2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 06:04:14 +08:00
linux-next/drivers/edac/ghes_edac.c
Bartosz Golaszewski af11be05b6 edac: ghes: use krealloc_array()
Use the helper that checks for overflows internally instead of manually
calculating the size of the new array.

Link: https://lkml.kernel.org/r/20201109110654.12547-7-brgl@bgdev.pl
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Knig <christian.koenig@amd.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: David Rientjes <rientjes@google.com>
Cc: Gustavo Padovan <gustavo@padovan.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Robert Richter <rric@kernel.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:37 -08:00

675 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* GHES/EDAC Linux driver
*
* Copyright (c) 2013 by Mauro Carvalho Chehab
*
* Red Hat Inc. https://www.redhat.com
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <acpi/ghes.h>
#include <linux/edac.h>
#include <linux/dmi.h>
#include "edac_module.h"
#include <ras/ras_event.h>
struct ghes_pvt {
struct mem_ctl_info *mci;
/* Buffers for the error handling routine */
char other_detail[400];
char msg[80];
};
static refcount_t ghes_refcount = REFCOUNT_INIT(0);
/*
* Access to ghes_pvt must be protected by ghes_lock. The spinlock
* also provides the necessary (implicit) memory barrier for the SMP
* case to make the pointer visible on another CPU.
*/
static struct ghes_pvt *ghes_pvt;
/*
* This driver's representation of the system hardware, as collected
* from DMI.
*/
struct ghes_hw_desc {
int num_dimms;
struct dimm_info *dimms;
} ghes_hw;
/* GHES registration mutex */
static DEFINE_MUTEX(ghes_reg_mutex);
/*
* Sync with other, potentially concurrent callers of
* ghes_edac_report_mem_error(). We don't know what the
* "inventive" firmware would do.
*/
static DEFINE_SPINLOCK(ghes_lock);
/* "ghes_edac.force_load=1" skips the platform check */
static bool __read_mostly force_load;
module_param(force_load, bool, 0);
static bool system_scanned;
/* Memory Device - Type 17 of SMBIOS spec */
struct memdev_dmi_entry {
u8 type;
u8 length;
u16 handle;
u16 phys_mem_array_handle;
u16 mem_err_info_handle;
u16 total_width;
u16 data_width;
u16 size;
u8 form_factor;
u8 device_set;
u8 device_locator;
u8 bank_locator;
u8 memory_type;
u16 type_detail;
u16 speed;
u8 manufacturer;
u8 serial_number;
u8 asset_tag;
u8 part_number;
u8 attributes;
u32 extended_size;
u16 conf_mem_clk_speed;
} __attribute__((__packed__));
static struct dimm_info *find_dimm_by_handle(struct mem_ctl_info *mci, u16 handle)
{
struct dimm_info *dimm;
mci_for_each_dimm(mci, dimm) {
if (dimm->smbios_handle == handle)
return dimm;
}
return NULL;
}
static void dimm_setup_label(struct dimm_info *dimm, u16 handle)
{
const char *bank = NULL, *device = NULL;
dmi_memdev_name(handle, &bank, &device);
/* both strings must be non-zero */
if (bank && *bank && device && *device)
snprintf(dimm->label, sizeof(dimm->label), "%s %s", bank, device);
}
static void assign_dmi_dimm_info(struct dimm_info *dimm, struct memdev_dmi_entry *entry)
{
u16 rdr_mask = BIT(7) | BIT(13);
if (entry->size == 0xffff) {
pr_info("Can't get DIMM%i size\n", dimm->idx);
dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
} else if (entry->size == 0x7fff) {
dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
} else {
if (entry->size & BIT(15))
dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10);
else
dimm->nr_pages = MiB_TO_PAGES(entry->size);
}
switch (entry->memory_type) {
case 0x12:
if (entry->type_detail & BIT(13))
dimm->mtype = MEM_RDDR;
else
dimm->mtype = MEM_DDR;
break;
case 0x13:
if (entry->type_detail & BIT(13))
dimm->mtype = MEM_RDDR2;
else
dimm->mtype = MEM_DDR2;
break;
case 0x14:
dimm->mtype = MEM_FB_DDR2;
break;
case 0x18:
if (entry->type_detail & BIT(12))
dimm->mtype = MEM_NVDIMM;
else if (entry->type_detail & BIT(13))
dimm->mtype = MEM_RDDR3;
else
dimm->mtype = MEM_DDR3;
break;
case 0x1a:
if (entry->type_detail & BIT(12))
dimm->mtype = MEM_NVDIMM;
else if (entry->type_detail & BIT(13))
dimm->mtype = MEM_RDDR4;
else
dimm->mtype = MEM_DDR4;
break;
default:
if (entry->type_detail & BIT(6))
dimm->mtype = MEM_RMBS;
else if ((entry->type_detail & rdr_mask) == rdr_mask)
dimm->mtype = MEM_RDR;
else if (entry->type_detail & BIT(7))
dimm->mtype = MEM_SDR;
else if (entry->type_detail & BIT(9))
dimm->mtype = MEM_EDO;
else
dimm->mtype = MEM_UNKNOWN;
}
/*
* Actually, we can only detect if the memory has bits for
* checksum or not
*/
if (entry->total_width == entry->data_width)
dimm->edac_mode = EDAC_NONE;
else
dimm->edac_mode = EDAC_SECDED;
dimm->dtype = DEV_UNKNOWN;
dimm->grain = 128; /* Likely, worse case */
dimm_setup_label(dimm, entry->handle);
if (dimm->nr_pages) {
edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
dimm->idx, edac_mem_types[dimm->mtype],
PAGES_TO_MiB(dimm->nr_pages),
(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
entry->memory_type, entry->type_detail,
entry->total_width, entry->data_width);
}
dimm->smbios_handle = entry->handle;
}
static void enumerate_dimms(const struct dmi_header *dh, void *arg)
{
struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
struct ghes_hw_desc *hw = (struct ghes_hw_desc *)arg;
struct dimm_info *d;
if (dh->type != DMI_ENTRY_MEM_DEVICE)
return;
/* Enlarge the array with additional 16 */
if (!hw->num_dimms || !(hw->num_dimms % 16)) {
struct dimm_info *new;
new = krealloc_array(hw->dimms, hw->num_dimms + 16,
sizeof(struct dimm_info), GFP_KERNEL);
if (!new) {
WARN_ON_ONCE(1);
return;
}
hw->dimms = new;
}
d = &hw->dimms[hw->num_dimms];
d->idx = hw->num_dimms;
assign_dmi_dimm_info(d, entry);
hw->num_dimms++;
}
static void ghes_scan_system(void)
{
if (system_scanned)
return;
dmi_walk(enumerate_dimms, &ghes_hw);
system_scanned = true;
}
void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
{
struct edac_raw_error_desc *e;
struct mem_ctl_info *mci;
struct ghes_pvt *pvt;
unsigned long flags;
char *p;
/*
* We can do the locking below because GHES defers error processing
* from NMI to IRQ context. Whenever that changes, we'd at least
* know.
*/
if (WARN_ON_ONCE(in_nmi()))
return;
spin_lock_irqsave(&ghes_lock, flags);
pvt = ghes_pvt;
if (!pvt)
goto unlock;
mci = pvt->mci;
e = &mci->error_desc;
/* Cleans the error report buffer */
memset(e, 0, sizeof (*e));
e->error_count = 1;
e->grain = 1;
e->msg = pvt->msg;
e->other_detail = pvt->other_detail;
e->top_layer = -1;
e->mid_layer = -1;
e->low_layer = -1;
*pvt->other_detail = '\0';
*pvt->msg = '\0';
switch (sev) {
case GHES_SEV_CORRECTED:
e->type = HW_EVENT_ERR_CORRECTED;
break;
case GHES_SEV_RECOVERABLE:
e->type = HW_EVENT_ERR_UNCORRECTED;
break;
case GHES_SEV_PANIC:
e->type = HW_EVENT_ERR_FATAL;
break;
default:
case GHES_SEV_NO:
e->type = HW_EVENT_ERR_INFO;
}
edac_dbg(1, "error validation_bits: 0x%08llx\n",
(long long)mem_err->validation_bits);
/* Error type, mapped on e->msg */
if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
p = pvt->msg;
switch (mem_err->error_type) {
case 0:
p += sprintf(p, "Unknown");
break;
case 1:
p += sprintf(p, "No error");
break;
case 2:
p += sprintf(p, "Single-bit ECC");
break;
case 3:
p += sprintf(p, "Multi-bit ECC");
break;
case 4:
p += sprintf(p, "Single-symbol ChipKill ECC");
break;
case 5:
p += sprintf(p, "Multi-symbol ChipKill ECC");
break;
case 6:
p += sprintf(p, "Master abort");
break;
case 7:
p += sprintf(p, "Target abort");
break;
case 8:
p += sprintf(p, "Parity Error");
break;
case 9:
p += sprintf(p, "Watchdog timeout");
break;
case 10:
p += sprintf(p, "Invalid address");
break;
case 11:
p += sprintf(p, "Mirror Broken");
break;
case 12:
p += sprintf(p, "Memory Sparing");
break;
case 13:
p += sprintf(p, "Scrub corrected error");
break;
case 14:
p += sprintf(p, "Scrub uncorrected error");
break;
case 15:
p += sprintf(p, "Physical Memory Map-out event");
break;
default:
p += sprintf(p, "reserved error (%d)",
mem_err->error_type);
}
} else {
strcpy(pvt->msg, "unknown error");
}
/* Error address */
if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
e->page_frame_number = PHYS_PFN(mem_err->physical_addr);
e->offset_in_page = offset_in_page(mem_err->physical_addr);
}
/* Error grain */
if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
e->grain = ~mem_err->physical_addr_mask + 1;
/* Memory error location, mapped on e->location */
p = e->location;
if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
p += sprintf(p, "node:%d ", mem_err->node);
if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
p += sprintf(p, "card:%d ", mem_err->card);
if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
p += sprintf(p, "module:%d ", mem_err->module);
if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
p += sprintf(p, "rank:%d ", mem_err->rank);
if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
p += sprintf(p, "bank:%d ", mem_err->bank);
if (mem_err->validation_bits & CPER_MEM_VALID_BANK_GROUP)
p += sprintf(p, "bank_group:%d ",
mem_err->bank >> CPER_MEM_BANK_GROUP_SHIFT);
if (mem_err->validation_bits & CPER_MEM_VALID_BANK_ADDRESS)
p += sprintf(p, "bank_address:%d ",
mem_err->bank & CPER_MEM_BANK_ADDRESS_MASK);
if (mem_err->validation_bits & (CPER_MEM_VALID_ROW | CPER_MEM_VALID_ROW_EXT)) {
u32 row = mem_err->row;
row |= cper_get_mem_extension(mem_err->validation_bits, mem_err->extended);
p += sprintf(p, "row:%d ", row);
}
if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
p += sprintf(p, "col:%d ", mem_err->column);
if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) {
const char *bank = NULL, *device = NULL;
struct dimm_info *dimm;
dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device);
if (bank != NULL && device != NULL)
p += sprintf(p, "DIMM location:%s %s ", bank, device);
else
p += sprintf(p, "DIMM DMI handle: 0x%.4x ",
mem_err->mem_dev_handle);
dimm = find_dimm_by_handle(mci, mem_err->mem_dev_handle);
if (dimm) {
e->top_layer = dimm->idx;
strcpy(e->label, dimm->label);
}
}
if (mem_err->validation_bits & CPER_MEM_VALID_CHIP_ID)
p += sprintf(p, "chipID: %d ",
mem_err->extended >> CPER_MEM_CHIP_ID_SHIFT);
if (p > e->location)
*(p - 1) = '\0';
if (!*e->label)
strcpy(e->label, "unknown memory");
/* All other fields are mapped on e->other_detail */
p = pvt->other_detail;
p += snprintf(p, sizeof(pvt->other_detail),
"APEI location: %s ", e->location);
if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
u64 status = mem_err->error_status;
p += sprintf(p, "status(0x%016llx): ", (long long)status);
switch ((status >> 8) & 0xff) {
case 1:
p += sprintf(p, "Error detected internal to the component ");
break;
case 16:
p += sprintf(p, "Error detected in the bus ");
break;
case 4:
p += sprintf(p, "Storage error in DRAM memory ");
break;
case 5:
p += sprintf(p, "Storage error in TLB ");
break;
case 6:
p += sprintf(p, "Storage error in cache ");
break;
case 7:
p += sprintf(p, "Error in one or more functional units ");
break;
case 8:
p += sprintf(p, "component failed self test ");
break;
case 9:
p += sprintf(p, "Overflow or undervalue of internal queue ");
break;
case 17:
p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
break;
case 18:
p += sprintf(p, "Improper access error ");
break;
case 19:
p += sprintf(p, "Access to a memory address which is not mapped to any component ");
break;
case 20:
p += sprintf(p, "Loss of Lockstep ");
break;
case 21:
p += sprintf(p, "Response not associated with a request ");
break;
case 22:
p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
break;
case 23:
p += sprintf(p, "Detection of a PATH_ERROR ");
break;
case 25:
p += sprintf(p, "Bus operation timeout ");
break;
case 26:
p += sprintf(p, "A read was issued to data that has been poisoned ");
break;
default:
p += sprintf(p, "reserved ");
break;
}
}
if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
p += sprintf(p, "requestorID: 0x%016llx ",
(long long)mem_err->requestor_id);
if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
p += sprintf(p, "responderID: 0x%016llx ",
(long long)mem_err->responder_id);
if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
p += sprintf(p, "targetID: 0x%016llx ",
(long long)mem_err->responder_id);
if (p > pvt->other_detail)
*(p - 1) = '\0';
edac_raw_mc_handle_error(e);
unlock:
spin_unlock_irqrestore(&ghes_lock, flags);
}
/*
* Known systems that are safe to enable this module.
*/
static struct acpi_platform_list plat_list[] = {
{"HPE ", "Server ", 0, ACPI_SIG_FADT, all_versions},
{ } /* End */
};
int ghes_edac_register(struct ghes *ghes, struct device *dev)
{
bool fake = false;
struct mem_ctl_info *mci;
struct ghes_pvt *pvt;
struct edac_mc_layer layers[1];
unsigned long flags;
int idx = -1;
int rc = 0;
if (IS_ENABLED(CONFIG_X86)) {
/* Check if safe to enable on this system */
idx = acpi_match_platform_list(plat_list);
if (!force_load && idx < 0)
return -ENODEV;
} else {
force_load = true;
idx = 0;
}
/* finish another registration/unregistration instance first */
mutex_lock(&ghes_reg_mutex);
/*
* We have only one logical memory controller to which all DIMMs belong.
*/
if (refcount_inc_not_zero(&ghes_refcount))
goto unlock;
ghes_scan_system();
/* Check if we've got a bogus BIOS */
if (!ghes_hw.num_dimms) {
fake = true;
ghes_hw.num_dimms = 1;
}
layers[0].type = EDAC_MC_LAYER_ALL_MEM;
layers[0].size = ghes_hw.num_dimms;
layers[0].is_virt_csrow = true;
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_pvt));
if (!mci) {
pr_info("Can't allocate memory for EDAC data\n");
rc = -ENOMEM;
goto unlock;
}
pvt = mci->pvt_info;
pvt->mci = mci;
mci->pdev = dev;
mci->mtype_cap = MEM_FLAG_EMPTY;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "ghes_edac.c";
mci->ctl_name = "ghes_edac";
mci->dev_name = "ghes";
if (fake) {
pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
pr_info("work on such system. Use this driver with caution\n");
} else if (idx < 0) {
pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
pr_info("If you find incorrect reports, please contact your hardware vendor\n");
pr_info("to correct its BIOS.\n");
pr_info("This system has %d DIMM sockets.\n", ghes_hw.num_dimms);
}
if (!fake) {
struct dimm_info *src, *dst;
int i = 0;
mci_for_each_dimm(mci, dst) {
src = &ghes_hw.dimms[i];
dst->idx = src->idx;
dst->smbios_handle = src->smbios_handle;
dst->nr_pages = src->nr_pages;
dst->mtype = src->mtype;
dst->edac_mode = src->edac_mode;
dst->dtype = src->dtype;
dst->grain = src->grain;
/*
* If no src->label, preserve default label assigned
* from EDAC core.
*/
if (strlen(src->label))
memcpy(dst->label, src->label, sizeof(src->label));
i++;
}
} else {
struct dimm_info *dimm = edac_get_dimm(mci, 0, 0, 0);
dimm->nr_pages = 1;
dimm->grain = 128;
dimm->mtype = MEM_UNKNOWN;
dimm->dtype = DEV_UNKNOWN;
dimm->edac_mode = EDAC_SECDED;
}
rc = edac_mc_add_mc(mci);
if (rc < 0) {
pr_info("Can't register with the EDAC core\n");
edac_mc_free(mci);
rc = -ENODEV;
goto unlock;
}
spin_lock_irqsave(&ghes_lock, flags);
ghes_pvt = pvt;
spin_unlock_irqrestore(&ghes_lock, flags);
/* only set on success */
refcount_set(&ghes_refcount, 1);
unlock:
/* Not needed anymore */
kfree(ghes_hw.dimms);
ghes_hw.dimms = NULL;
mutex_unlock(&ghes_reg_mutex);
return rc;
}
void ghes_edac_unregister(struct ghes *ghes)
{
struct mem_ctl_info *mci;
unsigned long flags;
if (!force_load)
return;
mutex_lock(&ghes_reg_mutex);
system_scanned = false;
memset(&ghes_hw, 0, sizeof(struct ghes_hw_desc));
if (!refcount_dec_and_test(&ghes_refcount))
goto unlock;
/*
* Wait for the irq handler being finished.
*/
spin_lock_irqsave(&ghes_lock, flags);
mci = ghes_pvt ? ghes_pvt->mci : NULL;
ghes_pvt = NULL;
spin_unlock_irqrestore(&ghes_lock, flags);
if (!mci)
goto unlock;
mci = edac_mc_del_mc(mci->pdev);
if (mci)
edac_mc_free(mci);
unlock:
mutex_unlock(&ghes_reg_mutex);
}