mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 19:53:59 +08:00
3821af2fe1
Signed-off-by: Stephen Hemminger <shemminger@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
430 lines
12 KiB
C
430 lines
12 KiB
C
/*
|
|
* PowerPC atomic bit operations.
|
|
*
|
|
* Merged version by David Gibson <david@gibson.dropbear.id.au>.
|
|
* Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
|
|
* Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
|
|
* originally took it from the ppc32 code.
|
|
*
|
|
* Within a word, bits are numbered LSB first. Lot's of places make
|
|
* this assumption by directly testing bits with (val & (1<<nr)).
|
|
* This can cause confusion for large (> 1 word) bitmaps on a
|
|
* big-endian system because, unlike little endian, the number of each
|
|
* bit depends on the word size.
|
|
*
|
|
* The bitop functions are defined to work on unsigned longs, so for a
|
|
* ppc64 system the bits end up numbered:
|
|
* |63..............0|127............64|191...........128|255...........196|
|
|
* and on ppc32:
|
|
* |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
|
|
*
|
|
* There are a few little-endian macros used mostly for filesystem
|
|
* bitmaps, these work on similar bit arrays layouts, but
|
|
* byte-oriented:
|
|
* |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
|
|
*
|
|
* The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
|
|
* number field needs to be reversed compared to the big-endian bit
|
|
* fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#ifndef _ASM_POWERPC_BITOPS_H
|
|
#define _ASM_POWERPC_BITOPS_H
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <linux/compiler.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/asm-compat.h>
|
|
#include <asm/synch.h>
|
|
|
|
/*
|
|
* clear_bit doesn't imply a memory barrier
|
|
*/
|
|
#define smp_mb__before_clear_bit() smp_mb()
|
|
#define smp_mb__after_clear_bit() smp_mb()
|
|
|
|
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
|
|
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
|
|
#define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
|
|
|
|
static __inline__ void set_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long old;
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
|
|
__asm__ __volatile__(
|
|
"1:" PPC_LLARX "%0,0,%3 # set_bit\n"
|
|
"or %0,%0,%2\n"
|
|
PPC405_ERR77(0,%3)
|
|
PPC_STLCX "%0,0,%3\n"
|
|
"bne- 1b"
|
|
: "=&r"(old), "=m"(*p)
|
|
: "r"(mask), "r"(p), "m"(*p)
|
|
: "cc" );
|
|
}
|
|
|
|
static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long old;
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
|
|
__asm__ __volatile__(
|
|
"1:" PPC_LLARX "%0,0,%3 # clear_bit\n"
|
|
"andc %0,%0,%2\n"
|
|
PPC405_ERR77(0,%3)
|
|
PPC_STLCX "%0,0,%3\n"
|
|
"bne- 1b"
|
|
: "=&r"(old), "=m"(*p)
|
|
: "r"(mask), "r"(p), "m"(*p)
|
|
: "cc" );
|
|
}
|
|
|
|
static __inline__ void change_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long old;
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
|
|
__asm__ __volatile__(
|
|
"1:" PPC_LLARX "%0,0,%3 # change_bit\n"
|
|
"xor %0,%0,%2\n"
|
|
PPC405_ERR77(0,%3)
|
|
PPC_STLCX "%0,0,%3\n"
|
|
"bne- 1b"
|
|
: "=&r"(old), "=m"(*p)
|
|
: "r"(mask), "r"(p), "m"(*p)
|
|
: "cc" );
|
|
}
|
|
|
|
static __inline__ int test_and_set_bit(unsigned long nr,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long old, t;
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
|
|
__asm__ __volatile__(
|
|
EIEIO_ON_SMP
|
|
"1:" PPC_LLARX "%0,0,%3 # test_and_set_bit\n"
|
|
"or %1,%0,%2 \n"
|
|
PPC405_ERR77(0,%3)
|
|
PPC_STLCX "%1,0,%3 \n"
|
|
"bne- 1b"
|
|
ISYNC_ON_SMP
|
|
: "=&r" (old), "=&r" (t)
|
|
: "r" (mask), "r" (p)
|
|
: "cc", "memory");
|
|
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
static __inline__ int test_and_clear_bit(unsigned long nr,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long old, t;
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
|
|
__asm__ __volatile__(
|
|
EIEIO_ON_SMP
|
|
"1:" PPC_LLARX "%0,0,%3 # test_and_clear_bit\n"
|
|
"andc %1,%0,%2 \n"
|
|
PPC405_ERR77(0,%3)
|
|
PPC_STLCX "%1,0,%3 \n"
|
|
"bne- 1b"
|
|
ISYNC_ON_SMP
|
|
: "=&r" (old), "=&r" (t)
|
|
: "r" (mask), "r" (p)
|
|
: "cc", "memory");
|
|
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
static __inline__ int test_and_change_bit(unsigned long nr,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long old, t;
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
|
|
__asm__ __volatile__(
|
|
EIEIO_ON_SMP
|
|
"1:" PPC_LLARX "%0,0,%3 # test_and_change_bit\n"
|
|
"xor %1,%0,%2 \n"
|
|
PPC405_ERR77(0,%3)
|
|
PPC_STLCX "%1,0,%3 \n"
|
|
"bne- 1b"
|
|
ISYNC_ON_SMP
|
|
: "=&r" (old), "=&r" (t)
|
|
: "r" (mask), "r" (p)
|
|
: "cc", "memory");
|
|
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
static __inline__ void set_bits(unsigned long mask, unsigned long *addr)
|
|
{
|
|
unsigned long old;
|
|
|
|
__asm__ __volatile__(
|
|
"1:" PPC_LLARX "%0,0,%3 # set_bits\n"
|
|
"or %0,%0,%2\n"
|
|
PPC_STLCX "%0,0,%3\n"
|
|
"bne- 1b"
|
|
: "=&r" (old), "=m" (*addr)
|
|
: "r" (mask), "r" (addr), "m" (*addr)
|
|
: "cc");
|
|
}
|
|
|
|
/* Non-atomic versions */
|
|
static __inline__ int test_bit(unsigned long nr,
|
|
__const__ volatile unsigned long *addr)
|
|
{
|
|
return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
|
|
}
|
|
|
|
static __inline__ void __set_bit(unsigned long nr,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
|
|
*p |= mask;
|
|
}
|
|
|
|
static __inline__ void __clear_bit(unsigned long nr,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
|
|
*p &= ~mask;
|
|
}
|
|
|
|
static __inline__ void __change_bit(unsigned long nr,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
|
|
*p ^= mask;
|
|
}
|
|
|
|
static __inline__ int __test_and_set_bit(unsigned long nr,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
unsigned long old = *p;
|
|
|
|
*p = old | mask;
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
static __inline__ int __test_and_clear_bit(unsigned long nr,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
unsigned long old = *p;
|
|
|
|
*p = old & ~mask;
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
static __inline__ int __test_and_change_bit(unsigned long nr,
|
|
volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = BITOP_MASK(nr);
|
|
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
|
|
unsigned long old = *p;
|
|
|
|
*p = old ^ mask;
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
/*
|
|
* Return the zero-based bit position (LE, not IBM bit numbering) of
|
|
* the most significant 1-bit in a double word.
|
|
*/
|
|
static __inline__ int __ilog2(unsigned long x)
|
|
{
|
|
int lz;
|
|
|
|
asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
|
|
return BITS_PER_LONG - 1 - lz;
|
|
}
|
|
|
|
/*
|
|
* Determines the bit position of the least significant 0 bit in the
|
|
* specified double word. The returned bit position will be
|
|
* zero-based, starting from the right side (63/31 - 0).
|
|
*/
|
|
static __inline__ unsigned long ffz(unsigned long x)
|
|
{
|
|
/* no zero exists anywhere in the 8 byte area. */
|
|
if ((x = ~x) == 0)
|
|
return BITS_PER_LONG;
|
|
|
|
/*
|
|
* Calculate the bit position of the least signficant '1' bit in x
|
|
* (since x has been changed this will actually be the least signficant
|
|
* '0' bit in * the original x). Note: (x & -x) gives us a mask that
|
|
* is the least significant * (RIGHT-most) 1-bit of the value in x.
|
|
*/
|
|
return __ilog2(x & -x);
|
|
}
|
|
|
|
static __inline__ int __ffs(unsigned long x)
|
|
{
|
|
return __ilog2(x & -x);
|
|
}
|
|
|
|
/*
|
|
* ffs: find first bit set. This is defined the same way as
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
* differs in spirit from the above ffz (man ffs).
|
|
*/
|
|
static __inline__ int ffs(int x)
|
|
{
|
|
unsigned long i = (unsigned long)x;
|
|
return __ilog2(i & -i) + 1;
|
|
}
|
|
|
|
/*
|
|
* fls: find last (most-significant) bit set.
|
|
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
|
|
*/
|
|
static __inline__ int fls(unsigned int x)
|
|
{
|
|
int lz;
|
|
|
|
asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
|
|
return 32 - lz;
|
|
}
|
|
#define fls64(x) generic_fls64(x)
|
|
|
|
/*
|
|
* hweightN: returns the hamming weight (i.e. the number
|
|
* of bits set) of a N-bit word
|
|
*/
|
|
#define hweight64(x) generic_hweight64(x)
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
#define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0)
|
|
unsigned long find_next_zero_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset);
|
|
/**
|
|
* find_first_bit - find the first set bit in a memory region
|
|
* @addr: The address to start the search at
|
|
* @size: The maximum size to search
|
|
*
|
|
* Returns the bit-number of the first set bit, not the number of the byte
|
|
* containing a bit.
|
|
*/
|
|
#define find_first_bit(addr, size) find_next_bit((addr), (size), 0)
|
|
unsigned long find_next_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset);
|
|
|
|
/* Little-endian versions */
|
|
|
|
static __inline__ int test_le_bit(unsigned long nr,
|
|
__const__ unsigned long *addr)
|
|
{
|
|
__const__ unsigned char *tmp = (__const__ unsigned char *) addr;
|
|
return (tmp[nr >> 3] >> (nr & 7)) & 1;
|
|
}
|
|
|
|
#define __set_le_bit(nr, addr) \
|
|
__set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
|
|
#define __clear_le_bit(nr, addr) \
|
|
__clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
|
|
|
|
#define test_and_set_le_bit(nr, addr) \
|
|
test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
|
|
#define test_and_clear_le_bit(nr, addr) \
|
|
test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
|
|
|
|
#define __test_and_set_le_bit(nr, addr) \
|
|
__test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
|
|
#define __test_and_clear_le_bit(nr, addr) \
|
|
__test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
|
|
|
|
#define find_first_zero_le_bit(addr, size) find_next_zero_le_bit((addr), (size), 0)
|
|
unsigned long find_next_zero_le_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset);
|
|
|
|
/* Bitmap functions for the ext2 filesystem */
|
|
|
|
#define ext2_set_bit(nr,addr) \
|
|
__test_and_set_le_bit((nr), (unsigned long*)addr)
|
|
#define ext2_clear_bit(nr, addr) \
|
|
__test_and_clear_le_bit((nr), (unsigned long*)addr)
|
|
|
|
#define ext2_set_bit_atomic(lock, nr, addr) \
|
|
test_and_set_le_bit((nr), (unsigned long*)addr)
|
|
#define ext2_clear_bit_atomic(lock, nr, addr) \
|
|
test_and_clear_le_bit((nr), (unsigned long*)addr)
|
|
|
|
#define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
|
|
|
|
#define ext2_find_first_zero_bit(addr, size) \
|
|
find_first_zero_le_bit((unsigned long*)addr, size)
|
|
#define ext2_find_next_zero_bit(addr, size, off) \
|
|
find_next_zero_le_bit((unsigned long*)addr, size, off)
|
|
|
|
/* Bitmap functions for the minix filesystem. */
|
|
|
|
#define minix_test_and_set_bit(nr,addr) \
|
|
__test_and_set_le_bit(nr, (unsigned long *)addr)
|
|
#define minix_set_bit(nr,addr) \
|
|
__set_le_bit(nr, (unsigned long *)addr)
|
|
#define minix_test_and_clear_bit(nr,addr) \
|
|
__test_and_clear_le_bit(nr, (unsigned long *)addr)
|
|
#define minix_test_bit(nr,addr) \
|
|
test_le_bit(nr, (unsigned long *)addr)
|
|
|
|
#define minix_find_first_zero_bit(addr,size) \
|
|
find_first_zero_le_bit((unsigned long *)addr, size)
|
|
|
|
/*
|
|
* Every architecture must define this function. It's the fastest
|
|
* way of searching a 140-bit bitmap where the first 100 bits are
|
|
* unlikely to be set. It's guaranteed that at least one of the 140
|
|
* bits is cleared.
|
|
*/
|
|
static inline int sched_find_first_bit(const unsigned long *b)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
if (unlikely(b[0]))
|
|
return __ffs(b[0]);
|
|
if (unlikely(b[1]))
|
|
return __ffs(b[1]) + 64;
|
|
return __ffs(b[2]) + 128;
|
|
#else
|
|
if (unlikely(b[0]))
|
|
return __ffs(b[0]);
|
|
if (unlikely(b[1]))
|
|
return __ffs(b[1]) + 32;
|
|
if (unlikely(b[2]))
|
|
return __ffs(b[2]) + 64;
|
|
if (b[3])
|
|
return __ffs(b[3]) + 96;
|
|
return __ffs(b[4]) + 128;
|
|
#endif
|
|
}
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _ASM_POWERPC_BITOPS_H */
|