mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-26 06:04:14 +08:00
ad774bd5a8
Alder Lake SoC shares the same memory controller and In-Band ECC (IBECC) IP with Tiger Lake SoC. Like Tiger Lake, it also has two memory controllers each associated one IBECC instance. The minor differences include the MMIO offset of each memory controller and the type of memory error address logged in the IBECC. So add Alder Lake compute die IDs, adjust the MMIO offset for each memory controller and handle the type of memory error address logged in the IBECC for Alder Lake EDAC support. Tested-by: Vrukesh V Panse <vrukesh.v.panse@intel.com> Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Link: https://lore.kernel.org/r/20210611170123.1057025-7-tony.luck@intel.com
1302 lines
31 KiB
C
1302 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Driver for Intel client SoC with integrated memory controller using IBECC
|
|
*
|
|
* Copyright (C) 2020 Intel Corporation
|
|
*
|
|
* The In-Band ECC (IBECC) IP provides ECC protection to all or specific
|
|
* regions of the physical memory space. It's used for memory controllers
|
|
* that don't support the out-of-band ECC which often needs an additional
|
|
* storage device to each channel for storing ECC data.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/llist.h>
|
|
#include <linux/genalloc.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/bits.h>
|
|
#include <linux/io.h>
|
|
#include <asm/mach_traps.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/mce.h>
|
|
|
|
#include "edac_mc.h"
|
|
#include "edac_module.h"
|
|
|
|
#define IGEN6_REVISION "v2.5"
|
|
|
|
#define EDAC_MOD_STR "igen6_edac"
|
|
#define IGEN6_NMI_NAME "igen6_ibecc"
|
|
|
|
/* Debug macros */
|
|
#define igen6_printk(level, fmt, arg...) \
|
|
edac_printk(level, "igen6", fmt, ##arg)
|
|
|
|
#define igen6_mc_printk(mci, level, fmt, arg...) \
|
|
edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
|
|
|
|
#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
|
|
|
|
#define NUM_IMC 2 /* Max memory controllers */
|
|
#define NUM_CHANNELS 2 /* Max channels */
|
|
#define NUM_DIMMS 2 /* Max DIMMs per channel */
|
|
|
|
#define _4GB BIT_ULL(32)
|
|
|
|
/* Size of physical memory */
|
|
#define TOM_OFFSET 0xa0
|
|
/* Top of low usable DRAM */
|
|
#define TOLUD_OFFSET 0xbc
|
|
/* Capability register C */
|
|
#define CAPID_C_OFFSET 0xec
|
|
#define CAPID_C_IBECC BIT(15)
|
|
|
|
/* Capability register E */
|
|
#define CAPID_E_OFFSET 0xf0
|
|
#define CAPID_E_IBECC BIT(12)
|
|
|
|
/* Error Status */
|
|
#define ERRSTS_OFFSET 0xc8
|
|
#define ERRSTS_CE BIT_ULL(6)
|
|
#define ERRSTS_UE BIT_ULL(7)
|
|
|
|
/* Error Command */
|
|
#define ERRCMD_OFFSET 0xca
|
|
#define ERRCMD_CE BIT_ULL(6)
|
|
#define ERRCMD_UE BIT_ULL(7)
|
|
|
|
/* IBECC MMIO base address */
|
|
#define IBECC_BASE (res_cfg->ibecc_base)
|
|
#define IBECC_ACTIVATE_OFFSET IBECC_BASE
|
|
#define IBECC_ACTIVATE_EN BIT(0)
|
|
|
|
/* IBECC error log */
|
|
#define ECC_ERROR_LOG_OFFSET (IBECC_BASE + res_cfg->ibecc_error_log_offset)
|
|
#define ECC_ERROR_LOG_CE BIT_ULL(62)
|
|
#define ECC_ERROR_LOG_UE BIT_ULL(63)
|
|
#define ECC_ERROR_LOG_ADDR_SHIFT 5
|
|
#define ECC_ERROR_LOG_ADDR(v) GET_BITFIELD(v, 5, 38)
|
|
#define ECC_ERROR_LOG_SYND(v) GET_BITFIELD(v, 46, 61)
|
|
|
|
/* Host MMIO base address */
|
|
#define MCHBAR_OFFSET 0x48
|
|
#define MCHBAR_EN BIT_ULL(0)
|
|
#define MCHBAR_BASE(v) (GET_BITFIELD(v, 16, 38) << 16)
|
|
#define MCHBAR_SIZE 0x10000
|
|
|
|
/* Parameters for the channel decode stage */
|
|
#define IMC_BASE (res_cfg->imc_base)
|
|
#define MAD_INTER_CHANNEL_OFFSET IMC_BASE
|
|
#define MAD_INTER_CHANNEL_DDR_TYPE(v) GET_BITFIELD(v, 0, 2)
|
|
#define MAD_INTER_CHANNEL_ECHM(v) GET_BITFIELD(v, 3, 3)
|
|
#define MAD_INTER_CHANNEL_CH_L_MAP(v) GET_BITFIELD(v, 4, 4)
|
|
#define MAD_INTER_CHANNEL_CH_S_SIZE(v) ((u64)GET_BITFIELD(v, 12, 19) << 29)
|
|
|
|
/* Parameters for DRAM decode stage */
|
|
#define MAD_INTRA_CH0_OFFSET (IMC_BASE + 4)
|
|
#define MAD_INTRA_CH_DIMM_L_MAP(v) GET_BITFIELD(v, 0, 0)
|
|
|
|
/* DIMM characteristics */
|
|
#define MAD_DIMM_CH0_OFFSET (IMC_BASE + 0xc)
|
|
#define MAD_DIMM_CH_DIMM_L_SIZE(v) ((u64)GET_BITFIELD(v, 0, 6) << 29)
|
|
#define MAD_DIMM_CH_DLW(v) GET_BITFIELD(v, 7, 8)
|
|
#define MAD_DIMM_CH_DIMM_S_SIZE(v) ((u64)GET_BITFIELD(v, 16, 22) << 29)
|
|
#define MAD_DIMM_CH_DSW(v) GET_BITFIELD(v, 24, 25)
|
|
|
|
/* Hash for memory controller selection */
|
|
#define MAD_MC_HASH_OFFSET (IMC_BASE + 0x1b8)
|
|
#define MAC_MC_HASH_LSB(v) GET_BITFIELD(v, 1, 3)
|
|
|
|
/* Hash for channel selection */
|
|
#define CHANNEL_HASH_OFFSET (IMC_BASE + 0x24)
|
|
/* Hash for enhanced channel selection */
|
|
#define CHANNEL_EHASH_OFFSET (IMC_BASE + 0x28)
|
|
#define CHANNEL_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
|
|
#define CHANNEL_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
|
|
#define CHANNEL_HASH_MODE(v) GET_BITFIELD(v, 28, 28)
|
|
|
|
/* Parameters for memory slice decode stage */
|
|
#define MEM_SLICE_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
|
|
#define MEM_SLICE_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
|
|
|
|
static struct res_config {
|
|
bool machine_check;
|
|
int num_imc;
|
|
u32 imc_base;
|
|
u32 cmf_base;
|
|
u32 cmf_size;
|
|
u32 ms_hash_offset;
|
|
u32 ibecc_base;
|
|
u32 ibecc_error_log_offset;
|
|
bool (*ibecc_available)(struct pci_dev *pdev);
|
|
/* Convert error address logged in IBECC to system physical address */
|
|
u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
|
|
/* Convert error address logged in IBECC to integrated memory controller address */
|
|
u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
|
|
} *res_cfg;
|
|
|
|
struct igen6_imc {
|
|
int mc;
|
|
struct mem_ctl_info *mci;
|
|
struct pci_dev *pdev;
|
|
struct device dev;
|
|
void __iomem *window;
|
|
u64 size;
|
|
u64 ch_s_size;
|
|
int ch_l_map;
|
|
u64 dimm_s_size[NUM_CHANNELS];
|
|
u64 dimm_l_size[NUM_CHANNELS];
|
|
int dimm_l_map[NUM_CHANNELS];
|
|
};
|
|
|
|
static struct igen6_pvt {
|
|
struct igen6_imc imc[NUM_IMC];
|
|
u64 ms_hash;
|
|
u64 ms_s_size;
|
|
int ms_l_map;
|
|
} *igen6_pvt;
|
|
|
|
/* The top of low usable DRAM */
|
|
static u32 igen6_tolud;
|
|
/* The size of physical memory */
|
|
static u64 igen6_tom;
|
|
|
|
struct decoded_addr {
|
|
int mc;
|
|
u64 imc_addr;
|
|
u64 sys_addr;
|
|
int channel_idx;
|
|
u64 channel_addr;
|
|
int sub_channel_idx;
|
|
u64 sub_channel_addr;
|
|
};
|
|
|
|
struct ecclog_node {
|
|
struct llist_node llnode;
|
|
int mc;
|
|
u64 ecclog;
|
|
};
|
|
|
|
/*
|
|
* In the NMI handler, the driver uses the lock-less memory allocator
|
|
* to allocate memory to store the IBECC error logs and links the logs
|
|
* to the lock-less list. Delay printk() and the work of error reporting
|
|
* to EDAC core in a worker.
|
|
*/
|
|
#define ECCLOG_POOL_SIZE PAGE_SIZE
|
|
static LLIST_HEAD(ecclog_llist);
|
|
static struct gen_pool *ecclog_pool;
|
|
static char ecclog_buf[ECCLOG_POOL_SIZE];
|
|
static struct irq_work ecclog_irq_work;
|
|
static struct work_struct ecclog_work;
|
|
|
|
/* Compute die IDs for Elkhart Lake with IBECC */
|
|
#define DID_EHL_SKU5 0x4514
|
|
#define DID_EHL_SKU6 0x4528
|
|
#define DID_EHL_SKU7 0x452a
|
|
#define DID_EHL_SKU8 0x4516
|
|
#define DID_EHL_SKU9 0x452c
|
|
#define DID_EHL_SKU10 0x452e
|
|
#define DID_EHL_SKU11 0x4532
|
|
#define DID_EHL_SKU12 0x4518
|
|
#define DID_EHL_SKU13 0x451a
|
|
#define DID_EHL_SKU14 0x4534
|
|
#define DID_EHL_SKU15 0x4536
|
|
|
|
/* Compute die IDs for ICL-NNPI with IBECC */
|
|
#define DID_ICL_SKU8 0x4581
|
|
#define DID_ICL_SKU10 0x4585
|
|
#define DID_ICL_SKU11 0x4589
|
|
#define DID_ICL_SKU12 0x458d
|
|
|
|
/* Compute die IDs for Tiger Lake with IBECC */
|
|
#define DID_TGL_SKU 0x9a14
|
|
|
|
/* Compute die IDs for Alder Lake with IBECC */
|
|
#define DID_ADL_SKU1 0x4601
|
|
#define DID_ADL_SKU2 0x4602
|
|
#define DID_ADL_SKU3 0x4621
|
|
#define DID_ADL_SKU4 0x4641
|
|
|
|
static bool ehl_ibecc_available(struct pci_dev *pdev)
|
|
{
|
|
u32 v;
|
|
|
|
if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
|
|
return false;
|
|
|
|
return !!(CAPID_C_IBECC & v);
|
|
}
|
|
|
|
static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
|
|
{
|
|
return eaddr;
|
|
}
|
|
|
|
static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
|
|
{
|
|
if (eaddr < igen6_tolud)
|
|
return eaddr;
|
|
|
|
if (igen6_tom <= _4GB)
|
|
return eaddr + igen6_tolud - _4GB;
|
|
|
|
if (eaddr < _4GB)
|
|
return eaddr + igen6_tolud - igen6_tom;
|
|
|
|
return eaddr;
|
|
}
|
|
|
|
static bool icl_ibecc_available(struct pci_dev *pdev)
|
|
{
|
|
u32 v;
|
|
|
|
if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
|
|
return false;
|
|
|
|
return !(CAPID_C_IBECC & v) &&
|
|
(boot_cpu_data.x86_stepping >= 1);
|
|
}
|
|
|
|
static bool tgl_ibecc_available(struct pci_dev *pdev)
|
|
{
|
|
u32 v;
|
|
|
|
if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
|
|
return false;
|
|
|
|
return !(CAPID_E_IBECC & v);
|
|
}
|
|
|
|
static u64 mem_addr_to_sys_addr(u64 maddr)
|
|
{
|
|
if (maddr < igen6_tolud)
|
|
return maddr;
|
|
|
|
if (igen6_tom <= _4GB)
|
|
return maddr - igen6_tolud + _4GB;
|
|
|
|
if (maddr < _4GB)
|
|
return maddr - igen6_tolud + igen6_tom;
|
|
|
|
return maddr;
|
|
}
|
|
|
|
static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
|
|
{
|
|
u64 hash_addr = addr & mask, hash = hash_init;
|
|
u64 intlv = (addr >> intlv_bit) & 1;
|
|
int i;
|
|
|
|
for (i = 6; i < 20; i++)
|
|
hash ^= (hash_addr >> i) & 1;
|
|
|
|
return hash ^ intlv;
|
|
}
|
|
|
|
static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
|
|
{
|
|
u64 maddr, hash, mask, ms_s_size;
|
|
int intlv_bit;
|
|
u32 ms_hash;
|
|
|
|
ms_s_size = igen6_pvt->ms_s_size;
|
|
if (eaddr >= ms_s_size)
|
|
return eaddr + ms_s_size;
|
|
|
|
ms_hash = igen6_pvt->ms_hash;
|
|
|
|
mask = MEM_SLICE_HASH_MASK(ms_hash);
|
|
intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
|
|
|
|
maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
|
|
GET_BITFIELD(eaddr, 0, intlv_bit - 1);
|
|
|
|
hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
|
|
|
|
return maddr | (hash << intlv_bit);
|
|
}
|
|
|
|
static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
|
|
{
|
|
u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
|
|
|
|
return mem_addr_to_sys_addr(maddr);
|
|
}
|
|
|
|
static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
|
|
{
|
|
return eaddr;
|
|
}
|
|
|
|
static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
|
|
{
|
|
return mem_addr_to_sys_addr(eaddr);
|
|
}
|
|
|
|
static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
|
|
{
|
|
u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
|
|
struct igen6_imc *imc = &igen6_pvt->imc[mc];
|
|
int intlv_bit;
|
|
u32 mc_hash;
|
|
|
|
if (eaddr >= 2 * ms_s_size)
|
|
return eaddr - ms_s_size;
|
|
|
|
mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
|
|
|
|
intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
|
|
|
|
imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
|
|
GET_BITFIELD(eaddr, 0, intlv_bit - 1);
|
|
|
|
return imc_addr;
|
|
}
|
|
|
|
static struct res_config ehl_cfg = {
|
|
.num_imc = 1,
|
|
.imc_base = 0x5000,
|
|
.ibecc_base = 0xdc00,
|
|
.ibecc_available = ehl_ibecc_available,
|
|
.ibecc_error_log_offset = 0x170,
|
|
.err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
|
|
.err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
|
|
};
|
|
|
|
static struct res_config icl_cfg = {
|
|
.num_imc = 1,
|
|
.imc_base = 0x5000,
|
|
.ibecc_base = 0xd800,
|
|
.ibecc_error_log_offset = 0x170,
|
|
.ibecc_available = icl_ibecc_available,
|
|
.err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
|
|
.err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
|
|
};
|
|
|
|
static struct res_config tgl_cfg = {
|
|
.machine_check = true,
|
|
.num_imc = 2,
|
|
.imc_base = 0x5000,
|
|
.cmf_base = 0x11000,
|
|
.cmf_size = 0x800,
|
|
.ms_hash_offset = 0xac,
|
|
.ibecc_base = 0xd400,
|
|
.ibecc_error_log_offset = 0x170,
|
|
.ibecc_available = tgl_ibecc_available,
|
|
.err_addr_to_sys_addr = tgl_err_addr_to_sys_addr,
|
|
.err_addr_to_imc_addr = tgl_err_addr_to_imc_addr,
|
|
};
|
|
|
|
static struct res_config adl_cfg = {
|
|
.machine_check = true,
|
|
.num_imc = 2,
|
|
.imc_base = 0xd800,
|
|
.ibecc_base = 0xd400,
|
|
.ibecc_error_log_offset = 0x68,
|
|
.ibecc_available = tgl_ibecc_available,
|
|
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
|
|
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
|
|
};
|
|
|
|
static const struct pci_device_id igen6_pci_tbl[] = {
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
|
|
{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
|
|
|
|
static enum dev_type get_width(int dimm_l, u32 mad_dimm)
|
|
{
|
|
u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
|
|
MAD_DIMM_CH_DSW(mad_dimm);
|
|
|
|
switch (w) {
|
|
case 0:
|
|
return DEV_X8;
|
|
case 1:
|
|
return DEV_X16;
|
|
case 2:
|
|
return DEV_X32;
|
|
default:
|
|
return DEV_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static enum mem_type get_memory_type(u32 mad_inter)
|
|
{
|
|
u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
|
|
|
|
switch (t) {
|
|
case 0:
|
|
return MEM_DDR4;
|
|
case 1:
|
|
return MEM_DDR3;
|
|
case 2:
|
|
return MEM_LPDDR3;
|
|
case 3:
|
|
return MEM_LPDDR4;
|
|
case 4:
|
|
return MEM_WIO2;
|
|
default:
|
|
return MEM_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
|
|
{
|
|
u64 hash_addr = addr & mask, hash = 0;
|
|
u64 intlv = (addr >> intlv_bit) & 1;
|
|
int i;
|
|
|
|
for (i = 6; i < 20; i++)
|
|
hash ^= (hash_addr >> i) & 1;
|
|
|
|
return (int)hash ^ intlv;
|
|
}
|
|
|
|
static u64 decode_channel_addr(u64 addr, int intlv_bit)
|
|
{
|
|
u64 channel_addr;
|
|
|
|
/* Remove the interleave bit and shift upper part down to fill gap */
|
|
channel_addr = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
|
|
channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
|
|
|
|
return channel_addr;
|
|
}
|
|
|
|
static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
|
|
int *idx, u64 *sub_addr)
|
|
{
|
|
int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
|
|
|
|
if (addr > 2 * s_size) {
|
|
*sub_addr = addr - s_size;
|
|
*idx = l_map;
|
|
return;
|
|
}
|
|
|
|
if (CHANNEL_HASH_MODE(hash)) {
|
|
*sub_addr = decode_channel_addr(addr, intlv_bit);
|
|
*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
|
|
} else {
|
|
*sub_addr = decode_channel_addr(addr, 6);
|
|
*idx = GET_BITFIELD(addr, 6, 6);
|
|
}
|
|
}
|
|
|
|
static int igen6_decode(struct decoded_addr *res)
|
|
{
|
|
struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
|
|
u64 addr = res->imc_addr, sub_addr, s_size;
|
|
int idx, l_map;
|
|
u32 hash;
|
|
|
|
if (addr >= igen6_tom) {
|
|
edac_dbg(0, "Address 0x%llx out of range\n", addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Decode channel */
|
|
hash = readl(imc->window + CHANNEL_HASH_OFFSET);
|
|
s_size = imc->ch_s_size;
|
|
l_map = imc->ch_l_map;
|
|
decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
|
|
res->channel_idx = idx;
|
|
res->channel_addr = sub_addr;
|
|
|
|
/* Decode sub-channel/DIMM */
|
|
hash = readl(imc->window + CHANNEL_EHASH_OFFSET);
|
|
s_size = imc->dimm_s_size[idx];
|
|
l_map = imc->dimm_l_map[idx];
|
|
decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
|
|
res->sub_channel_idx = idx;
|
|
res->sub_channel_addr = sub_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void igen6_output_error(struct decoded_addr *res,
|
|
struct mem_ctl_info *mci, u64 ecclog)
|
|
{
|
|
enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
|
|
HW_EVENT_ERR_UNCORRECTED :
|
|
HW_EVENT_ERR_CORRECTED;
|
|
|
|
edac_mc_handle_error(type, mci, 1,
|
|
res->sys_addr >> PAGE_SHIFT,
|
|
res->sys_addr & ~PAGE_MASK,
|
|
ECC_ERROR_LOG_SYND(ecclog),
|
|
res->channel_idx, res->sub_channel_idx,
|
|
-1, "", "");
|
|
}
|
|
|
|
static struct gen_pool *ecclog_gen_pool_create(void)
|
|
{
|
|
struct gen_pool *pool;
|
|
|
|
pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
|
|
if (!pool)
|
|
return NULL;
|
|
|
|
if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
|
|
gen_pool_destroy(pool);
|
|
return NULL;
|
|
}
|
|
|
|
return pool;
|
|
}
|
|
|
|
static int ecclog_gen_pool_add(int mc, u64 ecclog)
|
|
{
|
|
struct ecclog_node *node;
|
|
|
|
node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
|
|
if (!node)
|
|
return -ENOMEM;
|
|
|
|
node->mc = mc;
|
|
node->ecclog = ecclog;
|
|
llist_add(&node->llnode, &ecclog_llist);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
|
|
* configuration space status register ERRSTS can indicate whether a
|
|
* correctable error or an uncorrectable error occurred. We only use the
|
|
* ECC_ERROR_LOG register to check error type, but need to clear both
|
|
* registers to enable future error events.
|
|
*/
|
|
static u64 ecclog_read_and_clear(struct igen6_imc *imc)
|
|
{
|
|
u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
|
|
|
|
if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
|
|
/* Clear CE/UE bits by writing 1s */
|
|
writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
|
|
return ecclog;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void errsts_clear(struct igen6_imc *imc)
|
|
{
|
|
u16 errsts;
|
|
|
|
if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
|
|
igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
|
|
return;
|
|
}
|
|
|
|
/* Clear CE/UE bits by writing 1s */
|
|
if (errsts & (ERRSTS_CE | ERRSTS_UE))
|
|
pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
|
|
}
|
|
|
|
static int errcmd_enable_error_reporting(bool enable)
|
|
{
|
|
struct igen6_imc *imc = &igen6_pvt->imc[0];
|
|
u16 errcmd;
|
|
int rc;
|
|
|
|
rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (enable)
|
|
errcmd |= ERRCMD_CE | ERRSTS_UE;
|
|
else
|
|
errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
|
|
|
|
rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ecclog_handler(void)
|
|
{
|
|
struct igen6_imc *imc;
|
|
int i, n = 0;
|
|
u64 ecclog;
|
|
|
|
for (i = 0; i < res_cfg->num_imc; i++) {
|
|
imc = &igen6_pvt->imc[i];
|
|
|
|
/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
|
|
|
|
ecclog = ecclog_read_and_clear(imc);
|
|
if (!ecclog)
|
|
continue;
|
|
|
|
if (!ecclog_gen_pool_add(i, ecclog))
|
|
irq_work_queue(&ecclog_irq_work);
|
|
|
|
n++;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static void ecclog_work_cb(struct work_struct *work)
|
|
{
|
|
struct ecclog_node *node, *tmp;
|
|
struct mem_ctl_info *mci;
|
|
struct llist_node *head;
|
|
struct decoded_addr res;
|
|
u64 eaddr;
|
|
|
|
head = llist_del_all(&ecclog_llist);
|
|
if (!head)
|
|
return;
|
|
|
|
llist_for_each_entry_safe(node, tmp, head, llnode) {
|
|
memset(&res, 0, sizeof(res));
|
|
eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
|
|
ECC_ERROR_LOG_ADDR_SHIFT;
|
|
res.mc = node->mc;
|
|
res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
|
|
res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
|
|
|
|
mci = igen6_pvt->imc[res.mc].mci;
|
|
|
|
edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
|
|
igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
|
|
igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
|
|
|
|
if (!igen6_decode(&res))
|
|
igen6_output_error(&res, mci, node->ecclog);
|
|
|
|
gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
|
|
}
|
|
}
|
|
|
|
static void ecclog_irq_work_cb(struct irq_work *irq_work)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < res_cfg->num_imc; i++)
|
|
errsts_clear(&igen6_pvt->imc[i]);
|
|
|
|
if (!llist_empty(&ecclog_llist))
|
|
schedule_work(&ecclog_work);
|
|
}
|
|
|
|
static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
|
|
{
|
|
unsigned char reason;
|
|
|
|
if (!ecclog_handler())
|
|
return NMI_DONE;
|
|
|
|
/*
|
|
* Both In-Band ECC correctable error and uncorrectable error are
|
|
* reported by SERR# NMI. The NMI generic code (see pci_serr_error())
|
|
* doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
|
|
* re-enable the SERR# NMI after NMI handling. So clear this bit here
|
|
* to re-enable SERR# NMI for receiving future In-Band ECC errors.
|
|
*/
|
|
reason = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
|
|
reason |= NMI_REASON_CLEAR_SERR;
|
|
outb(reason, NMI_REASON_PORT);
|
|
reason &= ~NMI_REASON_CLEAR_SERR;
|
|
outb(reason, NMI_REASON_PORT);
|
|
|
|
return NMI_HANDLED;
|
|
}
|
|
|
|
static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct mce *mce = (struct mce *)data;
|
|
char *type;
|
|
|
|
if (mce->kflags & MCE_HANDLED_CEC)
|
|
return NOTIFY_DONE;
|
|
|
|
/*
|
|
* Ignore unless this is a memory related error.
|
|
* We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
|
|
* since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
|
|
*/
|
|
if ((mce->status & 0xefff) >> 7 != 1)
|
|
return NOTIFY_DONE;
|
|
|
|
if (mce->mcgstatus & MCG_STATUS_MCIP)
|
|
type = "Exception";
|
|
else
|
|
type = "Event";
|
|
|
|
edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
|
|
mce->extcpu, type, mce->mcgstatus,
|
|
mce->bank, mce->status);
|
|
edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
|
|
edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
|
|
edac_dbg(0, "MISC 0x%llx\n", mce->misc);
|
|
edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
|
|
mce->cpuvendor, mce->cpuid, mce->time,
|
|
mce->socketid, mce->apicid);
|
|
/*
|
|
* We just use the Machine Check for the memory error notification.
|
|
* Each memory controller is associated with an IBECC instance.
|
|
* Directly read and clear the error information(error address and
|
|
* error type) on all the IBECC instances so that we know on which
|
|
* memory controller the memory error(s) occurred.
|
|
*/
|
|
if (!ecclog_handler())
|
|
return NOTIFY_DONE;
|
|
|
|
mce->kflags |= MCE_HANDLED_EDAC;
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block ecclog_mce_dec = {
|
|
.notifier_call = ecclog_mce_handler,
|
|
.priority = MCE_PRIO_EDAC,
|
|
};
|
|
|
|
static bool igen6_check_ecc(struct igen6_imc *imc)
|
|
{
|
|
u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
|
|
|
|
return !!(activate & IBECC_ACTIVATE_EN);
|
|
}
|
|
|
|
static int igen6_get_dimm_config(struct mem_ctl_info *mci)
|
|
{
|
|
struct igen6_imc *imc = mci->pvt_info;
|
|
u32 mad_inter, mad_intra, mad_dimm;
|
|
int i, j, ndimms, mc = imc->mc;
|
|
struct dimm_info *dimm;
|
|
enum mem_type mtype;
|
|
enum dev_type dtype;
|
|
u64 dsize;
|
|
bool ecc;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
|
|
mtype = get_memory_type(mad_inter);
|
|
ecc = igen6_check_ecc(imc);
|
|
imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
|
|
imc->ch_l_map = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
|
|
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
|
|
mad_dimm = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
|
|
|
|
imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
|
|
imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
|
|
imc->dimm_l_map[i] = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
|
|
imc->size += imc->dimm_s_size[i];
|
|
imc->size += imc->dimm_l_size[i];
|
|
ndimms = 0;
|
|
|
|
for (j = 0; j < NUM_DIMMS; j++) {
|
|
dimm = edac_get_dimm(mci, i, j, 0);
|
|
|
|
if (j ^ imc->dimm_l_map[i]) {
|
|
dtype = get_width(0, mad_dimm);
|
|
dsize = imc->dimm_s_size[i];
|
|
} else {
|
|
dtype = get_width(1, mad_dimm);
|
|
dsize = imc->dimm_l_size[i];
|
|
}
|
|
|
|
if (!dsize)
|
|
continue;
|
|
|
|
dimm->grain = 64;
|
|
dimm->mtype = mtype;
|
|
dimm->dtype = dtype;
|
|
dimm->nr_pages = MiB_TO_PAGES(dsize >> 20);
|
|
dimm->edac_mode = EDAC_SECDED;
|
|
snprintf(dimm->label, sizeof(dimm->label),
|
|
"MC#%d_Chan#%d_DIMM#%d", mc, i, j);
|
|
edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
|
|
mc, i, j, dsize >> 20, dimm->nr_pages);
|
|
|
|
ndimms++;
|
|
}
|
|
|
|
if (ndimms && !ecc) {
|
|
igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
/* Top of upper usable DRAM */
|
|
static u64 igen6_touud;
|
|
#define TOUUD_OFFSET 0xa8
|
|
|
|
static void igen6_reg_dump(struct igen6_imc *imc)
|
|
{
|
|
int i;
|
|
|
|
edac_dbg(2, "CHANNEL_HASH : 0x%x\n",
|
|
readl(imc->window + CHANNEL_HASH_OFFSET));
|
|
edac_dbg(2, "CHANNEL_EHASH : 0x%x\n",
|
|
readl(imc->window + CHANNEL_EHASH_OFFSET));
|
|
edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
|
|
readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
|
|
edac_dbg(2, "ECC_ERROR_LOG : 0x%llx\n",
|
|
readq(imc->window + ECC_ERROR_LOG_OFFSET));
|
|
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
edac_dbg(2, "MAD_INTRA_CH%d : 0x%x\n", i,
|
|
readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
|
|
edac_dbg(2, "MAD_DIMM_CH%d : 0x%x\n", i,
|
|
readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
|
|
}
|
|
edac_dbg(2, "TOLUD : 0x%x", igen6_tolud);
|
|
edac_dbg(2, "TOUUD : 0x%llx", igen6_touud);
|
|
edac_dbg(2, "TOM : 0x%llx", igen6_tom);
|
|
}
|
|
|
|
static struct dentry *igen6_test;
|
|
|
|
static int debugfs_u64_set(void *data, u64 val)
|
|
{
|
|
u64 ecclog;
|
|
|
|
if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
|
|
edac_dbg(0, "Address 0x%llx out of range\n", val);
|
|
return 0;
|
|
}
|
|
|
|
pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
|
|
|
|
val >>= ECC_ERROR_LOG_ADDR_SHIFT;
|
|
ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
|
|
|
|
if (!ecclog_gen_pool_add(0, ecclog))
|
|
irq_work_queue(&ecclog_irq_work);
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
|
|
|
|
static void igen6_debug_setup(void)
|
|
{
|
|
igen6_test = edac_debugfs_create_dir("igen6_test");
|
|
if (!igen6_test)
|
|
return;
|
|
|
|
if (!edac_debugfs_create_file("addr", 0200, igen6_test,
|
|
NULL, &fops_u64_wo)) {
|
|
debugfs_remove(igen6_test);
|
|
igen6_test = NULL;
|
|
}
|
|
}
|
|
|
|
static void igen6_debug_teardown(void)
|
|
{
|
|
debugfs_remove_recursive(igen6_test);
|
|
}
|
|
#else
|
|
static void igen6_reg_dump(struct igen6_imc *imc) {}
|
|
static void igen6_debug_setup(void) {}
|
|
static void igen6_debug_teardown(void) {}
|
|
#endif
|
|
|
|
static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
|
|
{
|
|
union {
|
|
u64 v;
|
|
struct {
|
|
u32 v_lo;
|
|
u32 v_hi;
|
|
};
|
|
} u;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
if (!res_cfg->ibecc_available(pdev)) {
|
|
edac_dbg(2, "No In-Band ECC IP\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
|
|
igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
|
|
goto fail;
|
|
}
|
|
|
|
igen6_tolud &= GENMASK(31, 20);
|
|
|
|
if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
|
|
igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
|
|
igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
|
|
goto fail;
|
|
}
|
|
|
|
igen6_tom = u.v & GENMASK_ULL(38, 20);
|
|
|
|
if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
|
|
igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
|
|
igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (!(u.v & MCHBAR_EN)) {
|
|
igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
|
|
goto fail;
|
|
}
|
|
|
|
*mchbar = MCHBAR_BASE(u.v);
|
|
|
|
#ifdef CONFIG_EDAC_DEBUG
|
|
if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
|
|
edac_dbg(2, "Failed to read lower TOUUD\n");
|
|
else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
|
|
edac_dbg(2, "Failed to read upper TOUUD\n");
|
|
else
|
|
igen6_touud = u.v & GENMASK_ULL(38, 20);
|
|
#endif
|
|
|
|
return 0;
|
|
fail:
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
|
|
{
|
|
struct edac_mc_layer layers[2];
|
|
struct mem_ctl_info *mci;
|
|
struct igen6_imc *imc;
|
|
void __iomem *window;
|
|
int rc;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
mchbar += mc * MCHBAR_SIZE;
|
|
window = ioremap(mchbar, MCHBAR_SIZE);
|
|
if (!window) {
|
|
igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
|
|
return -ENODEV;
|
|
}
|
|
|
|
layers[0].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[0].size = NUM_CHANNELS;
|
|
layers[0].is_virt_csrow = false;
|
|
layers[1].type = EDAC_MC_LAYER_SLOT;
|
|
layers[1].size = NUM_DIMMS;
|
|
layers[1].is_virt_csrow = true;
|
|
|
|
mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
|
|
if (!mci) {
|
|
rc = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
|
|
if (!mci->ctl_name) {
|
|
rc = -ENOMEM;
|
|
goto fail2;
|
|
}
|
|
|
|
mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
|
|
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
|
|
mci->edac_cap = EDAC_FLAG_SECDED;
|
|
mci->mod_name = EDAC_MOD_STR;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->pvt_info = &igen6_pvt->imc[mc];
|
|
|
|
imc = mci->pvt_info;
|
|
device_initialize(&imc->dev);
|
|
/*
|
|
* EDAC core uses mci->pdev(pointer of structure device) as
|
|
* memory controller ID. The client SoCs attach one or more
|
|
* memory controllers to single pci_dev (single pci_dev->dev
|
|
* can be for multiple memory controllers).
|
|
*
|
|
* To make mci->pdev unique, assign pci_dev->dev to mci->pdev
|
|
* for the first memory controller and assign a unique imc->dev
|
|
* to mci->pdev for each non-first memory controller.
|
|
*/
|
|
mci->pdev = mc ? &imc->dev : &pdev->dev;
|
|
imc->mc = mc;
|
|
imc->pdev = pdev;
|
|
imc->window = window;
|
|
|
|
igen6_reg_dump(imc);
|
|
|
|
rc = igen6_get_dimm_config(mci);
|
|
if (rc)
|
|
goto fail3;
|
|
|
|
rc = edac_mc_add_mc(mci);
|
|
if (rc) {
|
|
igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
|
|
goto fail3;
|
|
}
|
|
|
|
imc->mci = mci;
|
|
return 0;
|
|
fail3:
|
|
kfree(mci->ctl_name);
|
|
fail2:
|
|
edac_mc_free(mci);
|
|
fail:
|
|
iounmap(window);
|
|
return rc;
|
|
}
|
|
|
|
static void igen6_unregister_mcis(void)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct igen6_imc *imc;
|
|
int i;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
for (i = 0; i < res_cfg->num_imc; i++) {
|
|
imc = &igen6_pvt->imc[i];
|
|
mci = imc->mci;
|
|
if (!mci)
|
|
continue;
|
|
|
|
edac_mc_del_mc(mci->pdev);
|
|
kfree(mci->ctl_name);
|
|
edac_mc_free(mci);
|
|
iounmap(imc->window);
|
|
}
|
|
}
|
|
|
|
static int igen6_mem_slice_setup(u64 mchbar)
|
|
{
|
|
struct igen6_imc *imc = &igen6_pvt->imc[0];
|
|
u64 base = mchbar + res_cfg->cmf_base;
|
|
u32 offset = res_cfg->ms_hash_offset;
|
|
u32 size = res_cfg->cmf_size;
|
|
u64 ms_s_size, ms_hash;
|
|
void __iomem *cmf;
|
|
int ms_l_map;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
if (imc[0].size < imc[1].size) {
|
|
ms_s_size = imc[0].size;
|
|
ms_l_map = 1;
|
|
} else {
|
|
ms_s_size = imc[1].size;
|
|
ms_l_map = 0;
|
|
}
|
|
|
|
igen6_pvt->ms_s_size = ms_s_size;
|
|
igen6_pvt->ms_l_map = ms_l_map;
|
|
|
|
edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
|
|
ms_s_size >> 20, ms_l_map);
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
cmf = ioremap(base, size);
|
|
if (!cmf) {
|
|
igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ms_hash = readq(cmf + offset);
|
|
igen6_pvt->ms_hash = ms_hash;
|
|
|
|
edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
|
|
|
|
iounmap(cmf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int register_err_handler(void)
|
|
{
|
|
int rc;
|
|
|
|
if (res_cfg->machine_check) {
|
|
mce_register_decode_chain(&ecclog_mce_dec);
|
|
return 0;
|
|
}
|
|
|
|
rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
|
|
0, IGEN6_NMI_NAME);
|
|
if (rc) {
|
|
igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void unregister_err_handler(void)
|
|
{
|
|
if (res_cfg->machine_check) {
|
|
mce_unregister_decode_chain(&ecclog_mce_dec);
|
|
return;
|
|
}
|
|
|
|
unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
|
|
}
|
|
|
|
static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
u64 mchbar;
|
|
int i, rc;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
|
|
if (!igen6_pvt)
|
|
return -ENOMEM;
|
|
|
|
res_cfg = (struct res_config *)ent->driver_data;
|
|
|
|
rc = igen6_pci_setup(pdev, &mchbar);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
for (i = 0; i < res_cfg->num_imc; i++) {
|
|
rc = igen6_register_mci(i, mchbar, pdev);
|
|
if (rc)
|
|
goto fail2;
|
|
}
|
|
|
|
if (res_cfg->num_imc > 1) {
|
|
rc = igen6_mem_slice_setup(mchbar);
|
|
if (rc)
|
|
goto fail2;
|
|
}
|
|
|
|
ecclog_pool = ecclog_gen_pool_create();
|
|
if (!ecclog_pool) {
|
|
rc = -ENOMEM;
|
|
goto fail2;
|
|
}
|
|
|
|
INIT_WORK(&ecclog_work, ecclog_work_cb);
|
|
init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
|
|
|
|
/* Check if any pending errors before registering the NMI handler */
|
|
ecclog_handler();
|
|
|
|
rc = register_err_handler();
|
|
if (rc)
|
|
goto fail3;
|
|
|
|
/* Enable error reporting */
|
|
rc = errcmd_enable_error_reporting(true);
|
|
if (rc) {
|
|
igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
|
|
goto fail4;
|
|
}
|
|
|
|
igen6_debug_setup();
|
|
return 0;
|
|
fail4:
|
|
unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
|
|
fail3:
|
|
gen_pool_destroy(ecclog_pool);
|
|
fail2:
|
|
igen6_unregister_mcis();
|
|
fail:
|
|
kfree(igen6_pvt);
|
|
return rc;
|
|
}
|
|
|
|
static void igen6_remove(struct pci_dev *pdev)
|
|
{
|
|
edac_dbg(2, "\n");
|
|
|
|
igen6_debug_teardown();
|
|
errcmd_enable_error_reporting(false);
|
|
unregister_err_handler();
|
|
irq_work_sync(&ecclog_irq_work);
|
|
flush_work(&ecclog_work);
|
|
gen_pool_destroy(ecclog_pool);
|
|
igen6_unregister_mcis();
|
|
kfree(igen6_pvt);
|
|
}
|
|
|
|
static struct pci_driver igen6_driver = {
|
|
.name = EDAC_MOD_STR,
|
|
.probe = igen6_probe,
|
|
.remove = igen6_remove,
|
|
.id_table = igen6_pci_tbl,
|
|
};
|
|
|
|
static int __init igen6_init(void)
|
|
{
|
|
const char *owner;
|
|
int rc;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
owner = edac_get_owner();
|
|
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
|
|
return -ENODEV;
|
|
|
|
edac_op_state = EDAC_OPSTATE_NMI;
|
|
|
|
rc = pci_register_driver(&igen6_driver);
|
|
if (rc)
|
|
return rc;
|
|
|
|
igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit igen6_exit(void)
|
|
{
|
|
edac_dbg(2, "\n");
|
|
|
|
pci_unregister_driver(&igen6_driver);
|
|
}
|
|
|
|
module_init(igen6_init);
|
|
module_exit(igen6_exit);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Qiuxu Zhuo");
|
|
MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
|