2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 14:43:58 +08:00
linux-next/drivers/crypto/chelsio/chcr_algo.c
Eric Biggers a24d22b225 crypto: sha - split sha.h into sha1.h and sha2.h
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2,
and <crypto/sha3.h> contains declarations for SHA-3.

This organization is inconsistent, but more importantly SHA-1 is no
longer considered to be cryptographically secure.  So to the extent
possible, SHA-1 shouldn't be grouped together with any of the other SHA
versions, and usage of it should be phased out.

Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and
<crypto/sha2.h>, and make everyone explicitly specify whether they want
the declarations for SHA-1, SHA-2, or both.

This avoids making the SHA-1 declarations visible to files that don't
want anything to do with SHA-1.  It also prepares for potentially moving
sha1.h into a new insecure/ or dangerous/ directory.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-11-20 14:45:33 +11:00

4524 lines
127 KiB
C

/*
* This file is part of the Chelsio T6 Crypto driver for Linux.
*
* Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Written and Maintained by:
* Manoj Malviya (manojmalviya@chelsio.com)
* Atul Gupta (atul.gupta@chelsio.com)
* Jitendra Lulla (jlulla@chelsio.com)
* Yeshaswi M R Gowda (yeshaswi@chelsio.com)
* Harsh Jain (harsh@chelsio.com)
*/
#define pr_fmt(fmt) "chcr:" fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/crypto.h>
#include <linux/skbuff.h>
#include <linux/rtnetlink.h>
#include <linux/highmem.h>
#include <linux/scatterlist.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/hash.h>
#include <crypto/gcm.h>
#include <crypto/sha1.h>
#include <crypto/sha2.h>
#include <crypto/authenc.h>
#include <crypto/ctr.h>
#include <crypto/gf128mul.h>
#include <crypto/internal/aead.h>
#include <crypto/null.h>
#include <crypto/internal/skcipher.h>
#include <crypto/aead.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/hash.h>
#include "t4fw_api.h"
#include "t4_msg.h"
#include "chcr_core.h"
#include "chcr_algo.h"
#include "chcr_crypto.h"
#define IV AES_BLOCK_SIZE
static unsigned int sgl_ent_len[] = {
0, 0, 16, 24, 40, 48, 64, 72, 88,
96, 112, 120, 136, 144, 160, 168, 184,
192, 208, 216, 232, 240, 256, 264, 280,
288, 304, 312, 328, 336, 352, 360, 376
};
static unsigned int dsgl_ent_len[] = {
0, 32, 32, 48, 48, 64, 64, 80, 80,
112, 112, 128, 128, 144, 144, 160, 160,
192, 192, 208, 208, 224, 224, 240, 240,
272, 272, 288, 288, 304, 304, 320, 320
};
static u32 round_constant[11] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000,
0x1B000000, 0x36000000, 0x6C000000
};
static int chcr_handle_cipher_resp(struct skcipher_request *req,
unsigned char *input, int err);
static inline struct chcr_aead_ctx *AEAD_CTX(struct chcr_context *ctx)
{
return ctx->crypto_ctx->aeadctx;
}
static inline struct ablk_ctx *ABLK_CTX(struct chcr_context *ctx)
{
return ctx->crypto_ctx->ablkctx;
}
static inline struct hmac_ctx *HMAC_CTX(struct chcr_context *ctx)
{
return ctx->crypto_ctx->hmacctx;
}
static inline struct chcr_gcm_ctx *GCM_CTX(struct chcr_aead_ctx *gctx)
{
return gctx->ctx->gcm;
}
static inline struct chcr_authenc_ctx *AUTHENC_CTX(struct chcr_aead_ctx *gctx)
{
return gctx->ctx->authenc;
}
static inline struct uld_ctx *ULD_CTX(struct chcr_context *ctx)
{
return container_of(ctx->dev, struct uld_ctx, dev);
}
static inline int is_ofld_imm(const struct sk_buff *skb)
{
return (skb->len <= SGE_MAX_WR_LEN);
}
static inline void chcr_init_hctx_per_wr(struct chcr_ahash_req_ctx *reqctx)
{
memset(&reqctx->hctx_wr, 0, sizeof(struct chcr_hctx_per_wr));
}
static int sg_nents_xlen(struct scatterlist *sg, unsigned int reqlen,
unsigned int entlen,
unsigned int skip)
{
int nents = 0;
unsigned int less;
unsigned int skip_len = 0;
while (sg && skip) {
if (sg_dma_len(sg) <= skip) {
skip -= sg_dma_len(sg);
skip_len = 0;
sg = sg_next(sg);
} else {
skip_len = skip;
skip = 0;
}
}
while (sg && reqlen) {
less = min(reqlen, sg_dma_len(sg) - skip_len);
nents += DIV_ROUND_UP(less, entlen);
reqlen -= less;
skip_len = 0;
sg = sg_next(sg);
}
return nents;
}
static inline int get_aead_subtype(struct crypto_aead *aead)
{
struct aead_alg *alg = crypto_aead_alg(aead);
struct chcr_alg_template *chcr_crypto_alg =
container_of(alg, struct chcr_alg_template, alg.aead);
return chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK;
}
void chcr_verify_tag(struct aead_request *req, u8 *input, int *err)
{
u8 temp[SHA512_DIGEST_SIZE];
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
int authsize = crypto_aead_authsize(tfm);
struct cpl_fw6_pld *fw6_pld;
int cmp = 0;
fw6_pld = (struct cpl_fw6_pld *)input;
if ((get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106) ||
(get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_GCM)) {
cmp = crypto_memneq(&fw6_pld->data[2], (fw6_pld + 1), authsize);
} else {
sg_pcopy_to_buffer(req->src, sg_nents(req->src), temp,
authsize, req->assoclen +
req->cryptlen - authsize);
cmp = crypto_memneq(temp, (fw6_pld + 1), authsize);
}
if (cmp)
*err = -EBADMSG;
else
*err = 0;
}
static int chcr_inc_wrcount(struct chcr_dev *dev)
{
if (dev->state == CHCR_DETACH)
return 1;
atomic_inc(&dev->inflight);
return 0;
}
static inline void chcr_dec_wrcount(struct chcr_dev *dev)
{
atomic_dec(&dev->inflight);
}
static inline int chcr_handle_aead_resp(struct aead_request *req,
unsigned char *input,
int err)
{
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_dev *dev = a_ctx(tfm)->dev;
chcr_aead_common_exit(req);
if (reqctx->verify == VERIFY_SW) {
chcr_verify_tag(req, input, &err);
reqctx->verify = VERIFY_HW;
}
chcr_dec_wrcount(dev);
req->base.complete(&req->base, err);
return err;
}
static void get_aes_decrypt_key(unsigned char *dec_key,
const unsigned char *key,
unsigned int keylength)
{
u32 temp;
u32 w_ring[MAX_NK];
int i, j, k;
u8 nr, nk;
switch (keylength) {
case AES_KEYLENGTH_128BIT:
nk = KEYLENGTH_4BYTES;
nr = NUMBER_OF_ROUNDS_10;
break;
case AES_KEYLENGTH_192BIT:
nk = KEYLENGTH_6BYTES;
nr = NUMBER_OF_ROUNDS_12;
break;
case AES_KEYLENGTH_256BIT:
nk = KEYLENGTH_8BYTES;
nr = NUMBER_OF_ROUNDS_14;
break;
default:
return;
}
for (i = 0; i < nk; i++)
w_ring[i] = get_unaligned_be32(&key[i * 4]);
i = 0;
temp = w_ring[nk - 1];
while (i + nk < (nr + 1) * 4) {
if (!(i % nk)) {
/* RotWord(temp) */
temp = (temp << 8) | (temp >> 24);
temp = aes_ks_subword(temp);
temp ^= round_constant[i / nk];
} else if (nk == 8 && (i % 4 == 0)) {
temp = aes_ks_subword(temp);
}
w_ring[i % nk] ^= temp;
temp = w_ring[i % nk];
i++;
}
i--;
for (k = 0, j = i % nk; k < nk; k++) {
put_unaligned_be32(w_ring[j], &dec_key[k * 4]);
j--;
if (j < 0)
j += nk;
}
}
static struct crypto_shash *chcr_alloc_shash(unsigned int ds)
{
struct crypto_shash *base_hash = ERR_PTR(-EINVAL);
switch (ds) {
case SHA1_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha1", 0, 0);
break;
case SHA224_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha224", 0, 0);
break;
case SHA256_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha256", 0, 0);
break;
case SHA384_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha384", 0, 0);
break;
case SHA512_DIGEST_SIZE:
base_hash = crypto_alloc_shash("sha512", 0, 0);
break;
}
return base_hash;
}
static int chcr_compute_partial_hash(struct shash_desc *desc,
char *iopad, char *result_hash,
int digest_size)
{
struct sha1_state sha1_st;
struct sha256_state sha256_st;
struct sha512_state sha512_st;
int error;
if (digest_size == SHA1_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA1_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha1_st);
memcpy(result_hash, sha1_st.state, SHA1_DIGEST_SIZE);
} else if (digest_size == SHA224_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha256_st);
memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE);
} else if (digest_size == SHA256_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA256_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha256_st);
memcpy(result_hash, sha256_st.state, SHA256_DIGEST_SIZE);
} else if (digest_size == SHA384_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha512_st);
memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE);
} else if (digest_size == SHA512_DIGEST_SIZE) {
error = crypto_shash_init(desc) ?:
crypto_shash_update(desc, iopad, SHA512_BLOCK_SIZE) ?:
crypto_shash_export(desc, (void *)&sha512_st);
memcpy(result_hash, sha512_st.state, SHA512_DIGEST_SIZE);
} else {
error = -EINVAL;
pr_err("Unknown digest size %d\n", digest_size);
}
return error;
}
static void chcr_change_order(char *buf, int ds)
{
int i;
if (ds == SHA512_DIGEST_SIZE) {
for (i = 0; i < (ds / sizeof(u64)); i++)
*((__be64 *)buf + i) =
cpu_to_be64(*((u64 *)buf + i));
} else {
for (i = 0; i < (ds / sizeof(u32)); i++)
*((__be32 *)buf + i) =
cpu_to_be32(*((u32 *)buf + i));
}
}
static inline int is_hmac(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct chcr_alg_template *chcr_crypto_alg =
container_of(__crypto_ahash_alg(alg), struct chcr_alg_template,
alg.hash);
if (chcr_crypto_alg->type == CRYPTO_ALG_TYPE_HMAC)
return 1;
return 0;
}
static inline void dsgl_walk_init(struct dsgl_walk *walk,
struct cpl_rx_phys_dsgl *dsgl)
{
walk->dsgl = dsgl;
walk->nents = 0;
walk->to = (struct phys_sge_pairs *)(dsgl + 1);
}
static inline void dsgl_walk_end(struct dsgl_walk *walk, unsigned short qid,
int pci_chan_id)
{
struct cpl_rx_phys_dsgl *phys_cpl;
phys_cpl = walk->dsgl;
phys_cpl->op_to_tid = htonl(CPL_RX_PHYS_DSGL_OPCODE_V(CPL_RX_PHYS_DSGL)
| CPL_RX_PHYS_DSGL_ISRDMA_V(0));
phys_cpl->pcirlxorder_to_noofsgentr =
htonl(CPL_RX_PHYS_DSGL_PCIRLXORDER_V(0) |
CPL_RX_PHYS_DSGL_PCINOSNOOP_V(0) |
CPL_RX_PHYS_DSGL_PCITPHNTENB_V(0) |
CPL_RX_PHYS_DSGL_PCITPHNT_V(0) |
CPL_RX_PHYS_DSGL_DCAID_V(0) |
CPL_RX_PHYS_DSGL_NOOFSGENTR_V(walk->nents));
phys_cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR;
phys_cpl->rss_hdr_int.qid = htons(qid);
phys_cpl->rss_hdr_int.hash_val = 0;
phys_cpl->rss_hdr_int.channel = pci_chan_id;
}
static inline void dsgl_walk_add_page(struct dsgl_walk *walk,
size_t size,
dma_addr_t addr)
{
int j;
if (!size)
return;
j = walk->nents;
walk->to->len[j % 8] = htons(size);
walk->to->addr[j % 8] = cpu_to_be64(addr);
j++;
if ((j % 8) == 0)
walk->to++;
walk->nents = j;
}
static void dsgl_walk_add_sg(struct dsgl_walk *walk,
struct scatterlist *sg,
unsigned int slen,
unsigned int skip)
{
int skip_len = 0;
unsigned int left_size = slen, len = 0;
unsigned int j = walk->nents;
int offset, ent_len;
if (!slen)
return;
while (sg && skip) {
if (sg_dma_len(sg) <= skip) {
skip -= sg_dma_len(sg);
skip_len = 0;
sg = sg_next(sg);
} else {
skip_len = skip;
skip = 0;
}
}
while (left_size && sg) {
len = min_t(u32, left_size, sg_dma_len(sg) - skip_len);
offset = 0;
while (len) {
ent_len = min_t(u32, len, CHCR_DST_SG_SIZE);
walk->to->len[j % 8] = htons(ent_len);
walk->to->addr[j % 8] = cpu_to_be64(sg_dma_address(sg) +
offset + skip_len);
offset += ent_len;
len -= ent_len;
j++;
if ((j % 8) == 0)
walk->to++;
}
walk->last_sg = sg;
walk->last_sg_len = min_t(u32, left_size, sg_dma_len(sg) -
skip_len) + skip_len;
left_size -= min_t(u32, left_size, sg_dma_len(sg) - skip_len);
skip_len = 0;
sg = sg_next(sg);
}
walk->nents = j;
}
static inline void ulptx_walk_init(struct ulptx_walk *walk,
struct ulptx_sgl *ulp)
{
walk->sgl = ulp;
walk->nents = 0;
walk->pair_idx = 0;
walk->pair = ulp->sge;
walk->last_sg = NULL;
walk->last_sg_len = 0;
}
static inline void ulptx_walk_end(struct ulptx_walk *walk)
{
walk->sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
ULPTX_NSGE_V(walk->nents));
}
static inline void ulptx_walk_add_page(struct ulptx_walk *walk,
size_t size,
dma_addr_t addr)
{
if (!size)
return;
if (walk->nents == 0) {
walk->sgl->len0 = cpu_to_be32(size);
walk->sgl->addr0 = cpu_to_be64(addr);
} else {
walk->pair->addr[walk->pair_idx] = cpu_to_be64(addr);
walk->pair->len[walk->pair_idx] = cpu_to_be32(size);
walk->pair_idx = !walk->pair_idx;
if (!walk->pair_idx)
walk->pair++;
}
walk->nents++;
}
static void ulptx_walk_add_sg(struct ulptx_walk *walk,
struct scatterlist *sg,
unsigned int len,
unsigned int skip)
{
int small;
int skip_len = 0;
unsigned int sgmin;
if (!len)
return;
while (sg && skip) {
if (sg_dma_len(sg) <= skip) {
skip -= sg_dma_len(sg);
skip_len = 0;
sg = sg_next(sg);
} else {
skip_len = skip;
skip = 0;
}
}
WARN(!sg, "SG should not be null here\n");
if (sg && (walk->nents == 0)) {
small = min_t(unsigned int, sg_dma_len(sg) - skip_len, len);
sgmin = min_t(unsigned int, small, CHCR_SRC_SG_SIZE);
walk->sgl->len0 = cpu_to_be32(sgmin);
walk->sgl->addr0 = cpu_to_be64(sg_dma_address(sg) + skip_len);
walk->nents++;
len -= sgmin;
walk->last_sg = sg;
walk->last_sg_len = sgmin + skip_len;
skip_len += sgmin;
if (sg_dma_len(sg) == skip_len) {
sg = sg_next(sg);
skip_len = 0;
}
}
while (sg && len) {
small = min(sg_dma_len(sg) - skip_len, len);
sgmin = min_t(unsigned int, small, CHCR_SRC_SG_SIZE);
walk->pair->len[walk->pair_idx] = cpu_to_be32(sgmin);
walk->pair->addr[walk->pair_idx] =
cpu_to_be64(sg_dma_address(sg) + skip_len);
walk->pair_idx = !walk->pair_idx;
walk->nents++;
if (!walk->pair_idx)
walk->pair++;
len -= sgmin;
skip_len += sgmin;
walk->last_sg = sg;
walk->last_sg_len = skip_len;
if (sg_dma_len(sg) == skip_len) {
sg = sg_next(sg);
skip_len = 0;
}
}
}
static inline int get_cryptoalg_subtype(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct chcr_alg_template *chcr_crypto_alg =
container_of(alg, struct chcr_alg_template, alg.skcipher);
return chcr_crypto_alg->type & CRYPTO_ALG_SUB_TYPE_MASK;
}
static int cxgb4_is_crypto_q_full(struct net_device *dev, unsigned int idx)
{
struct adapter *adap = netdev2adap(dev);
struct sge_uld_txq_info *txq_info =
adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
struct sge_uld_txq *txq;
int ret = 0;
local_bh_disable();
txq = &txq_info->uldtxq[idx];
spin_lock(&txq->sendq.lock);
if (txq->full)
ret = -1;
spin_unlock(&txq->sendq.lock);
local_bh_enable();
return ret;
}
static int generate_copy_rrkey(struct ablk_ctx *ablkctx,
struct _key_ctx *key_ctx)
{
if (ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) {
memcpy(key_ctx->key, ablkctx->rrkey, ablkctx->enckey_len);
} else {
memcpy(key_ctx->key,
ablkctx->key + (ablkctx->enckey_len >> 1),
ablkctx->enckey_len >> 1);
memcpy(key_ctx->key + (ablkctx->enckey_len >> 1),
ablkctx->rrkey, ablkctx->enckey_len >> 1);
}
return 0;
}
static int chcr_hash_ent_in_wr(struct scatterlist *src,
unsigned int minsg,
unsigned int space,
unsigned int srcskip)
{
int srclen = 0;
int srcsg = minsg;
int soffset = 0, sless;
if (sg_dma_len(src) == srcskip) {
src = sg_next(src);
srcskip = 0;
}
while (src && space > (sgl_ent_len[srcsg + 1])) {
sless = min_t(unsigned int, sg_dma_len(src) - soffset - srcskip,
CHCR_SRC_SG_SIZE);
srclen += sless;
soffset += sless;
srcsg++;
if (sg_dma_len(src) == (soffset + srcskip)) {
src = sg_next(src);
soffset = 0;
srcskip = 0;
}
}
return srclen;
}
static int chcr_sg_ent_in_wr(struct scatterlist *src,
struct scatterlist *dst,
unsigned int minsg,
unsigned int space,
unsigned int srcskip,
unsigned int dstskip)
{
int srclen = 0, dstlen = 0;
int srcsg = minsg, dstsg = minsg;
int offset = 0, soffset = 0, less, sless = 0;
if (sg_dma_len(src) == srcskip) {
src = sg_next(src);
srcskip = 0;
}
if (sg_dma_len(dst) == dstskip) {
dst = sg_next(dst);
dstskip = 0;
}
while (src && dst &&
space > (sgl_ent_len[srcsg + 1] + dsgl_ent_len[dstsg])) {
sless = min_t(unsigned int, sg_dma_len(src) - srcskip - soffset,
CHCR_SRC_SG_SIZE);
srclen += sless;
srcsg++;
offset = 0;
while (dst && ((dstsg + 1) <= MAX_DSGL_ENT) &&
space > (sgl_ent_len[srcsg] + dsgl_ent_len[dstsg + 1])) {
if (srclen <= dstlen)
break;
less = min_t(unsigned int, sg_dma_len(dst) - offset -
dstskip, CHCR_DST_SG_SIZE);
dstlen += less;
offset += less;
if ((offset + dstskip) == sg_dma_len(dst)) {
dst = sg_next(dst);
offset = 0;
}
dstsg++;
dstskip = 0;
}
soffset += sless;
if ((soffset + srcskip) == sg_dma_len(src)) {
src = sg_next(src);
srcskip = 0;
soffset = 0;
}
}
return min(srclen, dstlen);
}
static int chcr_cipher_fallback(struct crypto_skcipher *cipher,
struct skcipher_request *req,
u8 *iv,
unsigned short op_type)
{
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
int err;
skcipher_request_set_tfm(&reqctx->fallback_req, cipher);
skcipher_request_set_callback(&reqctx->fallback_req, req->base.flags,
req->base.complete, req->base.data);
skcipher_request_set_crypt(&reqctx->fallback_req, req->src, req->dst,
req->cryptlen, iv);
err = op_type ? crypto_skcipher_decrypt(&reqctx->fallback_req) :
crypto_skcipher_encrypt(&reqctx->fallback_req);
return err;
}
static inline int get_qidxs(struct crypto_async_request *req,
unsigned int *txqidx, unsigned int *rxqidx)
{
struct crypto_tfm *tfm = req->tfm;
int ret = 0;
switch (tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_AEAD:
{
struct aead_request *aead_req =
container_of(req, struct aead_request, base);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(aead_req);
*txqidx = reqctx->txqidx;
*rxqidx = reqctx->rxqidx;
break;
}
case CRYPTO_ALG_TYPE_SKCIPHER:
{
struct skcipher_request *sk_req =
container_of(req, struct skcipher_request, base);
struct chcr_skcipher_req_ctx *reqctx =
skcipher_request_ctx(sk_req);
*txqidx = reqctx->txqidx;
*rxqidx = reqctx->rxqidx;
break;
}
case CRYPTO_ALG_TYPE_AHASH:
{
struct ahash_request *ahash_req =
container_of(req, struct ahash_request, base);
struct chcr_ahash_req_ctx *reqctx =
ahash_request_ctx(ahash_req);
*txqidx = reqctx->txqidx;
*rxqidx = reqctx->rxqidx;
break;
}
default:
ret = -EINVAL;
/* should never get here */
BUG();
break;
}
return ret;
}
static inline void create_wreq(struct chcr_context *ctx,
struct chcr_wr *chcr_req,
struct crypto_async_request *req,
unsigned int imm,
int hash_sz,
unsigned int len16,
unsigned int sc_len,
unsigned int lcb)
{
struct uld_ctx *u_ctx = ULD_CTX(ctx);
unsigned int tx_channel_id, rx_channel_id;
unsigned int txqidx = 0, rxqidx = 0;
unsigned int qid, fid;
get_qidxs(req, &txqidx, &rxqidx);
qid = u_ctx->lldi.rxq_ids[rxqidx];
fid = u_ctx->lldi.rxq_ids[0];
tx_channel_id = txqidx / ctx->txq_perchan;
rx_channel_id = rxqidx / ctx->rxq_perchan;
chcr_req->wreq.op_to_cctx_size = FILL_WR_OP_CCTX_SIZE;
chcr_req->wreq.pld_size_hash_size =
htonl(FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE_V(hash_sz));
chcr_req->wreq.len16_pkd =
htonl(FW_CRYPTO_LOOKASIDE_WR_LEN16_V(DIV_ROUND_UP(len16, 16)));
chcr_req->wreq.cookie = cpu_to_be64((uintptr_t)req);
chcr_req->wreq.rx_chid_to_rx_q_id = FILL_WR_RX_Q_ID(rx_channel_id, qid,
!!lcb, txqidx);
chcr_req->ulptx.cmd_dest = FILL_ULPTX_CMD_DEST(tx_channel_id, fid);
chcr_req->ulptx.len = htonl((DIV_ROUND_UP(len16, 16) -
((sizeof(chcr_req->wreq)) >> 4)));
chcr_req->sc_imm.cmd_more = FILL_CMD_MORE(!imm);
chcr_req->sc_imm.len = cpu_to_be32(sizeof(struct cpl_tx_sec_pdu) +
sizeof(chcr_req->key_ctx) + sc_len);
}
/**
* create_cipher_wr - form the WR for cipher operations
* @req: cipher req.
* @ctx: crypto driver context of the request.
* @qid: ingress qid where response of this WR should be received.
* @op_type: encryption or decryption
*/
static struct sk_buff *create_cipher_wr(struct cipher_wr_param *wrparam)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(wrparam->req);
struct chcr_context *ctx = c_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
struct cpl_rx_phys_dsgl *phys_cpl;
struct ulptx_sgl *ulptx;
struct chcr_skcipher_req_ctx *reqctx =
skcipher_request_ctx(wrparam->req);
unsigned int temp = 0, transhdr_len, dst_size;
int error;
int nents;
unsigned int kctx_len;
gfp_t flags = wrparam->req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC;
struct adapter *adap = padap(ctx->dev);
unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan;
nents = sg_nents_xlen(reqctx->dstsg, wrparam->bytes, CHCR_DST_SG_SIZE,
reqctx->dst_ofst);
dst_size = get_space_for_phys_dsgl(nents);
kctx_len = roundup(ablkctx->enckey_len, 16);
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size);
nents = sg_nents_xlen(reqctx->srcsg, wrparam->bytes,
CHCR_SRC_SG_SIZE, reqctx->src_ofst);
temp = reqctx->imm ? roundup(wrparam->bytes, 16) :
(sgl_len(nents) * 8);
transhdr_len += temp;
transhdr_len = roundup(transhdr_len, 16);
skb = alloc_skb(SGE_MAX_WR_LEN, flags);
if (!skb) {
error = -ENOMEM;
goto err;
}
chcr_req = __skb_put_zero(skb, transhdr_len);
chcr_req->sec_cpl.op_ivinsrtofst =
FILL_SEC_CPL_OP_IVINSR(rx_channel_id, 2, 1);
chcr_req->sec_cpl.pldlen = htonl(IV + wrparam->bytes);
chcr_req->sec_cpl.aadstart_cipherstop_hi =
FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, IV + 1, 0);
chcr_req->sec_cpl.cipherstop_lo_authinsert =
FILL_SEC_CPL_AUTHINSERT(0, 0, 0, 0);
chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(reqctx->op, 0,
ablkctx->ciph_mode,
0, 0, IV >> 1);
chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 0,
0, 1, dst_size);
chcr_req->key_ctx.ctx_hdr = ablkctx->key_ctx_hdr;
if ((reqctx->op == CHCR_DECRYPT_OP) &&
(!(get_cryptoalg_subtype(tfm) ==
CRYPTO_ALG_SUB_TYPE_CTR)) &&
(!(get_cryptoalg_subtype(tfm) ==
CRYPTO_ALG_SUB_TYPE_CTR_RFC3686))) {
generate_copy_rrkey(ablkctx, &chcr_req->key_ctx);
} else {
if ((ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC) ||
(ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CTR)) {
memcpy(chcr_req->key_ctx.key, ablkctx->key,
ablkctx->enckey_len);
} else {
memcpy(chcr_req->key_ctx.key, ablkctx->key +
(ablkctx->enckey_len >> 1),
ablkctx->enckey_len >> 1);
memcpy(chcr_req->key_ctx.key +
(ablkctx->enckey_len >> 1),
ablkctx->key,
ablkctx->enckey_len >> 1);
}
}
phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
ulptx = (struct ulptx_sgl *)((u8 *)(phys_cpl + 1) + dst_size);
chcr_add_cipher_src_ent(wrparam->req, ulptx, wrparam);
chcr_add_cipher_dst_ent(wrparam->req, phys_cpl, wrparam, wrparam->qid);
atomic_inc(&adap->chcr_stats.cipher_rqst);
temp = sizeof(struct cpl_rx_phys_dsgl) + dst_size + kctx_len + IV
+ (reqctx->imm ? (wrparam->bytes) : 0);
create_wreq(c_ctx(tfm), chcr_req, &(wrparam->req->base), reqctx->imm, 0,
transhdr_len, temp,
ablkctx->ciph_mode == CHCR_SCMD_CIPHER_MODE_AES_CBC);
reqctx->skb = skb;
if (reqctx->op && (ablkctx->ciph_mode ==
CHCR_SCMD_CIPHER_MODE_AES_CBC))
sg_pcopy_to_buffer(wrparam->req->src,
sg_nents(wrparam->req->src), wrparam->req->iv, 16,
reqctx->processed + wrparam->bytes - AES_BLOCK_SIZE);
return skb;
err:
return ERR_PTR(error);
}
static inline int chcr_keyctx_ck_size(unsigned int keylen)
{
int ck_size = 0;
if (keylen == AES_KEYSIZE_128)
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
else if (keylen == AES_KEYSIZE_192)
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
else if (keylen == AES_KEYSIZE_256)
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
else
ck_size = 0;
return ck_size;
}
static int chcr_cipher_fallback_setkey(struct crypto_skcipher *cipher,
const u8 *key,
unsigned int keylen)
{
struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher));
crypto_skcipher_clear_flags(ablkctx->sw_cipher,
CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ablkctx->sw_cipher,
cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK);
return crypto_skcipher_setkey(ablkctx->sw_cipher, key, keylen);
}
static int chcr_aes_cbc_setkey(struct crypto_skcipher *cipher,
const u8 *key,
unsigned int keylen)
{
struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher));
unsigned int ck_size, context_size;
u16 alignment = 0;
int err;
err = chcr_cipher_fallback_setkey(cipher, key, keylen);
if (err)
goto badkey_err;
ck_size = chcr_keyctx_ck_size(keylen);
alignment = ck_size == CHCR_KEYCTX_CIPHER_KEY_SIZE_192 ? 8 : 0;
memcpy(ablkctx->key, key, keylen);
ablkctx->enckey_len = keylen;
get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, keylen << 3);
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD +
keylen + alignment) >> 4;
ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY,
0, 0, context_size);
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC;
return 0;
badkey_err:
ablkctx->enckey_len = 0;
return err;
}
static int chcr_aes_ctr_setkey(struct crypto_skcipher *cipher,
const u8 *key,
unsigned int keylen)
{
struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher));
unsigned int ck_size, context_size;
u16 alignment = 0;
int err;
err = chcr_cipher_fallback_setkey(cipher, key, keylen);
if (err)
goto badkey_err;
ck_size = chcr_keyctx_ck_size(keylen);
alignment = (ck_size == CHCR_KEYCTX_CIPHER_KEY_SIZE_192) ? 8 : 0;
memcpy(ablkctx->key, key, keylen);
ablkctx->enckey_len = keylen;
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD +
keylen + alignment) >> 4;
ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY,
0, 0, context_size);
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR;
return 0;
badkey_err:
ablkctx->enckey_len = 0;
return err;
}
static int chcr_aes_rfc3686_setkey(struct crypto_skcipher *cipher,
const u8 *key,
unsigned int keylen)
{
struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher));
unsigned int ck_size, context_size;
u16 alignment = 0;
int err;
if (keylen < CTR_RFC3686_NONCE_SIZE)
return -EINVAL;
memcpy(ablkctx->nonce, key + (keylen - CTR_RFC3686_NONCE_SIZE),
CTR_RFC3686_NONCE_SIZE);
keylen -= CTR_RFC3686_NONCE_SIZE;
err = chcr_cipher_fallback_setkey(cipher, key, keylen);
if (err)
goto badkey_err;
ck_size = chcr_keyctx_ck_size(keylen);
alignment = (ck_size == CHCR_KEYCTX_CIPHER_KEY_SIZE_192) ? 8 : 0;
memcpy(ablkctx->key, key, keylen);
ablkctx->enckey_len = keylen;
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD +
keylen + alignment) >> 4;
ablkctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY,
0, 0, context_size);
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR;
return 0;
badkey_err:
ablkctx->enckey_len = 0;
return err;
}
static void ctr_add_iv(u8 *dstiv, u8 *srciv, u32 add)
{
unsigned int size = AES_BLOCK_SIZE;
__be32 *b = (__be32 *)(dstiv + size);
u32 c, prev;
memcpy(dstiv, srciv, AES_BLOCK_SIZE);
for (; size >= 4; size -= 4) {
prev = be32_to_cpu(*--b);
c = prev + add;
*b = cpu_to_be32(c);
if (prev < c)
break;
add = 1;
}
}
static unsigned int adjust_ctr_overflow(u8 *iv, u32 bytes)
{
__be32 *b = (__be32 *)(iv + AES_BLOCK_SIZE);
u64 c;
u32 temp = be32_to_cpu(*--b);
temp = ~temp;
c = (u64)temp + 1; // No of block can processed without overflow
if ((bytes / AES_BLOCK_SIZE) >= c)
bytes = c * AES_BLOCK_SIZE;
return bytes;
}
static int chcr_update_tweak(struct skcipher_request *req, u8 *iv,
u32 isfinal)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(tfm));
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
struct crypto_aes_ctx aes;
int ret, i;
u8 *key;
unsigned int keylen;
int round = reqctx->last_req_len / AES_BLOCK_SIZE;
int round8 = round / 8;
memcpy(iv, reqctx->iv, AES_BLOCK_SIZE);
keylen = ablkctx->enckey_len / 2;
key = ablkctx->key + keylen;
/* For a 192 bit key remove the padded zeroes which was
* added in chcr_xts_setkey
*/
if (KEY_CONTEXT_CK_SIZE_G(ntohl(ablkctx->key_ctx_hdr))
== CHCR_KEYCTX_CIPHER_KEY_SIZE_192)
ret = aes_expandkey(&aes, key, keylen - 8);
else
ret = aes_expandkey(&aes, key, keylen);
if (ret)
return ret;
aes_encrypt(&aes, iv, iv);
for (i = 0; i < round8; i++)
gf128mul_x8_ble((le128 *)iv, (le128 *)iv);
for (i = 0; i < (round % 8); i++)
gf128mul_x_ble((le128 *)iv, (le128 *)iv);
if (!isfinal)
aes_decrypt(&aes, iv, iv);
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int chcr_update_cipher_iv(struct skcipher_request *req,
struct cpl_fw6_pld *fw6_pld, u8 *iv)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
int subtype = get_cryptoalg_subtype(tfm);
int ret = 0;
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR)
ctr_add_iv(iv, req->iv, (reqctx->processed /
AES_BLOCK_SIZE));
else if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_RFC3686)
*(__be32 *)(reqctx->iv + CTR_RFC3686_NONCE_SIZE +
CTR_RFC3686_IV_SIZE) = cpu_to_be32((reqctx->processed /
AES_BLOCK_SIZE) + 1);
else if (subtype == CRYPTO_ALG_SUB_TYPE_XTS)
ret = chcr_update_tweak(req, iv, 0);
else if (subtype == CRYPTO_ALG_SUB_TYPE_CBC) {
if (reqctx->op)
/*Updated before sending last WR*/
memcpy(iv, req->iv, AES_BLOCK_SIZE);
else
memcpy(iv, &fw6_pld->data[2], AES_BLOCK_SIZE);
}
return ret;
}
/* We need separate function for final iv because in rfc3686 Initial counter
* starts from 1 and buffer size of iv is 8 byte only which remains constant
* for subsequent update requests
*/
static int chcr_final_cipher_iv(struct skcipher_request *req,
struct cpl_fw6_pld *fw6_pld, u8 *iv)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
int subtype = get_cryptoalg_subtype(tfm);
int ret = 0;
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR)
ctr_add_iv(iv, req->iv, DIV_ROUND_UP(reqctx->processed,
AES_BLOCK_SIZE));
else if (subtype == CRYPTO_ALG_SUB_TYPE_XTS) {
if (!reqctx->partial_req)
memcpy(iv, reqctx->iv, AES_BLOCK_SIZE);
else
ret = chcr_update_tweak(req, iv, 1);
}
else if (subtype == CRYPTO_ALG_SUB_TYPE_CBC) {
/*Already updated for Decrypt*/
if (!reqctx->op)
memcpy(iv, &fw6_pld->data[2], AES_BLOCK_SIZE);
}
return ret;
}
static int chcr_handle_cipher_resp(struct skcipher_request *req,
unsigned char *input, int err)
{
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct cpl_fw6_pld *fw6_pld = (struct cpl_fw6_pld *)input;
struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(tfm));
struct uld_ctx *u_ctx = ULD_CTX(c_ctx(tfm));
struct chcr_dev *dev = c_ctx(tfm)->dev;
struct chcr_context *ctx = c_ctx(tfm);
struct adapter *adap = padap(ctx->dev);
struct cipher_wr_param wrparam;
struct sk_buff *skb;
int bytes;
if (err)
goto unmap;
if (req->cryptlen == reqctx->processed) {
chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev,
req);
err = chcr_final_cipher_iv(req, fw6_pld, req->iv);
goto complete;
}
if (!reqctx->imm) {
bytes = chcr_sg_ent_in_wr(reqctx->srcsg, reqctx->dstsg, 0,
CIP_SPACE_LEFT(ablkctx->enckey_len),
reqctx->src_ofst, reqctx->dst_ofst);
if ((bytes + reqctx->processed) >= req->cryptlen)
bytes = req->cryptlen - reqctx->processed;
else
bytes = rounddown(bytes, 16);
} else {
/*CTR mode counter overfloa*/
bytes = req->cryptlen - reqctx->processed;
}
err = chcr_update_cipher_iv(req, fw6_pld, reqctx->iv);
if (err)
goto unmap;
if (unlikely(bytes == 0)) {
chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev,
req);
memcpy(req->iv, reqctx->init_iv, IV);
atomic_inc(&adap->chcr_stats.fallback);
err = chcr_cipher_fallback(ablkctx->sw_cipher, req, req->iv,
reqctx->op);
goto complete;
}
if (get_cryptoalg_subtype(tfm) ==
CRYPTO_ALG_SUB_TYPE_CTR)
bytes = adjust_ctr_overflow(reqctx->iv, bytes);
wrparam.qid = u_ctx->lldi.rxq_ids[reqctx->rxqidx];
wrparam.req = req;
wrparam.bytes = bytes;
skb = create_cipher_wr(&wrparam);
if (IS_ERR(skb)) {
pr_err("%s : Failed to form WR. No memory\n", __func__);
err = PTR_ERR(skb);
goto unmap;
}
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx);
chcr_send_wr(skb);
reqctx->last_req_len = bytes;
reqctx->processed += bytes;
if (get_cryptoalg_subtype(tfm) ==
CRYPTO_ALG_SUB_TYPE_CBC && req->base.flags ==
CRYPTO_TFM_REQ_MAY_SLEEP ) {
complete(&ctx->cbc_aes_aio_done);
}
return 0;
unmap:
chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev, req);
complete:
if (get_cryptoalg_subtype(tfm) ==
CRYPTO_ALG_SUB_TYPE_CBC && req->base.flags ==
CRYPTO_TFM_REQ_MAY_SLEEP ) {
complete(&ctx->cbc_aes_aio_done);
}
chcr_dec_wrcount(dev);
req->base.complete(&req->base, err);
return err;
}
static int process_cipher(struct skcipher_request *req,
unsigned short qid,
struct sk_buff **skb,
unsigned short op_type)
{
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(tfm));
struct adapter *adap = padap(c_ctx(tfm)->dev);
struct cipher_wr_param wrparam;
int bytes, err = -EINVAL;
int subtype;
reqctx->processed = 0;
reqctx->partial_req = 0;
if (!req->iv)
goto error;
subtype = get_cryptoalg_subtype(tfm);
if ((ablkctx->enckey_len == 0) || (ivsize > AES_BLOCK_SIZE) ||
(req->cryptlen == 0) ||
(req->cryptlen % crypto_skcipher_blocksize(tfm))) {
if (req->cryptlen == 0 && subtype != CRYPTO_ALG_SUB_TYPE_XTS)
goto fallback;
else if (req->cryptlen % crypto_skcipher_blocksize(tfm) &&
subtype == CRYPTO_ALG_SUB_TYPE_XTS)
goto fallback;
pr_err("AES: Invalid value of Key Len %d nbytes %d IV Len %d\n",
ablkctx->enckey_len, req->cryptlen, ivsize);
goto error;
}
err = chcr_cipher_dma_map(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev, req);
if (err)
goto error;
if (req->cryptlen < (SGE_MAX_WR_LEN - (sizeof(struct chcr_wr) +
AES_MIN_KEY_SIZE +
sizeof(struct cpl_rx_phys_dsgl) +
/*Min dsgl size*/
32))) {
/* Can be sent as Imm*/
unsigned int dnents = 0, transhdr_len, phys_dsgl, kctx_len;
dnents = sg_nents_xlen(req->dst, req->cryptlen,
CHCR_DST_SG_SIZE, 0);
phys_dsgl = get_space_for_phys_dsgl(dnents);
kctx_len = roundup(ablkctx->enckey_len, 16);
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, phys_dsgl);
reqctx->imm = (transhdr_len + IV + req->cryptlen) <=
SGE_MAX_WR_LEN;
bytes = IV + req->cryptlen;
} else {
reqctx->imm = 0;
}
if (!reqctx->imm) {
bytes = chcr_sg_ent_in_wr(req->src, req->dst, 0,
CIP_SPACE_LEFT(ablkctx->enckey_len),
0, 0);
if ((bytes + reqctx->processed) >= req->cryptlen)
bytes = req->cryptlen - reqctx->processed;
else
bytes = rounddown(bytes, 16);
} else {
bytes = req->cryptlen;
}
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR) {
bytes = adjust_ctr_overflow(req->iv, bytes);
}
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_RFC3686) {
memcpy(reqctx->iv, ablkctx->nonce, CTR_RFC3686_NONCE_SIZE);
memcpy(reqctx->iv + CTR_RFC3686_NONCE_SIZE, req->iv,
CTR_RFC3686_IV_SIZE);
/* initialize counter portion of counter block */
*(__be32 *)(reqctx->iv + CTR_RFC3686_NONCE_SIZE +
CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
memcpy(reqctx->init_iv, reqctx->iv, IV);
} else {
memcpy(reqctx->iv, req->iv, IV);
memcpy(reqctx->init_iv, req->iv, IV);
}
if (unlikely(bytes == 0)) {
chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev,
req);
fallback: atomic_inc(&adap->chcr_stats.fallback);
err = chcr_cipher_fallback(ablkctx->sw_cipher, req,
subtype ==
CRYPTO_ALG_SUB_TYPE_CTR_RFC3686 ?
reqctx->iv : req->iv,
op_type);
goto error;
}
reqctx->op = op_type;
reqctx->srcsg = req->src;
reqctx->dstsg = req->dst;
reqctx->src_ofst = 0;
reqctx->dst_ofst = 0;
wrparam.qid = qid;
wrparam.req = req;
wrparam.bytes = bytes;
*skb = create_cipher_wr(&wrparam);
if (IS_ERR(*skb)) {
err = PTR_ERR(*skb);
goto unmap;
}
reqctx->processed = bytes;
reqctx->last_req_len = bytes;
reqctx->partial_req = !!(req->cryptlen - reqctx->processed);
return 0;
unmap:
chcr_cipher_dma_unmap(&ULD_CTX(c_ctx(tfm))->lldi.pdev->dev, req);
error:
return err;
}
static int chcr_aes_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
struct chcr_dev *dev = c_ctx(tfm)->dev;
struct sk_buff *skb = NULL;
int err;
struct uld_ctx *u_ctx = ULD_CTX(c_ctx(tfm));
struct chcr_context *ctx = c_ctx(tfm);
unsigned int cpu;
cpu = get_cpu();
reqctx->txqidx = cpu % ctx->ntxq;
reqctx->rxqidx = cpu % ctx->nrxq;
put_cpu();
err = chcr_inc_wrcount(dev);
if (err)
return -ENXIO;
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
reqctx->txqidx) &&
(!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
err = -ENOSPC;
goto error;
}
err = process_cipher(req, u_ctx->lldi.rxq_ids[reqctx->rxqidx],
&skb, CHCR_ENCRYPT_OP);
if (err || !skb)
return err;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx);
chcr_send_wr(skb);
if (get_cryptoalg_subtype(tfm) ==
CRYPTO_ALG_SUB_TYPE_CBC && req->base.flags ==
CRYPTO_TFM_REQ_MAY_SLEEP ) {
reqctx->partial_req = 1;
wait_for_completion(&ctx->cbc_aes_aio_done);
}
return -EINPROGRESS;
error:
chcr_dec_wrcount(dev);
return err;
}
static int chcr_aes_decrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
struct uld_ctx *u_ctx = ULD_CTX(c_ctx(tfm));
struct chcr_dev *dev = c_ctx(tfm)->dev;
struct sk_buff *skb = NULL;
int err;
struct chcr_context *ctx = c_ctx(tfm);
unsigned int cpu;
cpu = get_cpu();
reqctx->txqidx = cpu % ctx->ntxq;
reqctx->rxqidx = cpu % ctx->nrxq;
put_cpu();
err = chcr_inc_wrcount(dev);
if (err)
return -ENXIO;
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
reqctx->txqidx) &&
(!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))))
return -ENOSPC;
err = process_cipher(req, u_ctx->lldi.rxq_ids[reqctx->rxqidx],
&skb, CHCR_DECRYPT_OP);
if (err || !skb)
return err;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_device_init(struct chcr_context *ctx)
{
struct uld_ctx *u_ctx = NULL;
int txq_perchan, ntxq;
int err = 0, rxq_perchan;
if (!ctx->dev) {
u_ctx = assign_chcr_device();
if (!u_ctx) {
err = -ENXIO;
pr_err("chcr device assignment fails\n");
goto out;
}
ctx->dev = &u_ctx->dev;
ntxq = u_ctx->lldi.ntxq;
rxq_perchan = u_ctx->lldi.nrxq / u_ctx->lldi.nchan;
txq_perchan = ntxq / u_ctx->lldi.nchan;
ctx->ntxq = ntxq;
ctx->nrxq = u_ctx->lldi.nrxq;
ctx->rxq_perchan = rxq_perchan;
ctx->txq_perchan = txq_perchan;
}
out:
return err;
}
static int chcr_init_tfm(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct chcr_context *ctx = crypto_skcipher_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
ablkctx->sw_cipher = crypto_alloc_skcipher(alg->base.cra_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ablkctx->sw_cipher)) {
pr_err("failed to allocate fallback for %s\n", alg->base.cra_name);
return PTR_ERR(ablkctx->sw_cipher);
}
init_completion(&ctx->cbc_aes_aio_done);
crypto_skcipher_set_reqsize(tfm, sizeof(struct chcr_skcipher_req_ctx) +
crypto_skcipher_reqsize(ablkctx->sw_cipher));
return chcr_device_init(ctx);
}
static int chcr_rfc3686_init(struct crypto_skcipher *tfm)
{
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
struct chcr_context *ctx = crypto_skcipher_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
/*RFC3686 initialises IV counter value to 1, rfc3686(ctr(aes))
* cannot be used as fallback in chcr_handle_cipher_response
*/
ablkctx->sw_cipher = crypto_alloc_skcipher("ctr(aes)", 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ablkctx->sw_cipher)) {
pr_err("failed to allocate fallback for %s\n", alg->base.cra_name);
return PTR_ERR(ablkctx->sw_cipher);
}
crypto_skcipher_set_reqsize(tfm, sizeof(struct chcr_skcipher_req_ctx) +
crypto_skcipher_reqsize(ablkctx->sw_cipher));
return chcr_device_init(ctx);
}
static void chcr_exit_tfm(struct crypto_skcipher *tfm)
{
struct chcr_context *ctx = crypto_skcipher_ctx(tfm);
struct ablk_ctx *ablkctx = ABLK_CTX(ctx);
crypto_free_skcipher(ablkctx->sw_cipher);
}
static int get_alg_config(struct algo_param *params,
unsigned int auth_size)
{
switch (auth_size) {
case SHA1_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA1;
params->result_size = SHA1_DIGEST_SIZE;
break;
case SHA224_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA224;
params->result_size = SHA256_DIGEST_SIZE;
break;
case SHA256_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA256;
params->result_size = SHA256_DIGEST_SIZE;
break;
case SHA384_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384;
params->result_size = SHA512_DIGEST_SIZE;
break;
case SHA512_DIGEST_SIZE:
params->mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
params->auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512;
params->result_size = SHA512_DIGEST_SIZE;
break;
default:
pr_err("ERROR, unsupported digest size\n");
return -EINVAL;
}
return 0;
}
static inline void chcr_free_shash(struct crypto_shash *base_hash)
{
crypto_free_shash(base_hash);
}
/**
* create_hash_wr - Create hash work request
* @req - Cipher req base
*/
static struct sk_buff *create_hash_wr(struct ahash_request *req,
struct hash_wr_param *param)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = h_ctx(tfm);
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
struct sk_buff *skb = NULL;
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct chcr_wr *chcr_req;
struct ulptx_sgl *ulptx;
unsigned int nents = 0, transhdr_len;
unsigned int temp = 0;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
struct adapter *adap = padap(h_ctx(tfm)->dev);
int error = 0;
unsigned int rx_channel_id = req_ctx->rxqidx / ctx->rxq_perchan;
transhdr_len = HASH_TRANSHDR_SIZE(param->kctx_len);
req_ctx->hctx_wr.imm = (transhdr_len + param->bfr_len +
param->sg_len) <= SGE_MAX_WR_LEN;
nents = sg_nents_xlen(req_ctx->hctx_wr.srcsg, param->sg_len,
CHCR_SRC_SG_SIZE, req_ctx->hctx_wr.src_ofst);
nents += param->bfr_len ? 1 : 0;
transhdr_len += req_ctx->hctx_wr.imm ? roundup(param->bfr_len +
param->sg_len, 16) : (sgl_len(nents) * 8);
transhdr_len = roundup(transhdr_len, 16);
skb = alloc_skb(transhdr_len, flags);
if (!skb)
return ERR_PTR(-ENOMEM);
chcr_req = __skb_put_zero(skb, transhdr_len);
chcr_req->sec_cpl.op_ivinsrtofst =
FILL_SEC_CPL_OP_IVINSR(rx_channel_id, 2, 0);
chcr_req->sec_cpl.pldlen = htonl(param->bfr_len + param->sg_len);
chcr_req->sec_cpl.aadstart_cipherstop_hi =
FILL_SEC_CPL_CIPHERSTOP_HI(0, 0, 0, 0);
chcr_req->sec_cpl.cipherstop_lo_authinsert =
FILL_SEC_CPL_AUTHINSERT(0, 1, 0, 0);
chcr_req->sec_cpl.seqno_numivs =
FILL_SEC_CPL_SCMD0_SEQNO(0, 0, 0, param->alg_prm.auth_mode,
param->opad_needed, 0);
chcr_req->sec_cpl.ivgen_hdrlen =
FILL_SEC_CPL_IVGEN_HDRLEN(param->last, param->more, 0, 1, 0, 0);
memcpy(chcr_req->key_ctx.key, req_ctx->partial_hash,
param->alg_prm.result_size);
if (param->opad_needed)
memcpy(chcr_req->key_ctx.key +
((param->alg_prm.result_size <= 32) ? 32 :
CHCR_HASH_MAX_DIGEST_SIZE),
hmacctx->opad, param->alg_prm.result_size);
chcr_req->key_ctx.ctx_hdr = FILL_KEY_CTX_HDR(CHCR_KEYCTX_NO_KEY,
param->alg_prm.mk_size, 0,
param->opad_needed,
((param->kctx_len +
sizeof(chcr_req->key_ctx)) >> 4));
chcr_req->sec_cpl.scmd1 = cpu_to_be64((u64)param->scmd1);
ulptx = (struct ulptx_sgl *)((u8 *)(chcr_req + 1) + param->kctx_len +
DUMMY_BYTES);
if (param->bfr_len != 0) {
req_ctx->hctx_wr.dma_addr =
dma_map_single(&u_ctx->lldi.pdev->dev, req_ctx->reqbfr,
param->bfr_len, DMA_TO_DEVICE);
if (dma_mapping_error(&u_ctx->lldi.pdev->dev,
req_ctx->hctx_wr. dma_addr)) {
error = -ENOMEM;
goto err;
}
req_ctx->hctx_wr.dma_len = param->bfr_len;
} else {
req_ctx->hctx_wr.dma_addr = 0;
}
chcr_add_hash_src_ent(req, ulptx, param);
/* Request upto max wr size */
temp = param->kctx_len + DUMMY_BYTES + (req_ctx->hctx_wr.imm ?
(param->sg_len + param->bfr_len) : 0);
atomic_inc(&adap->chcr_stats.digest_rqst);
create_wreq(h_ctx(tfm), chcr_req, &req->base, req_ctx->hctx_wr.imm,
param->hash_size, transhdr_len,
temp, 0);
req_ctx->hctx_wr.skb = skb;
return skb;
err:
kfree_skb(skb);
return ERR_PTR(error);
}
static int chcr_ahash_update(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct uld_ctx *u_ctx = ULD_CTX(h_ctx(rtfm));
struct chcr_context *ctx = h_ctx(rtfm);
struct chcr_dev *dev = h_ctx(rtfm)->dev;
struct sk_buff *skb;
u8 remainder = 0, bs;
unsigned int nbytes = req->nbytes;
struct hash_wr_param params;
int error;
unsigned int cpu;
cpu = get_cpu();
req_ctx->txqidx = cpu % ctx->ntxq;
req_ctx->rxqidx = cpu % ctx->nrxq;
put_cpu();
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
if (nbytes + req_ctx->reqlen >= bs) {
remainder = (nbytes + req_ctx->reqlen) % bs;
nbytes = nbytes + req_ctx->reqlen - remainder;
} else {
sg_pcopy_to_buffer(req->src, sg_nents(req->src), req_ctx->reqbfr
+ req_ctx->reqlen, nbytes, 0);
req_ctx->reqlen += nbytes;
return 0;
}
error = chcr_inc_wrcount(dev);
if (error)
return -ENXIO;
/* Detach state for CHCR means lldi or padap is freed. Increasing
* inflight count for dev guarantees that lldi and padap is valid
*/
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
req_ctx->txqidx) &&
(!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
error = -ENOSPC;
goto err;
}
chcr_init_hctx_per_wr(req_ctx);
error = chcr_hash_dma_map(&u_ctx->lldi.pdev->dev, req);
if (error) {
error = -ENOMEM;
goto err;
}
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
params.kctx_len = roundup(params.alg_prm.result_size, 16);
params.sg_len = chcr_hash_ent_in_wr(req->src, !!req_ctx->reqlen,
HASH_SPACE_LEFT(params.kctx_len), 0);
if (params.sg_len > req->nbytes)
params.sg_len = req->nbytes;
params.sg_len = rounddown(params.sg_len + req_ctx->reqlen, bs) -
req_ctx->reqlen;
params.opad_needed = 0;
params.more = 1;
params.last = 0;
params.bfr_len = req_ctx->reqlen;
params.scmd1 = 0;
req_ctx->hctx_wr.srcsg = req->src;
params.hash_size = params.alg_prm.result_size;
req_ctx->data_len += params.sg_len + params.bfr_len;
skb = create_hash_wr(req, &params);
if (IS_ERR(skb)) {
error = PTR_ERR(skb);
goto unmap;
}
req_ctx->hctx_wr.processed += params.sg_len;
if (remainder) {
/* Swap buffers */
swap(req_ctx->reqbfr, req_ctx->skbfr);
sg_pcopy_to_buffer(req->src, sg_nents(req->src),
req_ctx->reqbfr, remainder, req->nbytes -
remainder);
}
req_ctx->reqlen = remainder;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, req_ctx->txqidx);
chcr_send_wr(skb);
return -EINPROGRESS;
unmap:
chcr_hash_dma_unmap(&u_ctx->lldi.pdev->dev, req);
err:
chcr_dec_wrcount(dev);
return error;
}
static void create_last_hash_block(char *bfr_ptr, unsigned int bs, u64 scmd1)
{
memset(bfr_ptr, 0, bs);
*bfr_ptr = 0x80;
if (bs == 64)
*(__be64 *)(bfr_ptr + 56) = cpu_to_be64(scmd1 << 3);
else
*(__be64 *)(bfr_ptr + 120) = cpu_to_be64(scmd1 << 3);
}
static int chcr_ahash_final(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_dev *dev = h_ctx(rtfm)->dev;
struct hash_wr_param params;
struct sk_buff *skb;
struct uld_ctx *u_ctx = ULD_CTX(h_ctx(rtfm));
struct chcr_context *ctx = h_ctx(rtfm);
u8 bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
int error;
unsigned int cpu;
cpu = get_cpu();
req_ctx->txqidx = cpu % ctx->ntxq;
req_ctx->rxqidx = cpu % ctx->nrxq;
put_cpu();
error = chcr_inc_wrcount(dev);
if (error)
return -ENXIO;
chcr_init_hctx_per_wr(req_ctx);
if (is_hmac(crypto_ahash_tfm(rtfm)))
params.opad_needed = 1;
else
params.opad_needed = 0;
params.sg_len = 0;
req_ctx->hctx_wr.isfinal = 1;
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
params.kctx_len = roundup(params.alg_prm.result_size, 16);
if (is_hmac(crypto_ahash_tfm(rtfm))) {
params.opad_needed = 1;
params.kctx_len *= 2;
} else {
params.opad_needed = 0;
}
req_ctx->hctx_wr.result = 1;
params.bfr_len = req_ctx->reqlen;
req_ctx->data_len += params.bfr_len + params.sg_len;
req_ctx->hctx_wr.srcsg = req->src;
if (req_ctx->reqlen == 0) {
create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len);
params.last = 0;
params.more = 1;
params.scmd1 = 0;
params.bfr_len = bs;
} else {
params.scmd1 = req_ctx->data_len;
params.last = 1;
params.more = 0;
}
params.hash_size = crypto_ahash_digestsize(rtfm);
skb = create_hash_wr(req, &params);
if (IS_ERR(skb)) {
error = PTR_ERR(skb);
goto err;
}
req_ctx->reqlen = 0;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, req_ctx->txqidx);
chcr_send_wr(skb);
return -EINPROGRESS;
err:
chcr_dec_wrcount(dev);
return error;
}
static int chcr_ahash_finup(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_dev *dev = h_ctx(rtfm)->dev;
struct uld_ctx *u_ctx = ULD_CTX(h_ctx(rtfm));
struct chcr_context *ctx = h_ctx(rtfm);
struct sk_buff *skb;
struct hash_wr_param params;
u8 bs;
int error;
unsigned int cpu;
cpu = get_cpu();
req_ctx->txqidx = cpu % ctx->ntxq;
req_ctx->rxqidx = cpu % ctx->nrxq;
put_cpu();
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
error = chcr_inc_wrcount(dev);
if (error)
return -ENXIO;
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
req_ctx->txqidx) &&
(!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
error = -ENOSPC;
goto err;
}
chcr_init_hctx_per_wr(req_ctx);
error = chcr_hash_dma_map(&u_ctx->lldi.pdev->dev, req);
if (error) {
error = -ENOMEM;
goto err;
}
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
params.kctx_len = roundup(params.alg_prm.result_size, 16);
if (is_hmac(crypto_ahash_tfm(rtfm))) {
params.kctx_len *= 2;
params.opad_needed = 1;
} else {
params.opad_needed = 0;
}
params.sg_len = chcr_hash_ent_in_wr(req->src, !!req_ctx->reqlen,
HASH_SPACE_LEFT(params.kctx_len), 0);
if (params.sg_len < req->nbytes) {
if (is_hmac(crypto_ahash_tfm(rtfm))) {
params.kctx_len /= 2;
params.opad_needed = 0;
}
params.last = 0;
params.more = 1;
params.sg_len = rounddown(params.sg_len + req_ctx->reqlen, bs)
- req_ctx->reqlen;
params.hash_size = params.alg_prm.result_size;
params.scmd1 = 0;
} else {
params.last = 1;
params.more = 0;
params.sg_len = req->nbytes;
params.hash_size = crypto_ahash_digestsize(rtfm);
params.scmd1 = req_ctx->data_len + req_ctx->reqlen +
params.sg_len;
}
params.bfr_len = req_ctx->reqlen;
req_ctx->data_len += params.bfr_len + params.sg_len;
req_ctx->hctx_wr.result = 1;
req_ctx->hctx_wr.srcsg = req->src;
if ((req_ctx->reqlen + req->nbytes) == 0) {
create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len);
params.last = 0;
params.more = 1;
params.scmd1 = 0;
params.bfr_len = bs;
}
skb = create_hash_wr(req, &params);
if (IS_ERR(skb)) {
error = PTR_ERR(skb);
goto unmap;
}
req_ctx->reqlen = 0;
req_ctx->hctx_wr.processed += params.sg_len;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, req_ctx->txqidx);
chcr_send_wr(skb);
return -EINPROGRESS;
unmap:
chcr_hash_dma_unmap(&u_ctx->lldi.pdev->dev, req);
err:
chcr_dec_wrcount(dev);
return error;
}
static int chcr_ahash_digest(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_dev *dev = h_ctx(rtfm)->dev;
struct uld_ctx *u_ctx = ULD_CTX(h_ctx(rtfm));
struct chcr_context *ctx = h_ctx(rtfm);
struct sk_buff *skb;
struct hash_wr_param params;
u8 bs;
int error;
unsigned int cpu;
cpu = get_cpu();
req_ctx->txqidx = cpu % ctx->ntxq;
req_ctx->rxqidx = cpu % ctx->nrxq;
put_cpu();
rtfm->init(req);
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
error = chcr_inc_wrcount(dev);
if (error)
return -ENXIO;
if (unlikely(cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
req_ctx->txqidx) &&
(!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
error = -ENOSPC;
goto err;
}
chcr_init_hctx_per_wr(req_ctx);
error = chcr_hash_dma_map(&u_ctx->lldi.pdev->dev, req);
if (error) {
error = -ENOMEM;
goto err;
}
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
params.kctx_len = roundup(params.alg_prm.result_size, 16);
if (is_hmac(crypto_ahash_tfm(rtfm))) {
params.kctx_len *= 2;
params.opad_needed = 1;
} else {
params.opad_needed = 0;
}
params.sg_len = chcr_hash_ent_in_wr(req->src, !!req_ctx->reqlen,
HASH_SPACE_LEFT(params.kctx_len), 0);
if (params.sg_len < req->nbytes) {
if (is_hmac(crypto_ahash_tfm(rtfm))) {
params.kctx_len /= 2;
params.opad_needed = 0;
}
params.last = 0;
params.more = 1;
params.scmd1 = 0;
params.sg_len = rounddown(params.sg_len, bs);
params.hash_size = params.alg_prm.result_size;
} else {
params.sg_len = req->nbytes;
params.hash_size = crypto_ahash_digestsize(rtfm);
params.last = 1;
params.more = 0;
params.scmd1 = req->nbytes + req_ctx->data_len;
}
params.bfr_len = 0;
req_ctx->hctx_wr.result = 1;
req_ctx->hctx_wr.srcsg = req->src;
req_ctx->data_len += params.bfr_len + params.sg_len;
if (req->nbytes == 0) {
create_last_hash_block(req_ctx->reqbfr, bs, req_ctx->data_len);
params.more = 1;
params.bfr_len = bs;
}
skb = create_hash_wr(req, &params);
if (IS_ERR(skb)) {
error = PTR_ERR(skb);
goto unmap;
}
req_ctx->hctx_wr.processed += params.sg_len;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, req_ctx->txqidx);
chcr_send_wr(skb);
return -EINPROGRESS;
unmap:
chcr_hash_dma_unmap(&u_ctx->lldi.pdev->dev, req);
err:
chcr_dec_wrcount(dev);
return error;
}
static int chcr_ahash_continue(struct ahash_request *req)
{
struct chcr_ahash_req_ctx *reqctx = ahash_request_ctx(req);
struct chcr_hctx_per_wr *hctx_wr = &reqctx->hctx_wr;
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(req);
struct chcr_context *ctx = h_ctx(rtfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct sk_buff *skb;
struct hash_wr_param params;
u8 bs;
int error;
unsigned int cpu;
cpu = get_cpu();
reqctx->txqidx = cpu % ctx->ntxq;
reqctx->rxqidx = cpu % ctx->nrxq;
put_cpu();
bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
get_alg_config(&params.alg_prm, crypto_ahash_digestsize(rtfm));
params.kctx_len = roundup(params.alg_prm.result_size, 16);
if (is_hmac(crypto_ahash_tfm(rtfm))) {
params.kctx_len *= 2;
params.opad_needed = 1;
} else {
params.opad_needed = 0;
}
params.sg_len = chcr_hash_ent_in_wr(hctx_wr->srcsg, 0,
HASH_SPACE_LEFT(params.kctx_len),
hctx_wr->src_ofst);
if ((params.sg_len + hctx_wr->processed) > req->nbytes)
params.sg_len = req->nbytes - hctx_wr->processed;
if (!hctx_wr->result ||
((params.sg_len + hctx_wr->processed) < req->nbytes)) {
if (is_hmac(crypto_ahash_tfm(rtfm))) {
params.kctx_len /= 2;
params.opad_needed = 0;
}
params.last = 0;
params.more = 1;
params.sg_len = rounddown(params.sg_len, bs);
params.hash_size = params.alg_prm.result_size;
params.scmd1 = 0;
} else {
params.last = 1;
params.more = 0;
params.hash_size = crypto_ahash_digestsize(rtfm);
params.scmd1 = reqctx->data_len + params.sg_len;
}
params.bfr_len = 0;
reqctx->data_len += params.sg_len;
skb = create_hash_wr(req, &params);
if (IS_ERR(skb)) {
error = PTR_ERR(skb);
goto err;
}
hctx_wr->processed += params.sg_len;
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx);
chcr_send_wr(skb);
return 0;
err:
return error;
}
static inline void chcr_handle_ahash_resp(struct ahash_request *req,
unsigned char *input,
int err)
{
struct chcr_ahash_req_ctx *reqctx = ahash_request_ctx(req);
struct chcr_hctx_per_wr *hctx_wr = &reqctx->hctx_wr;
int digestsize, updated_digestsize;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct uld_ctx *u_ctx = ULD_CTX(h_ctx(tfm));
struct chcr_dev *dev = h_ctx(tfm)->dev;
if (input == NULL)
goto out;
digestsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
updated_digestsize = digestsize;
if (digestsize == SHA224_DIGEST_SIZE)
updated_digestsize = SHA256_DIGEST_SIZE;
else if (digestsize == SHA384_DIGEST_SIZE)
updated_digestsize = SHA512_DIGEST_SIZE;
if (hctx_wr->dma_addr) {
dma_unmap_single(&u_ctx->lldi.pdev->dev, hctx_wr->dma_addr,
hctx_wr->dma_len, DMA_TO_DEVICE);
hctx_wr->dma_addr = 0;
}
if (hctx_wr->isfinal || ((hctx_wr->processed + reqctx->reqlen) ==
req->nbytes)) {
if (hctx_wr->result == 1) {
hctx_wr->result = 0;
memcpy(req->result, input + sizeof(struct cpl_fw6_pld),
digestsize);
} else {
memcpy(reqctx->partial_hash,
input + sizeof(struct cpl_fw6_pld),
updated_digestsize);
}
goto unmap;
}
memcpy(reqctx->partial_hash, input + sizeof(struct cpl_fw6_pld),
updated_digestsize);
err = chcr_ahash_continue(req);
if (err)
goto unmap;
return;
unmap:
if (hctx_wr->is_sg_map)
chcr_hash_dma_unmap(&u_ctx->lldi.pdev->dev, req);
out:
chcr_dec_wrcount(dev);
req->base.complete(&req->base, err);
}
/*
* chcr_handle_resp - Unmap the DMA buffers associated with the request
* @req: crypto request
*/
int chcr_handle_resp(struct crypto_async_request *req, unsigned char *input,
int err)
{
struct crypto_tfm *tfm = req->tfm;
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct adapter *adap = padap(ctx->dev);
switch (tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_AEAD:
err = chcr_handle_aead_resp(aead_request_cast(req), input, err);
break;
case CRYPTO_ALG_TYPE_SKCIPHER:
chcr_handle_cipher_resp(skcipher_request_cast(req),
input, err);
break;
case CRYPTO_ALG_TYPE_AHASH:
chcr_handle_ahash_resp(ahash_request_cast(req), input, err);
}
atomic_inc(&adap->chcr_stats.complete);
return err;
}
static int chcr_ahash_export(struct ahash_request *areq, void *out)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct chcr_ahash_req_ctx *state = out;
state->reqlen = req_ctx->reqlen;
state->data_len = req_ctx->data_len;
memcpy(state->bfr1, req_ctx->reqbfr, req_ctx->reqlen);
memcpy(state->partial_hash, req_ctx->partial_hash,
CHCR_HASH_MAX_DIGEST_SIZE);
chcr_init_hctx_per_wr(state);
return 0;
}
static int chcr_ahash_import(struct ahash_request *areq, const void *in)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct chcr_ahash_req_ctx *state = (struct chcr_ahash_req_ctx *)in;
req_ctx->reqlen = state->reqlen;
req_ctx->data_len = state->data_len;
req_ctx->reqbfr = req_ctx->bfr1;
req_ctx->skbfr = req_ctx->bfr2;
memcpy(req_ctx->bfr1, state->bfr1, CHCR_HASH_MAX_BLOCK_SIZE_128);
memcpy(req_ctx->partial_hash, state->partial_hash,
CHCR_HASH_MAX_DIGEST_SIZE);
chcr_init_hctx_per_wr(req_ctx);
return 0;
}
static int chcr_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct hmac_ctx *hmacctx = HMAC_CTX(h_ctx(tfm));
unsigned int digestsize = crypto_ahash_digestsize(tfm);
unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
unsigned int i, err = 0, updated_digestsize;
SHASH_DESC_ON_STACK(shash, hmacctx->base_hash);
/* use the key to calculate the ipad and opad. ipad will sent with the
* first request's data. opad will be sent with the final hash result
* ipad in hmacctx->ipad and opad in hmacctx->opad location
*/
shash->tfm = hmacctx->base_hash;
if (keylen > bs) {
err = crypto_shash_digest(shash, key, keylen,
hmacctx->ipad);
if (err)
goto out;
keylen = digestsize;
} else {
memcpy(hmacctx->ipad, key, keylen);
}
memset(hmacctx->ipad + keylen, 0, bs - keylen);
memcpy(hmacctx->opad, hmacctx->ipad, bs);
for (i = 0; i < bs / sizeof(int); i++) {
*((unsigned int *)(&hmacctx->ipad) + i) ^= IPAD_DATA;
*((unsigned int *)(&hmacctx->opad) + i) ^= OPAD_DATA;
}
updated_digestsize = digestsize;
if (digestsize == SHA224_DIGEST_SIZE)
updated_digestsize = SHA256_DIGEST_SIZE;
else if (digestsize == SHA384_DIGEST_SIZE)
updated_digestsize = SHA512_DIGEST_SIZE;
err = chcr_compute_partial_hash(shash, hmacctx->ipad,
hmacctx->ipad, digestsize);
if (err)
goto out;
chcr_change_order(hmacctx->ipad, updated_digestsize);
err = chcr_compute_partial_hash(shash, hmacctx->opad,
hmacctx->opad, digestsize);
if (err)
goto out;
chcr_change_order(hmacctx->opad, updated_digestsize);
out:
return err;
}
static int chcr_aes_xts_setkey(struct crypto_skcipher *cipher, const u8 *key,
unsigned int key_len)
{
struct ablk_ctx *ablkctx = ABLK_CTX(c_ctx(cipher));
unsigned short context_size = 0;
int err;
err = chcr_cipher_fallback_setkey(cipher, key, key_len);
if (err)
goto badkey_err;
memcpy(ablkctx->key, key, key_len);
ablkctx->enckey_len = key_len;
get_aes_decrypt_key(ablkctx->rrkey, ablkctx->key, key_len << 2);
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + key_len) >> 4;
/* Both keys for xts must be aligned to 16 byte boundary
* by padding with zeros. So for 24 byte keys padding 8 zeroes.
*/
if (key_len == 48) {
context_size = (KEY_CONTEXT_HDR_SALT_AND_PAD + key_len
+ 16) >> 4;
memmove(ablkctx->key + 32, ablkctx->key + 24, 24);
memset(ablkctx->key + 24, 0, 8);
memset(ablkctx->key + 56, 0, 8);
ablkctx->enckey_len = 64;
ablkctx->key_ctx_hdr =
FILL_KEY_CTX_HDR(CHCR_KEYCTX_CIPHER_KEY_SIZE_192,
CHCR_KEYCTX_NO_KEY, 1,
0, context_size);
} else {
ablkctx->key_ctx_hdr =
FILL_KEY_CTX_HDR((key_len == AES_KEYSIZE_256) ?
CHCR_KEYCTX_CIPHER_KEY_SIZE_128 :
CHCR_KEYCTX_CIPHER_KEY_SIZE_256,
CHCR_KEYCTX_NO_KEY, 1,
0, context_size);
}
ablkctx->ciph_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS;
return 0;
badkey_err:
ablkctx->enckey_len = 0;
return err;
}
static int chcr_sha_init(struct ahash_request *areq)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
int digestsize = crypto_ahash_digestsize(tfm);
req_ctx->data_len = 0;
req_ctx->reqlen = 0;
req_ctx->reqbfr = req_ctx->bfr1;
req_ctx->skbfr = req_ctx->bfr2;
copy_hash_init_values(req_ctx->partial_hash, digestsize);
return 0;
}
static int chcr_sha_cra_init(struct crypto_tfm *tfm)
{
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct chcr_ahash_req_ctx));
return chcr_device_init(crypto_tfm_ctx(tfm));
}
static int chcr_hmac_init(struct ahash_request *areq)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(areq);
struct crypto_ahash *rtfm = crypto_ahash_reqtfm(areq);
struct hmac_ctx *hmacctx = HMAC_CTX(h_ctx(rtfm));
unsigned int digestsize = crypto_ahash_digestsize(rtfm);
unsigned int bs = crypto_tfm_alg_blocksize(crypto_ahash_tfm(rtfm));
chcr_sha_init(areq);
req_ctx->data_len = bs;
if (is_hmac(crypto_ahash_tfm(rtfm))) {
if (digestsize == SHA224_DIGEST_SIZE)
memcpy(req_ctx->partial_hash, hmacctx->ipad,
SHA256_DIGEST_SIZE);
else if (digestsize == SHA384_DIGEST_SIZE)
memcpy(req_ctx->partial_hash, hmacctx->ipad,
SHA512_DIGEST_SIZE);
else
memcpy(req_ctx->partial_hash, hmacctx->ipad,
digestsize);
}
return 0;
}
static int chcr_hmac_cra_init(struct crypto_tfm *tfm)
{
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
unsigned int digestsize =
crypto_ahash_digestsize(__crypto_ahash_cast(tfm));
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct chcr_ahash_req_ctx));
hmacctx->base_hash = chcr_alloc_shash(digestsize);
if (IS_ERR(hmacctx->base_hash))
return PTR_ERR(hmacctx->base_hash);
return chcr_device_init(crypto_tfm_ctx(tfm));
}
static void chcr_hmac_cra_exit(struct crypto_tfm *tfm)
{
struct chcr_context *ctx = crypto_tfm_ctx(tfm);
struct hmac_ctx *hmacctx = HMAC_CTX(ctx);
if (hmacctx->base_hash) {
chcr_free_shash(hmacctx->base_hash);
hmacctx->base_hash = NULL;
}
}
inline void chcr_aead_common_exit(struct aead_request *req)
{
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct uld_ctx *u_ctx = ULD_CTX(a_ctx(tfm));
chcr_aead_dma_unmap(&u_ctx->lldi.pdev->dev, req, reqctx->op);
}
static int chcr_aead_common_init(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
unsigned int authsize = crypto_aead_authsize(tfm);
int error = -EINVAL;
/* validate key size */
if (aeadctx->enckey_len == 0)
goto err;
if (reqctx->op && req->cryptlen < authsize)
goto err;
if (reqctx->b0_len)
reqctx->scratch_pad = reqctx->iv + IV;
else
reqctx->scratch_pad = NULL;
error = chcr_aead_dma_map(&ULD_CTX(a_ctx(tfm))->lldi.pdev->dev, req,
reqctx->op);
if (error) {
error = -ENOMEM;
goto err;
}
return 0;
err:
return error;
}
static int chcr_aead_need_fallback(struct aead_request *req, int dst_nents,
int aadmax, int wrlen,
unsigned short op_type)
{
unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req));
if (((req->cryptlen - (op_type ? authsize : 0)) == 0) ||
dst_nents > MAX_DSGL_ENT ||
(req->assoclen > aadmax) ||
(wrlen > SGE_MAX_WR_LEN))
return 1;
return 0;
}
static int chcr_aead_fallback(struct aead_request *req, unsigned short op_type)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
struct aead_request *subreq = aead_request_ctx(req);
aead_request_set_tfm(subreq, aeadctx->sw_cipher);
aead_request_set_callback(subreq, req->base.flags,
req->base.complete, req->base.data);
aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
req->iv);
aead_request_set_ad(subreq, req->assoclen);
return op_type ? crypto_aead_decrypt(subreq) :
crypto_aead_encrypt(subreq);
}
static struct sk_buff *create_authenc_wr(struct aead_request *req,
unsigned short qid,
int size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_context *ctx = a_ctx(tfm);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_authenc_ctx *actx = AUTHENC_CTX(aeadctx);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
struct cpl_rx_phys_dsgl *phys_cpl;
struct ulptx_sgl *ulptx;
unsigned int transhdr_len;
unsigned int dst_size = 0, temp, subtype = get_aead_subtype(tfm);
unsigned int kctx_len = 0, dnents, snents;
unsigned int authsize = crypto_aead_authsize(tfm);
int error = -EINVAL;
u8 *ivptr;
int null = 0;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
struct adapter *adap = padap(ctx->dev);
unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan;
if (req->cryptlen == 0)
return NULL;
reqctx->b0_len = 0;
error = chcr_aead_common_init(req);
if (error)
return ERR_PTR(error);
if (subtype == CRYPTO_ALG_SUB_TYPE_CBC_NULL ||
subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL) {
null = 1;
}
dnents = sg_nents_xlen(req->dst, req->assoclen + req->cryptlen +
(reqctx->op ? -authsize : authsize), CHCR_DST_SG_SIZE, 0);
dnents += MIN_AUTH_SG; // For IV
snents = sg_nents_xlen(req->src, req->assoclen + req->cryptlen,
CHCR_SRC_SG_SIZE, 0);
dst_size = get_space_for_phys_dsgl(dnents);
kctx_len = (KEY_CONTEXT_CTX_LEN_G(ntohl(aeadctx->key_ctx_hdr)) << 4)
- sizeof(chcr_req->key_ctx);
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size);
reqctx->imm = (transhdr_len + req->assoclen + req->cryptlen) <
SGE_MAX_WR_LEN;
temp = reqctx->imm ? roundup(req->assoclen + req->cryptlen, 16)
: (sgl_len(snents) * 8);
transhdr_len += temp;
transhdr_len = roundup(transhdr_len, 16);
if (chcr_aead_need_fallback(req, dnents, T6_MAX_AAD_SIZE,
transhdr_len, reqctx->op)) {
atomic_inc(&adap->chcr_stats.fallback);
chcr_aead_common_exit(req);
return ERR_PTR(chcr_aead_fallback(req, reqctx->op));
}
skb = alloc_skb(transhdr_len, flags);
if (!skb) {
error = -ENOMEM;
goto err;
}
chcr_req = __skb_put_zero(skb, transhdr_len);
temp = (reqctx->op == CHCR_ENCRYPT_OP) ? 0 : authsize;
/*
* Input order is AAD,IV and Payload. where IV should be included as
* the part of authdata. All other fields should be filled according
* to the hardware spec
*/
chcr_req->sec_cpl.op_ivinsrtofst =
FILL_SEC_CPL_OP_IVINSR(rx_channel_id, 2, 1);
chcr_req->sec_cpl.pldlen = htonl(req->assoclen + IV + req->cryptlen);
chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(
null ? 0 : 1 + IV,
null ? 0 : IV + req->assoclen,
req->assoclen + IV + 1,
(temp & 0x1F0) >> 4);
chcr_req->sec_cpl.cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(
temp & 0xF,
null ? 0 : req->assoclen + IV + 1,
temp, temp);
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL ||
subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA)
temp = CHCR_SCMD_CIPHER_MODE_AES_CTR;
else
temp = CHCR_SCMD_CIPHER_MODE_AES_CBC;
chcr_req->sec_cpl.seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(reqctx->op,
(reqctx->op == CHCR_ENCRYPT_OP) ? 1 : 0,
temp,
actx->auth_mode, aeadctx->hmac_ctrl,
IV >> 1);
chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1,
0, 0, dst_size);
chcr_req->key_ctx.ctx_hdr = aeadctx->key_ctx_hdr;
if (reqctx->op == CHCR_ENCRYPT_OP ||
subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA ||
subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL)
memcpy(chcr_req->key_ctx.key, aeadctx->key,
aeadctx->enckey_len);
else
memcpy(chcr_req->key_ctx.key, actx->dec_rrkey,
aeadctx->enckey_len);
memcpy(chcr_req->key_ctx.key + roundup(aeadctx->enckey_len, 16),
actx->h_iopad, kctx_len - roundup(aeadctx->enckey_len, 16));
phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
ivptr = (u8 *)(phys_cpl + 1) + dst_size;
ulptx = (struct ulptx_sgl *)(ivptr + IV);
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA ||
subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL) {
memcpy(ivptr, aeadctx->nonce, CTR_RFC3686_NONCE_SIZE);
memcpy(ivptr + CTR_RFC3686_NONCE_SIZE, req->iv,
CTR_RFC3686_IV_SIZE);
*(__be32 *)(ivptr + CTR_RFC3686_NONCE_SIZE +
CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
} else {
memcpy(ivptr, req->iv, IV);
}
chcr_add_aead_dst_ent(req, phys_cpl, qid);
chcr_add_aead_src_ent(req, ulptx);
atomic_inc(&adap->chcr_stats.cipher_rqst);
temp = sizeof(struct cpl_rx_phys_dsgl) + dst_size + IV +
kctx_len + (reqctx->imm ? (req->assoclen + req->cryptlen) : 0);
create_wreq(a_ctx(tfm), chcr_req, &req->base, reqctx->imm, size,
transhdr_len, temp, 0);
reqctx->skb = skb;
return skb;
err:
chcr_aead_common_exit(req);
return ERR_PTR(error);
}
int chcr_aead_dma_map(struct device *dev,
struct aead_request *req,
unsigned short op_type)
{
int error;
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned int authsize = crypto_aead_authsize(tfm);
int src_len, dst_len;
/* calculate and handle src and dst sg length separately
* for inplace and out-of place operations
*/
if (req->src == req->dst) {
src_len = req->assoclen + req->cryptlen + (op_type ?
0 : authsize);
dst_len = src_len;
} else {
src_len = req->assoclen + req->cryptlen;
dst_len = req->assoclen + req->cryptlen + (op_type ?
-authsize : authsize);
}
if (!req->cryptlen || !src_len || !dst_len)
return 0;
reqctx->iv_dma = dma_map_single(dev, reqctx->iv, (IV + reqctx->b0_len),
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, reqctx->iv_dma))
return -ENOMEM;
if (reqctx->b0_len)
reqctx->b0_dma = reqctx->iv_dma + IV;
else
reqctx->b0_dma = 0;
if (req->src == req->dst) {
error = dma_map_sg(dev, req->src,
sg_nents_for_len(req->src, src_len),
DMA_BIDIRECTIONAL);
if (!error)
goto err;
} else {
error = dma_map_sg(dev, req->src,
sg_nents_for_len(req->src, src_len),
DMA_TO_DEVICE);
if (!error)
goto err;
error = dma_map_sg(dev, req->dst,
sg_nents_for_len(req->dst, dst_len),
DMA_FROM_DEVICE);
if (!error) {
dma_unmap_sg(dev, req->src,
sg_nents_for_len(req->src, src_len),
DMA_TO_DEVICE);
goto err;
}
}
return 0;
err:
dma_unmap_single(dev, reqctx->iv_dma, IV, DMA_BIDIRECTIONAL);
return -ENOMEM;
}
void chcr_aead_dma_unmap(struct device *dev,
struct aead_request *req,
unsigned short op_type)
{
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
unsigned int authsize = crypto_aead_authsize(tfm);
int src_len, dst_len;
/* calculate and handle src and dst sg length separately
* for inplace and out-of place operations
*/
if (req->src == req->dst) {
src_len = req->assoclen + req->cryptlen + (op_type ?
0 : authsize);
dst_len = src_len;
} else {
src_len = req->assoclen + req->cryptlen;
dst_len = req->assoclen + req->cryptlen + (op_type ?
-authsize : authsize);
}
if (!req->cryptlen || !src_len || !dst_len)
return;
dma_unmap_single(dev, reqctx->iv_dma, (IV + reqctx->b0_len),
DMA_BIDIRECTIONAL);
if (req->src == req->dst) {
dma_unmap_sg(dev, req->src,
sg_nents_for_len(req->src, src_len),
DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(dev, req->src,
sg_nents_for_len(req->src, src_len),
DMA_TO_DEVICE);
dma_unmap_sg(dev, req->dst,
sg_nents_for_len(req->dst, dst_len),
DMA_FROM_DEVICE);
}
}
void chcr_add_aead_src_ent(struct aead_request *req,
struct ulptx_sgl *ulptx)
{
struct ulptx_walk ulp_walk;
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
if (reqctx->imm) {
u8 *buf = (u8 *)ulptx;
if (reqctx->b0_len) {
memcpy(buf, reqctx->scratch_pad, reqctx->b0_len);
buf += reqctx->b0_len;
}
sg_pcopy_to_buffer(req->src, sg_nents(req->src),
buf, req->cryptlen + req->assoclen, 0);
} else {
ulptx_walk_init(&ulp_walk, ulptx);
if (reqctx->b0_len)
ulptx_walk_add_page(&ulp_walk, reqctx->b0_len,
reqctx->b0_dma);
ulptx_walk_add_sg(&ulp_walk, req->src, req->cryptlen +
req->assoclen, 0);
ulptx_walk_end(&ulp_walk);
}
}
void chcr_add_aead_dst_ent(struct aead_request *req,
struct cpl_rx_phys_dsgl *phys_cpl,
unsigned short qid)
{
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct dsgl_walk dsgl_walk;
unsigned int authsize = crypto_aead_authsize(tfm);
struct chcr_context *ctx = a_ctx(tfm);
u32 temp;
unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan;
dsgl_walk_init(&dsgl_walk, phys_cpl);
dsgl_walk_add_page(&dsgl_walk, IV + reqctx->b0_len, reqctx->iv_dma);
temp = req->assoclen + req->cryptlen +
(reqctx->op ? -authsize : authsize);
dsgl_walk_add_sg(&dsgl_walk, req->dst, temp, 0);
dsgl_walk_end(&dsgl_walk, qid, rx_channel_id);
}
void chcr_add_cipher_src_ent(struct skcipher_request *req,
void *ulptx,
struct cipher_wr_param *wrparam)
{
struct ulptx_walk ulp_walk;
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
u8 *buf = ulptx;
memcpy(buf, reqctx->iv, IV);
buf += IV;
if (reqctx->imm) {
sg_pcopy_to_buffer(req->src, sg_nents(req->src),
buf, wrparam->bytes, reqctx->processed);
} else {
ulptx_walk_init(&ulp_walk, (struct ulptx_sgl *)buf);
ulptx_walk_add_sg(&ulp_walk, reqctx->srcsg, wrparam->bytes,
reqctx->src_ofst);
reqctx->srcsg = ulp_walk.last_sg;
reqctx->src_ofst = ulp_walk.last_sg_len;
ulptx_walk_end(&ulp_walk);
}
}
void chcr_add_cipher_dst_ent(struct skcipher_request *req,
struct cpl_rx_phys_dsgl *phys_cpl,
struct cipher_wr_param *wrparam,
unsigned short qid)
{
struct chcr_skcipher_req_ctx *reqctx = skcipher_request_ctx(req);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(wrparam->req);
struct chcr_context *ctx = c_ctx(tfm);
struct dsgl_walk dsgl_walk;
unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan;
dsgl_walk_init(&dsgl_walk, phys_cpl);
dsgl_walk_add_sg(&dsgl_walk, reqctx->dstsg, wrparam->bytes,
reqctx->dst_ofst);
reqctx->dstsg = dsgl_walk.last_sg;
reqctx->dst_ofst = dsgl_walk.last_sg_len;
dsgl_walk_end(&dsgl_walk, qid, rx_channel_id);
}
void chcr_add_hash_src_ent(struct ahash_request *req,
struct ulptx_sgl *ulptx,
struct hash_wr_param *param)
{
struct ulptx_walk ulp_walk;
struct chcr_ahash_req_ctx *reqctx = ahash_request_ctx(req);
if (reqctx->hctx_wr.imm) {
u8 *buf = (u8 *)ulptx;
if (param->bfr_len) {
memcpy(buf, reqctx->reqbfr, param->bfr_len);
buf += param->bfr_len;
}
sg_pcopy_to_buffer(reqctx->hctx_wr.srcsg,
sg_nents(reqctx->hctx_wr.srcsg), buf,
param->sg_len, 0);
} else {
ulptx_walk_init(&ulp_walk, ulptx);
if (param->bfr_len)
ulptx_walk_add_page(&ulp_walk, param->bfr_len,
reqctx->hctx_wr.dma_addr);
ulptx_walk_add_sg(&ulp_walk, reqctx->hctx_wr.srcsg,
param->sg_len, reqctx->hctx_wr.src_ofst);
reqctx->hctx_wr.srcsg = ulp_walk.last_sg;
reqctx->hctx_wr.src_ofst = ulp_walk.last_sg_len;
ulptx_walk_end(&ulp_walk);
}
}
int chcr_hash_dma_map(struct device *dev,
struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
int error = 0;
if (!req->nbytes)
return 0;
error = dma_map_sg(dev, req->src, sg_nents(req->src),
DMA_TO_DEVICE);
if (!error)
return -ENOMEM;
req_ctx->hctx_wr.is_sg_map = 1;
return 0;
}
void chcr_hash_dma_unmap(struct device *dev,
struct ahash_request *req)
{
struct chcr_ahash_req_ctx *req_ctx = ahash_request_ctx(req);
if (!req->nbytes)
return;
dma_unmap_sg(dev, req->src, sg_nents(req->src),
DMA_TO_DEVICE);
req_ctx->hctx_wr.is_sg_map = 0;
}
int chcr_cipher_dma_map(struct device *dev,
struct skcipher_request *req)
{
int error;
if (req->src == req->dst) {
error = dma_map_sg(dev, req->src, sg_nents(req->src),
DMA_BIDIRECTIONAL);
if (!error)
goto err;
} else {
error = dma_map_sg(dev, req->src, sg_nents(req->src),
DMA_TO_DEVICE);
if (!error)
goto err;
error = dma_map_sg(dev, req->dst, sg_nents(req->dst),
DMA_FROM_DEVICE);
if (!error) {
dma_unmap_sg(dev, req->src, sg_nents(req->src),
DMA_TO_DEVICE);
goto err;
}
}
return 0;
err:
return -ENOMEM;
}
void chcr_cipher_dma_unmap(struct device *dev,
struct skcipher_request *req)
{
if (req->src == req->dst) {
dma_unmap_sg(dev, req->src, sg_nents(req->src),
DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(dev, req->src, sg_nents(req->src),
DMA_TO_DEVICE);
dma_unmap_sg(dev, req->dst, sg_nents(req->dst),
DMA_FROM_DEVICE);
}
}
static int set_msg_len(u8 *block, unsigned int msglen, int csize)
{
__be32 data;
memset(block, 0, csize);
block += csize;
if (csize >= 4)
csize = 4;
else if (msglen > (unsigned int)(1 << (8 * csize)))
return -EOVERFLOW;
data = cpu_to_be32(msglen);
memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
return 0;
}
static int generate_b0(struct aead_request *req, u8 *ivptr,
unsigned short op_type)
{
unsigned int l, lp, m;
int rc;
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
u8 *b0 = reqctx->scratch_pad;
m = crypto_aead_authsize(aead);
memcpy(b0, ivptr, 16);
lp = b0[0];
l = lp + 1;
/* set m, bits 3-5 */
*b0 |= (8 * ((m - 2) / 2));
/* set adata, bit 6, if associated data is used */
if (req->assoclen)
*b0 |= 64;
rc = set_msg_len(b0 + 16 - l,
(op_type == CHCR_DECRYPT_OP) ?
req->cryptlen - m : req->cryptlen, l);
return rc;
}
static inline int crypto_ccm_check_iv(const u8 *iv)
{
/* 2 <= L <= 8, so 1 <= L' <= 7. */
if (iv[0] < 1 || iv[0] > 7)
return -EINVAL;
return 0;
}
static int ccm_format_packet(struct aead_request *req,
u8 *ivptr,
unsigned int sub_type,
unsigned short op_type,
unsigned int assoclen)
{
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
int rc = 0;
if (sub_type == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309) {
ivptr[0] = 3;
memcpy(ivptr + 1, &aeadctx->salt[0], 3);
memcpy(ivptr + 4, req->iv, 8);
memset(ivptr + 12, 0, 4);
} else {
memcpy(ivptr, req->iv, 16);
}
if (assoclen)
put_unaligned_be16(assoclen, &reqctx->scratch_pad[16]);
rc = generate_b0(req, ivptr, op_type);
/* zero the ctr value */
memset(ivptr + 15 - ivptr[0], 0, ivptr[0] + 1);
return rc;
}
static void fill_sec_cpl_for_aead(struct cpl_tx_sec_pdu *sec_cpl,
unsigned int dst_size,
struct aead_request *req,
unsigned short op_type)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_context *ctx = a_ctx(tfm);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
unsigned int cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CCM;
unsigned int mac_mode = CHCR_SCMD_AUTH_MODE_CBCMAC;
unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan;
unsigned int ccm_xtra;
unsigned int tag_offset = 0, auth_offset = 0;
unsigned int assoclen;
if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309)
assoclen = req->assoclen - 8;
else
assoclen = req->assoclen;
ccm_xtra = CCM_B0_SIZE +
((assoclen) ? CCM_AAD_FIELD_SIZE : 0);
auth_offset = req->cryptlen ?
(req->assoclen + IV + 1 + ccm_xtra) : 0;
if (op_type == CHCR_DECRYPT_OP) {
if (crypto_aead_authsize(tfm) != req->cryptlen)
tag_offset = crypto_aead_authsize(tfm);
else
auth_offset = 0;
}
sec_cpl->op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(rx_channel_id, 2, 1);
sec_cpl->pldlen =
htonl(req->assoclen + IV + req->cryptlen + ccm_xtra);
/* For CCM there wil be b0 always. So AAD start will be 1 always */
sec_cpl->aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(
1 + IV, IV + assoclen + ccm_xtra,
req->assoclen + IV + 1 + ccm_xtra, 0);
sec_cpl->cipherstop_lo_authinsert = FILL_SEC_CPL_AUTHINSERT(0,
auth_offset, tag_offset,
(op_type == CHCR_ENCRYPT_OP) ? 0 :
crypto_aead_authsize(tfm));
sec_cpl->seqno_numivs = FILL_SEC_CPL_SCMD0_SEQNO(op_type,
(op_type == CHCR_ENCRYPT_OP) ? 0 : 1,
cipher_mode, mac_mode,
aeadctx->hmac_ctrl, IV >> 1);
sec_cpl->ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1, 0,
0, dst_size);
}
static int aead_ccm_validate_input(unsigned short op_type,
struct aead_request *req,
struct chcr_aead_ctx *aeadctx,
unsigned int sub_type)
{
if (sub_type != CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309) {
if (crypto_ccm_check_iv(req->iv)) {
pr_err("CCM: IV check fails\n");
return -EINVAL;
}
} else {
if (req->assoclen != 16 && req->assoclen != 20) {
pr_err("RFC4309: Invalid AAD length %d\n",
req->assoclen);
return -EINVAL;
}
}
return 0;
}
static struct sk_buff *create_aead_ccm_wr(struct aead_request *req,
unsigned short qid,
int size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
struct cpl_rx_phys_dsgl *phys_cpl;
struct ulptx_sgl *ulptx;
unsigned int transhdr_len;
unsigned int dst_size = 0, kctx_len, dnents, temp, snents;
unsigned int sub_type, assoclen = req->assoclen;
unsigned int authsize = crypto_aead_authsize(tfm);
int error = -EINVAL;
u8 *ivptr;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
struct adapter *adap = padap(a_ctx(tfm)->dev);
sub_type = get_aead_subtype(tfm);
if (sub_type == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309)
assoclen -= 8;
reqctx->b0_len = CCM_B0_SIZE + (assoclen ? CCM_AAD_FIELD_SIZE : 0);
error = chcr_aead_common_init(req);
if (error)
return ERR_PTR(error);
error = aead_ccm_validate_input(reqctx->op, req, aeadctx, sub_type);
if (error)
goto err;
dnents = sg_nents_xlen(req->dst, req->assoclen + req->cryptlen
+ (reqctx->op ? -authsize : authsize),
CHCR_DST_SG_SIZE, 0);
dnents += MIN_CCM_SG; // For IV and B0
dst_size = get_space_for_phys_dsgl(dnents);
snents = sg_nents_xlen(req->src, req->assoclen + req->cryptlen,
CHCR_SRC_SG_SIZE, 0);
snents += MIN_CCM_SG; //For B0
kctx_len = roundup(aeadctx->enckey_len, 16) * 2;
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size);
reqctx->imm = (transhdr_len + req->assoclen + req->cryptlen +
reqctx->b0_len) <= SGE_MAX_WR_LEN;
temp = reqctx->imm ? roundup(req->assoclen + req->cryptlen +
reqctx->b0_len, 16) :
(sgl_len(snents) * 8);
transhdr_len += temp;
transhdr_len = roundup(transhdr_len, 16);
if (chcr_aead_need_fallback(req, dnents, T6_MAX_AAD_SIZE -
reqctx->b0_len, transhdr_len, reqctx->op)) {
atomic_inc(&adap->chcr_stats.fallback);
chcr_aead_common_exit(req);
return ERR_PTR(chcr_aead_fallback(req, reqctx->op));
}
skb = alloc_skb(transhdr_len, flags);
if (!skb) {
error = -ENOMEM;
goto err;
}
chcr_req = __skb_put_zero(skb, transhdr_len);
fill_sec_cpl_for_aead(&chcr_req->sec_cpl, dst_size, req, reqctx->op);
chcr_req->key_ctx.ctx_hdr = aeadctx->key_ctx_hdr;
memcpy(chcr_req->key_ctx.key, aeadctx->key, aeadctx->enckey_len);
memcpy(chcr_req->key_ctx.key + roundup(aeadctx->enckey_len, 16),
aeadctx->key, aeadctx->enckey_len);
phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
ivptr = (u8 *)(phys_cpl + 1) + dst_size;
ulptx = (struct ulptx_sgl *)(ivptr + IV);
error = ccm_format_packet(req, ivptr, sub_type, reqctx->op, assoclen);
if (error)
goto dstmap_fail;
chcr_add_aead_dst_ent(req, phys_cpl, qid);
chcr_add_aead_src_ent(req, ulptx);
atomic_inc(&adap->chcr_stats.aead_rqst);
temp = sizeof(struct cpl_rx_phys_dsgl) + dst_size + IV +
kctx_len + (reqctx->imm ? (req->assoclen + req->cryptlen +
reqctx->b0_len) : 0);
create_wreq(a_ctx(tfm), chcr_req, &req->base, reqctx->imm, 0,
transhdr_len, temp, 0);
reqctx->skb = skb;
return skb;
dstmap_fail:
kfree_skb(skb);
err:
chcr_aead_common_exit(req);
return ERR_PTR(error);
}
static struct sk_buff *create_gcm_wr(struct aead_request *req,
unsigned short qid,
int size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_context *ctx = a_ctx(tfm);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct sk_buff *skb = NULL;
struct chcr_wr *chcr_req;
struct cpl_rx_phys_dsgl *phys_cpl;
struct ulptx_sgl *ulptx;
unsigned int transhdr_len, dnents = 0, snents;
unsigned int dst_size = 0, temp = 0, kctx_len, assoclen = req->assoclen;
unsigned int authsize = crypto_aead_authsize(tfm);
int error = -EINVAL;
u8 *ivptr;
gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
struct adapter *adap = padap(ctx->dev);
unsigned int rx_channel_id = reqctx->rxqidx / ctx->rxq_perchan;
if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106)
assoclen = req->assoclen - 8;
reqctx->b0_len = 0;
error = chcr_aead_common_init(req);
if (error)
return ERR_PTR(error);
dnents = sg_nents_xlen(req->dst, req->assoclen + req->cryptlen +
(reqctx->op ? -authsize : authsize),
CHCR_DST_SG_SIZE, 0);
snents = sg_nents_xlen(req->src, req->assoclen + req->cryptlen,
CHCR_SRC_SG_SIZE, 0);
dnents += MIN_GCM_SG; // For IV
dst_size = get_space_for_phys_dsgl(dnents);
kctx_len = roundup(aeadctx->enckey_len, 16) + AEAD_H_SIZE;
transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dst_size);
reqctx->imm = (transhdr_len + req->assoclen + req->cryptlen) <=
SGE_MAX_WR_LEN;
temp = reqctx->imm ? roundup(req->assoclen + req->cryptlen, 16) :
(sgl_len(snents) * 8);
transhdr_len += temp;
transhdr_len = roundup(transhdr_len, 16);
if (chcr_aead_need_fallback(req, dnents, T6_MAX_AAD_SIZE,
transhdr_len, reqctx->op)) {
atomic_inc(&adap->chcr_stats.fallback);
chcr_aead_common_exit(req);
return ERR_PTR(chcr_aead_fallback(req, reqctx->op));
}
skb = alloc_skb(transhdr_len, flags);
if (!skb) {
error = -ENOMEM;
goto err;
}
chcr_req = __skb_put_zero(skb, transhdr_len);
//Offset of tag from end
temp = (reqctx->op == CHCR_ENCRYPT_OP) ? 0 : authsize;
chcr_req->sec_cpl.op_ivinsrtofst = FILL_SEC_CPL_OP_IVINSR(
rx_channel_id, 2, 1);
chcr_req->sec_cpl.pldlen =
htonl(req->assoclen + IV + req->cryptlen);
chcr_req->sec_cpl.aadstart_cipherstop_hi = FILL_SEC_CPL_CIPHERSTOP_HI(
assoclen ? 1 + IV : 0,
assoclen ? IV + assoclen : 0,
req->assoclen + IV + 1, 0);
chcr_req->sec_cpl.cipherstop_lo_authinsert =
FILL_SEC_CPL_AUTHINSERT(0, req->assoclen + IV + 1,
temp, temp);
chcr_req->sec_cpl.seqno_numivs =
FILL_SEC_CPL_SCMD0_SEQNO(reqctx->op, (reqctx->op ==
CHCR_ENCRYPT_OP) ? 1 : 0,
CHCR_SCMD_CIPHER_MODE_AES_GCM,
CHCR_SCMD_AUTH_MODE_GHASH,
aeadctx->hmac_ctrl, IV >> 1);
chcr_req->sec_cpl.ivgen_hdrlen = FILL_SEC_CPL_IVGEN_HDRLEN(0, 0, 1,
0, 0, dst_size);
chcr_req->key_ctx.ctx_hdr = aeadctx->key_ctx_hdr;
memcpy(chcr_req->key_ctx.key, aeadctx->key, aeadctx->enckey_len);
memcpy(chcr_req->key_ctx.key + roundup(aeadctx->enckey_len, 16),
GCM_CTX(aeadctx)->ghash_h, AEAD_H_SIZE);
phys_cpl = (struct cpl_rx_phys_dsgl *)((u8 *)(chcr_req + 1) + kctx_len);
ivptr = (u8 *)(phys_cpl + 1) + dst_size;
/* prepare a 16 byte iv */
/* S A L T | IV | 0x00000001 */
if (get_aead_subtype(tfm) ==
CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106) {
memcpy(ivptr, aeadctx->salt, 4);
memcpy(ivptr + 4, req->iv, GCM_RFC4106_IV_SIZE);
} else {
memcpy(ivptr, req->iv, GCM_AES_IV_SIZE);
}
put_unaligned_be32(0x01, &ivptr[12]);
ulptx = (struct ulptx_sgl *)(ivptr + 16);
chcr_add_aead_dst_ent(req, phys_cpl, qid);
chcr_add_aead_src_ent(req, ulptx);
atomic_inc(&adap->chcr_stats.aead_rqst);
temp = sizeof(struct cpl_rx_phys_dsgl) + dst_size + IV +
kctx_len + (reqctx->imm ? (req->assoclen + req->cryptlen) : 0);
create_wreq(a_ctx(tfm), chcr_req, &req->base, reqctx->imm, size,
transhdr_len, temp, reqctx->verify);
reqctx->skb = skb;
return skb;
err:
chcr_aead_common_exit(req);
return ERR_PTR(error);
}
static int chcr_aead_cra_init(struct crypto_aead *tfm)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
struct aead_alg *alg = crypto_aead_alg(tfm);
aeadctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ASYNC);
if (IS_ERR(aeadctx->sw_cipher))
return PTR_ERR(aeadctx->sw_cipher);
crypto_aead_set_reqsize(tfm, max(sizeof(struct chcr_aead_reqctx),
sizeof(struct aead_request) +
crypto_aead_reqsize(aeadctx->sw_cipher)));
return chcr_device_init(a_ctx(tfm));
}
static void chcr_aead_cra_exit(struct crypto_aead *tfm)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
crypto_free_aead(aeadctx->sw_cipher);
}
static int chcr_authenc_null_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NOP;
aeadctx->mayverify = VERIFY_HW;
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_authenc_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
u32 maxauth = crypto_aead_maxauthsize(tfm);
/*SHA1 authsize in ipsec is 12 instead of 10 i.e maxauthsize / 2 is not
* true for sha1. authsize == 12 condition should be before
* authsize == (maxauth >> 1)
*/
if (authsize == ICV_4) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL1;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == ICV_6) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL2;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == ICV_10) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == ICV_12) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == ICV_14) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL3;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == (maxauth >> 1)) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2;
aeadctx->mayverify = VERIFY_HW;
} else if (authsize == maxauth) {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_HW;
} else {
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_SW;
}
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
switch (authsize) {
case ICV_4:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL1;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_8:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_12:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_14:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL3;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_16:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_13:
case ICV_15:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_SW;
break;
default:
return -EINVAL;
}
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_4106_4309_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
switch (authsize) {
case ICV_8:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_12:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_16:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_HW;
break;
default:
return -EINVAL;
}
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_ccm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(tfm));
switch (authsize) {
case ICV_4:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL1;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_6:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL2;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_8:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_DIV2;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_10:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_12:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_14:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_PL3;
aeadctx->mayverify = VERIFY_HW;
break;
case ICV_16:
aeadctx->hmac_ctrl = CHCR_SCMD_HMAC_CTRL_NO_TRUNC;
aeadctx->mayverify = VERIFY_HW;
break;
default:
return -EINVAL;
}
return crypto_aead_setauthsize(aeadctx->sw_cipher, authsize);
}
static int chcr_ccm_common_setkey(struct crypto_aead *aead,
const u8 *key,
unsigned int keylen)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(aead));
unsigned char ck_size, mk_size;
int key_ctx_size = 0;
key_ctx_size = sizeof(struct _key_ctx) + roundup(keylen, 16) * 2;
if (keylen == AES_KEYSIZE_128) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
} else if (keylen == AES_KEYSIZE_192) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_192;
} else if (keylen == AES_KEYSIZE_256) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
} else {
aeadctx->enckey_len = 0;
return -EINVAL;
}
aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, mk_size, 0, 0,
key_ctx_size >> 4);
memcpy(aeadctx->key, key, keylen);
aeadctx->enckey_len = keylen;
return 0;
}
static int chcr_aead_ccm_setkey(struct crypto_aead *aead,
const u8 *key,
unsigned int keylen)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(aead));
int error;
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(aead) &
CRYPTO_TFM_REQ_MASK);
error = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
if (error)
return error;
return chcr_ccm_common_setkey(aead, key, keylen);
}
static int chcr_aead_rfc4309_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(aead));
int error;
if (keylen < 3) {
aeadctx->enckey_len = 0;
return -EINVAL;
}
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(aead) &
CRYPTO_TFM_REQ_MASK);
error = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
if (error)
return error;
keylen -= 3;
memcpy(aeadctx->salt, key + keylen, 3);
return chcr_ccm_common_setkey(aead, key, keylen);
}
static int chcr_gcm_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(aead));
struct chcr_gcm_ctx *gctx = GCM_CTX(aeadctx);
unsigned int ck_size;
int ret = 0, key_ctx_size = 0;
struct crypto_aes_ctx aes;
aeadctx->enckey_len = 0;
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(aead)
& CRYPTO_TFM_REQ_MASK);
ret = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
if (ret)
goto out;
if (get_aead_subtype(aead) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106 &&
keylen > 3) {
keylen -= 4; /* nonce/salt is present in the last 4 bytes */
memcpy(aeadctx->salt, key + keylen, 4);
}
if (keylen == AES_KEYSIZE_128) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
} else if (keylen == AES_KEYSIZE_192) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
} else if (keylen == AES_KEYSIZE_256) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
} else {
pr_err("GCM: Invalid key length %d\n", keylen);
ret = -EINVAL;
goto out;
}
memcpy(aeadctx->key, key, keylen);
aeadctx->enckey_len = keylen;
key_ctx_size = sizeof(struct _key_ctx) + roundup(keylen, 16) +
AEAD_H_SIZE;
aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size,
CHCR_KEYCTX_MAC_KEY_SIZE_128,
0, 0,
key_ctx_size >> 4);
/* Calculate the H = CIPH(K, 0 repeated 16 times).
* It will go in key context
*/
ret = aes_expandkey(&aes, key, keylen);
if (ret) {
aeadctx->enckey_len = 0;
goto out;
}
memset(gctx->ghash_h, 0, AEAD_H_SIZE);
aes_encrypt(&aes, gctx->ghash_h, gctx->ghash_h);
memzero_explicit(&aes, sizeof(aes));
out:
return ret;
}
static int chcr_authenc_setkey(struct crypto_aead *authenc, const u8 *key,
unsigned int keylen)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(authenc));
struct chcr_authenc_ctx *actx = AUTHENC_CTX(aeadctx);
/* it contains auth and cipher key both*/
struct crypto_authenc_keys keys;
unsigned int bs, subtype;
unsigned int max_authsize = crypto_aead_alg(authenc)->maxauthsize;
int err = 0, i, key_ctx_len = 0;
unsigned char ck_size = 0;
unsigned char pad[CHCR_HASH_MAX_BLOCK_SIZE_128] = { 0 };
struct crypto_shash *base_hash = ERR_PTR(-EINVAL);
struct algo_param param;
int align;
u8 *o_ptr = NULL;
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(authenc)
& CRYPTO_TFM_REQ_MASK);
err = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
if (err)
goto out;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto out;
if (get_alg_config(&param, max_authsize)) {
pr_err("Unsupported digest size\n");
goto out;
}
subtype = get_aead_subtype(authenc);
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA ||
subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL) {
if (keys.enckeylen < CTR_RFC3686_NONCE_SIZE)
goto out;
memcpy(aeadctx->nonce, keys.enckey + (keys.enckeylen
- CTR_RFC3686_NONCE_SIZE), CTR_RFC3686_NONCE_SIZE);
keys.enckeylen -= CTR_RFC3686_NONCE_SIZE;
}
if (keys.enckeylen == AES_KEYSIZE_128) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
} else if (keys.enckeylen == AES_KEYSIZE_192) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
} else if (keys.enckeylen == AES_KEYSIZE_256) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
} else {
pr_err("Unsupported cipher key\n");
goto out;
}
/* Copy only encryption key. We use authkey to generate h(ipad) and
* h(opad) so authkey is not needed again. authkeylen size have the
* size of the hash digest size.
*/
memcpy(aeadctx->key, keys.enckey, keys.enckeylen);
aeadctx->enckey_len = keys.enckeylen;
if (subtype == CRYPTO_ALG_SUB_TYPE_CBC_SHA ||
subtype == CRYPTO_ALG_SUB_TYPE_CBC_NULL) {
get_aes_decrypt_key(actx->dec_rrkey, aeadctx->key,
aeadctx->enckey_len << 3);
}
base_hash = chcr_alloc_shash(max_authsize);
if (IS_ERR(base_hash)) {
pr_err("Base driver cannot be loaded\n");
goto out;
}
{
SHASH_DESC_ON_STACK(shash, base_hash);
shash->tfm = base_hash;
bs = crypto_shash_blocksize(base_hash);
align = KEYCTX_ALIGN_PAD(max_authsize);
o_ptr = actx->h_iopad + param.result_size + align;
if (keys.authkeylen > bs) {
err = crypto_shash_digest(shash, keys.authkey,
keys.authkeylen,
o_ptr);
if (err) {
pr_err("Base driver cannot be loaded\n");
goto out;
}
keys.authkeylen = max_authsize;
} else
memcpy(o_ptr, keys.authkey, keys.authkeylen);
/* Compute the ipad-digest*/
memset(pad + keys.authkeylen, 0, bs - keys.authkeylen);
memcpy(pad, o_ptr, keys.authkeylen);
for (i = 0; i < bs >> 2; i++)
*((unsigned int *)pad + i) ^= IPAD_DATA;
if (chcr_compute_partial_hash(shash, pad, actx->h_iopad,
max_authsize))
goto out;
/* Compute the opad-digest */
memset(pad + keys.authkeylen, 0, bs - keys.authkeylen);
memcpy(pad, o_ptr, keys.authkeylen);
for (i = 0; i < bs >> 2; i++)
*((unsigned int *)pad + i) ^= OPAD_DATA;
if (chcr_compute_partial_hash(shash, pad, o_ptr, max_authsize))
goto out;
/* convert the ipad and opad digest to network order */
chcr_change_order(actx->h_iopad, param.result_size);
chcr_change_order(o_ptr, param.result_size);
key_ctx_len = sizeof(struct _key_ctx) +
roundup(keys.enckeylen, 16) +
(param.result_size + align) * 2;
aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, param.mk_size,
0, 1, key_ctx_len >> 4);
actx->auth_mode = param.auth_mode;
chcr_free_shash(base_hash);
memzero_explicit(&keys, sizeof(keys));
return 0;
}
out:
aeadctx->enckey_len = 0;
memzero_explicit(&keys, sizeof(keys));
if (!IS_ERR(base_hash))
chcr_free_shash(base_hash);
return -EINVAL;
}
static int chcr_aead_digest_null_setkey(struct crypto_aead *authenc,
const u8 *key, unsigned int keylen)
{
struct chcr_aead_ctx *aeadctx = AEAD_CTX(a_ctx(authenc));
struct chcr_authenc_ctx *actx = AUTHENC_CTX(aeadctx);
struct crypto_authenc_keys keys;
int err;
/* it contains auth and cipher key both*/
unsigned int subtype;
int key_ctx_len = 0;
unsigned char ck_size = 0;
crypto_aead_clear_flags(aeadctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(aeadctx->sw_cipher, crypto_aead_get_flags(authenc)
& CRYPTO_TFM_REQ_MASK);
err = crypto_aead_setkey(aeadctx->sw_cipher, key, keylen);
if (err)
goto out;
if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
goto out;
subtype = get_aead_subtype(authenc);
if (subtype == CRYPTO_ALG_SUB_TYPE_CTR_SHA ||
subtype == CRYPTO_ALG_SUB_TYPE_CTR_NULL) {
if (keys.enckeylen < CTR_RFC3686_NONCE_SIZE)
goto out;
memcpy(aeadctx->nonce, keys.enckey + (keys.enckeylen
- CTR_RFC3686_NONCE_SIZE), CTR_RFC3686_NONCE_SIZE);
keys.enckeylen -= CTR_RFC3686_NONCE_SIZE;
}
if (keys.enckeylen == AES_KEYSIZE_128) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
} else if (keys.enckeylen == AES_KEYSIZE_192) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
} else if (keys.enckeylen == AES_KEYSIZE_256) {
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
} else {
pr_err("Unsupported cipher key %d\n", keys.enckeylen);
goto out;
}
memcpy(aeadctx->key, keys.enckey, keys.enckeylen);
aeadctx->enckey_len = keys.enckeylen;
if (subtype == CRYPTO_ALG_SUB_TYPE_CBC_SHA ||
subtype == CRYPTO_ALG_SUB_TYPE_CBC_NULL) {
get_aes_decrypt_key(actx->dec_rrkey, aeadctx->key,
aeadctx->enckey_len << 3);
}
key_ctx_len = sizeof(struct _key_ctx) + roundup(keys.enckeylen, 16);
aeadctx->key_ctx_hdr = FILL_KEY_CTX_HDR(ck_size, CHCR_KEYCTX_NO_KEY, 0,
0, key_ctx_len >> 4);
actx->auth_mode = CHCR_SCMD_AUTH_MODE_NOP;
memzero_explicit(&keys, sizeof(keys));
return 0;
out:
aeadctx->enckey_len = 0;
memzero_explicit(&keys, sizeof(keys));
return -EINVAL;
}
static int chcr_aead_op(struct aead_request *req,
int size,
create_wr_t create_wr_fn)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct chcr_context *ctx = a_ctx(tfm);
struct uld_ctx *u_ctx = ULD_CTX(ctx);
struct sk_buff *skb;
struct chcr_dev *cdev;
cdev = a_ctx(tfm)->dev;
if (!cdev) {
pr_err("%s : No crypto device.\n", __func__);
return -ENXIO;
}
if (chcr_inc_wrcount(cdev)) {
/* Detach state for CHCR means lldi or padap is freed.
* We cannot increment fallback here.
*/
return chcr_aead_fallback(req, reqctx->op);
}
if (cxgb4_is_crypto_q_full(u_ctx->lldi.ports[0],
reqctx->txqidx) &&
(!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG))) {
chcr_dec_wrcount(cdev);
return -ENOSPC;
}
if (get_aead_subtype(tfm) == CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106 &&
crypto_ipsec_check_assoclen(req->assoclen) != 0) {
pr_err("RFC4106: Invalid value of assoclen %d\n",
req->assoclen);
return -EINVAL;
}
/* Form a WR from req */
skb = create_wr_fn(req, u_ctx->lldi.rxq_ids[reqctx->rxqidx], size);
if (IS_ERR_OR_NULL(skb)) {
chcr_dec_wrcount(cdev);
return PTR_ERR_OR_ZERO(skb);
}
skb->dev = u_ctx->lldi.ports[0];
set_wr_txq(skb, CPL_PRIORITY_DATA, reqctx->txqidx);
chcr_send_wr(skb);
return -EINPROGRESS;
}
static int chcr_aead_encrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
struct chcr_context *ctx = a_ctx(tfm);
unsigned int cpu;
cpu = get_cpu();
reqctx->txqidx = cpu % ctx->ntxq;
reqctx->rxqidx = cpu % ctx->nrxq;
put_cpu();
reqctx->verify = VERIFY_HW;
reqctx->op = CHCR_ENCRYPT_OP;
switch (get_aead_subtype(tfm)) {
case CRYPTO_ALG_SUB_TYPE_CTR_SHA:
case CRYPTO_ALG_SUB_TYPE_CBC_SHA:
case CRYPTO_ALG_SUB_TYPE_CBC_NULL:
case CRYPTO_ALG_SUB_TYPE_CTR_NULL:
return chcr_aead_op(req, 0, create_authenc_wr);
case CRYPTO_ALG_SUB_TYPE_AEAD_CCM:
case CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309:
return chcr_aead_op(req, 0, create_aead_ccm_wr);
default:
return chcr_aead_op(req, 0, create_gcm_wr);
}
}
static int chcr_aead_decrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct chcr_context *ctx = a_ctx(tfm);
struct chcr_aead_ctx *aeadctx = AEAD_CTX(ctx);
struct chcr_aead_reqctx *reqctx = aead_request_ctx(req);
int size;
unsigned int cpu;
cpu = get_cpu();
reqctx->txqidx = cpu % ctx->ntxq;
reqctx->rxqidx = cpu % ctx->nrxq;
put_cpu();
if (aeadctx->mayverify == VERIFY_SW) {
size = crypto_aead_maxauthsize(tfm);
reqctx->verify = VERIFY_SW;
} else {
size = 0;
reqctx->verify = VERIFY_HW;
}
reqctx->op = CHCR_DECRYPT_OP;
switch (get_aead_subtype(tfm)) {
case CRYPTO_ALG_SUB_TYPE_CBC_SHA:
case CRYPTO_ALG_SUB_TYPE_CTR_SHA:
case CRYPTO_ALG_SUB_TYPE_CBC_NULL:
case CRYPTO_ALG_SUB_TYPE_CTR_NULL:
return chcr_aead_op(req, size, create_authenc_wr);
case CRYPTO_ALG_SUB_TYPE_AEAD_CCM:
case CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309:
return chcr_aead_op(req, size, create_aead_ccm_wr);
default:
return chcr_aead_op(req, size, create_gcm_wr);
}
}
static struct chcr_alg_template driver_algs[] = {
/* AES-CBC */
{
.type = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_SUB_TYPE_CBC,
.is_registered = 0,
.alg.skcipher = {
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-chcr",
.base.cra_blocksize = AES_BLOCK_SIZE,
.init = chcr_init_tfm,
.exit = chcr_exit_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = chcr_aes_cbc_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_SUB_TYPE_XTS,
.is_registered = 0,
.alg.skcipher = {
.base.cra_name = "xts(aes)",
.base.cra_driver_name = "xts-aes-chcr",
.base.cra_blocksize = AES_BLOCK_SIZE,
.init = chcr_init_tfm,
.exit = chcr_exit_tfm,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = chcr_aes_xts_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_SUB_TYPE_CTR,
.is_registered = 0,
.alg.skcipher = {
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "ctr-aes-chcr",
.base.cra_blocksize = 1,
.init = chcr_init_tfm,
.exit = chcr_exit_tfm,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = chcr_aes_ctr_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
}
},
{
.type = CRYPTO_ALG_TYPE_SKCIPHER |
CRYPTO_ALG_SUB_TYPE_CTR_RFC3686,
.is_registered = 0,
.alg.skcipher = {
.base.cra_name = "rfc3686(ctr(aes))",
.base.cra_driver_name = "rfc3686-ctr-aes-chcr",
.base.cra_blocksize = 1,
.init = chcr_rfc3686_init,
.exit = chcr_exit_tfm,
.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.setkey = chcr_aes_rfc3686_setkey,
.encrypt = chcr_aes_encrypt,
.decrypt = chcr_aes_decrypt,
}
},
/* SHA */
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-chcr",
.cra_blocksize = SHA1_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-chcr",
.cra_blocksize = SHA256_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha224",
.cra_driver_name = "sha224-chcr",
.cra_blocksize = SHA224_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha384",
.cra_driver_name = "sha384-chcr",
.cra_blocksize = SHA384_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_AHASH,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-chcr",
.cra_blocksize = SHA512_BLOCK_SIZE,
}
}
},
/* HMAC */
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA1_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "hmac-sha1-chcr",
.cra_blocksize = SHA1_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA224_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha224)",
.cra_driver_name = "hmac-sha224-chcr",
.cra_blocksize = SHA224_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA256_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha256)",
.cra_driver_name = "hmac-sha256-chcr",
.cra_blocksize = SHA256_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA384_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha384)",
.cra_driver_name = "hmac-sha384-chcr",
.cra_blocksize = SHA384_BLOCK_SIZE,
}
}
},
{
.type = CRYPTO_ALG_TYPE_HMAC,
.is_registered = 0,
.alg.hash = {
.halg.digestsize = SHA512_DIGEST_SIZE,
.halg.base = {
.cra_name = "hmac(sha512)",
.cra_driver_name = "hmac-sha512-chcr",
.cra_blocksize = SHA512_BLOCK_SIZE,
}
}
},
/* Add AEAD Algorithms */
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_GCM,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_gcm_ctx),
},
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = GHASH_DIGEST_SIZE,
.setkey = chcr_gcm_setkey,
.setauthsize = chcr_gcm_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_RFC4106,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY + 1,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_gcm_ctx),
},
.ivsize = GCM_RFC4106_IV_SIZE,
.maxauthsize = GHASH_DIGEST_SIZE,
.setkey = chcr_gcm_setkey,
.setauthsize = chcr_4106_4309_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_CCM,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "ccm-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = GHASH_DIGEST_SIZE,
.setkey = chcr_aead_ccm_setkey,
.setauthsize = chcr_ccm_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_AEAD_RFC4309,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "rfc4309(ccm(aes))",
.cra_driver_name = "rfc4309-ccm-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY + 1,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx),
},
.ivsize = 8,
.maxauthsize = GHASH_DIGEST_SIZE,
.setkey = chcr_aead_rfc4309_setkey,
.setauthsize = chcr_4106_4309_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha1-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha256-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha224-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha384-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name =
"authenc-hmac-sha512-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CBC_NULL,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(digest_null,cbc(aes))",
.cra_driver_name =
"authenc-digest_null-cbc-aes-chcr",
.cra_blocksize = AES_BLOCK_SIZE,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = 0,
.setkey = chcr_aead_digest_null_setkey,
.setauthsize = chcr_authenc_null_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
.cra_driver_name =
"authenc-hmac-sha1-rfc3686-ctr-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
.cra_driver_name =
"authenc-hmac-sha256-rfc3686-ctr-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha224),rfc3686(ctr(aes)))",
.cra_driver_name =
"authenc-hmac-sha224-rfc3686-ctr-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha384),rfc3686(ctr(aes)))",
.cra_driver_name =
"authenc-hmac-sha384-rfc3686-ctr-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_SHA,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(hmac(sha512),rfc3686(ctr(aes)))",
.cra_driver_name =
"authenc-hmac-sha512-rfc3686-ctr-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.setkey = chcr_authenc_setkey,
.setauthsize = chcr_authenc_setauthsize,
}
},
{
.type = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_SUB_TYPE_CTR_NULL,
.is_registered = 0,
.alg.aead = {
.base = {
.cra_name = "authenc(digest_null,rfc3686(ctr(aes)))",
.cra_driver_name =
"authenc-digest_null-rfc3686-ctr-aes-chcr",
.cra_blocksize = 1,
.cra_priority = CHCR_AEAD_PRIORITY,
.cra_ctxsize = sizeof(struct chcr_context) +
sizeof(struct chcr_aead_ctx) +
sizeof(struct chcr_authenc_ctx),
},
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = 0,
.setkey = chcr_aead_digest_null_setkey,
.setauthsize = chcr_authenc_null_setauthsize,
}
},
};
/*
* chcr_unregister_alg - Deregister crypto algorithms with
* kernel framework.
*/
static int chcr_unregister_alg(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_SKCIPHER:
if (driver_algs[i].is_registered && refcount_read(
&driver_algs[i].alg.skcipher.base.cra_refcnt)
== 1) {
crypto_unregister_skcipher(
&driver_algs[i].alg.skcipher);
driver_algs[i].is_registered = 0;
}
break;
case CRYPTO_ALG_TYPE_AEAD:
if (driver_algs[i].is_registered && refcount_read(
&driver_algs[i].alg.aead.base.cra_refcnt) == 1) {
crypto_unregister_aead(
&driver_algs[i].alg.aead);
driver_algs[i].is_registered = 0;
}
break;
case CRYPTO_ALG_TYPE_AHASH:
if (driver_algs[i].is_registered && refcount_read(
&driver_algs[i].alg.hash.halg.base.cra_refcnt)
== 1) {
crypto_unregister_ahash(
&driver_algs[i].alg.hash);
driver_algs[i].is_registered = 0;
}
break;
}
}
return 0;
}
#define SZ_AHASH_CTX sizeof(struct chcr_context)
#define SZ_AHASH_H_CTX (sizeof(struct chcr_context) + sizeof(struct hmac_ctx))
#define SZ_AHASH_REQ_CTX sizeof(struct chcr_ahash_req_ctx)
/*
* chcr_register_alg - Register crypto algorithms with kernel framework.
*/
static int chcr_register_alg(void)
{
struct crypto_alg ai;
struct ahash_alg *a_hash;
int err = 0, i;
char *name = NULL;
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
if (driver_algs[i].is_registered)
continue;
switch (driver_algs[i].type & CRYPTO_ALG_TYPE_MASK) {
case CRYPTO_ALG_TYPE_SKCIPHER:
driver_algs[i].alg.skcipher.base.cra_priority =
CHCR_CRA_PRIORITY;
driver_algs[i].alg.skcipher.base.cra_module = THIS_MODULE;
driver_algs[i].alg.skcipher.base.cra_flags =
CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
CRYPTO_ALG_ALLOCATES_MEMORY |
CRYPTO_ALG_NEED_FALLBACK;
driver_algs[i].alg.skcipher.base.cra_ctxsize =
sizeof(struct chcr_context) +
sizeof(struct ablk_ctx);
driver_algs[i].alg.skcipher.base.cra_alignmask = 0;
err = crypto_register_skcipher(&driver_algs[i].alg.skcipher);
name = driver_algs[i].alg.skcipher.base.cra_driver_name;
break;
case CRYPTO_ALG_TYPE_AEAD:
driver_algs[i].alg.aead.base.cra_flags =
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK |
CRYPTO_ALG_ALLOCATES_MEMORY;
driver_algs[i].alg.aead.encrypt = chcr_aead_encrypt;
driver_algs[i].alg.aead.decrypt = chcr_aead_decrypt;
driver_algs[i].alg.aead.init = chcr_aead_cra_init;
driver_algs[i].alg.aead.exit = chcr_aead_cra_exit;
driver_algs[i].alg.aead.base.cra_module = THIS_MODULE;
err = crypto_register_aead(&driver_algs[i].alg.aead);
name = driver_algs[i].alg.aead.base.cra_driver_name;
break;
case CRYPTO_ALG_TYPE_AHASH:
a_hash = &driver_algs[i].alg.hash;
a_hash->update = chcr_ahash_update;
a_hash->final = chcr_ahash_final;
a_hash->finup = chcr_ahash_finup;
a_hash->digest = chcr_ahash_digest;
a_hash->export = chcr_ahash_export;
a_hash->import = chcr_ahash_import;
a_hash->halg.statesize = SZ_AHASH_REQ_CTX;
a_hash->halg.base.cra_priority = CHCR_CRA_PRIORITY;
a_hash->halg.base.cra_module = THIS_MODULE;
a_hash->halg.base.cra_flags =
CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
a_hash->halg.base.cra_alignmask = 0;
a_hash->halg.base.cra_exit = NULL;
if (driver_algs[i].type == CRYPTO_ALG_TYPE_HMAC) {
a_hash->halg.base.cra_init = chcr_hmac_cra_init;
a_hash->halg.base.cra_exit = chcr_hmac_cra_exit;
a_hash->init = chcr_hmac_init;
a_hash->setkey = chcr_ahash_setkey;
a_hash->halg.base.cra_ctxsize = SZ_AHASH_H_CTX;
} else {
a_hash->init = chcr_sha_init;
a_hash->halg.base.cra_ctxsize = SZ_AHASH_CTX;
a_hash->halg.base.cra_init = chcr_sha_cra_init;
}
err = crypto_register_ahash(&driver_algs[i].alg.hash);
ai = driver_algs[i].alg.hash.halg.base;
name = ai.cra_driver_name;
break;
}
if (err) {
pr_err("%s : Algorithm registration failed\n", name);
goto register_err;
} else {
driver_algs[i].is_registered = 1;
}
}
return 0;
register_err:
chcr_unregister_alg();
return err;
}
/*
* start_crypto - Register the crypto algorithms.
* This should called once when the first device comesup. After this
* kernel will start calling driver APIs for crypto operations.
*/
int start_crypto(void)
{
return chcr_register_alg();
}
/*
* stop_crypto - Deregister all the crypto algorithms with kernel.
* This should be called once when the last device goes down. After this
* kernel will not call the driver API for crypto operations.
*/
int stop_crypto(void)
{
chcr_unregister_alg();
return 0;
}