
}
EXPORT_SYMBOL_GPL(mtd_get_device_size);