2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 02:24:21 +08:00
linux-next/arch/alpha/kernel/time.c
Michael Cree 979f867191 alpha: implement HW performance events on the EV67 and later CPUs
This implements hardware performance events for the EV67 and later CPUs
within the Linux performance events subsystem.  Only using the performance
monitoring unit in HP/Compaq's so called "Aggregrate mode" is supported.

The code has been implemented in a manner that makes extension to other
older Alpha CPUs relatively straightforward should some mug wish to
indulge themselves.

Signed-off-by: Michael Cree <mcree@orcon.net.nz>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jay Estabrook <jay.estabrook@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-09 20:45:04 -07:00

528 lines
14 KiB
C

/*
* linux/arch/alpha/kernel/time.c
*
* Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
*
* This file contains the PC-specific time handling details:
* reading the RTC at bootup, etc..
* 1994-07-02 Alan Modra
* fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
* 1995-03-26 Markus Kuhn
* fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
* precision CMOS clock update
* 1997-09-10 Updated NTP code according to technical memorandum Jan '96
* "A Kernel Model for Precision Timekeeping" by Dave Mills
* 1997-01-09 Adrian Sun
* use interval timer if CONFIG_RTC=y
* 1997-10-29 John Bowman (bowman@math.ualberta.ca)
* fixed tick loss calculation in timer_interrupt
* (round system clock to nearest tick instead of truncating)
* fixed algorithm in time_init for getting time from CMOS clock
* 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
* fixed algorithm in do_gettimeofday() for calculating the precise time
* from processor cycle counter (now taking lost_ticks into account)
* 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
* Fixed time_init to be aware of epoches != 1900. This prevents
* booting up in 2048 for me;) Code is stolen from rtc.c.
* 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
* Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/bcd.h>
#include <linux/profile.h>
#include <linux/perf_event.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/hwrpb.h>
#include <asm/8253pit.h>
#include <asm/rtc.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/clocksource.h>
#include "proto.h"
#include "irq_impl.h"
static int set_rtc_mmss(unsigned long);
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
#define TICK_SIZE (tick_nsec / 1000)
/*
* Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
* by 48 gives us 16 bits for HZ while keeping the accuracy good even
* for large CPU clock rates.
*/
#define FIX_SHIFT 48
/* lump static variables together for more efficient access: */
static struct {
/* cycle counter last time it got invoked */
__u32 last_time;
/* ticks/cycle * 2^48 */
unsigned long scaled_ticks_per_cycle;
/* partial unused tick */
unsigned long partial_tick;
} state;
unsigned long est_cycle_freq;
#ifdef CONFIG_PERF_EVENTS
DEFINE_PER_CPU(u8, perf_event_pending);
#define set_perf_event_pending_flag() __get_cpu_var(perf_event_pending) = 1
#define test_perf_event_pending() __get_cpu_var(perf_event_pending)
#define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
void set_perf_event_pending(void)
{
set_perf_event_pending_flag();
}
#else /* CONFIG_PERF_EVENTS */
#define test_perf_event_pending() 0
#define clear_perf_event_pending()
#endif /* CONFIG_PERF_EVENTS */
static inline __u32 rpcc(void)
{
__u32 result;
asm volatile ("rpcc %0" : "=r"(result));
return result;
}
int update_persistent_clock(struct timespec now)
{
return set_rtc_mmss(now.tv_sec);
}
void read_persistent_clock(struct timespec *ts)
{
unsigned int year, mon, day, hour, min, sec, epoch;
sec = CMOS_READ(RTC_SECONDS);
min = CMOS_READ(RTC_MINUTES);
hour = CMOS_READ(RTC_HOURS);
day = CMOS_READ(RTC_DAY_OF_MONTH);
mon = CMOS_READ(RTC_MONTH);
year = CMOS_READ(RTC_YEAR);
if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
sec = bcd2bin(sec);
min = bcd2bin(min);
hour = bcd2bin(hour);
day = bcd2bin(day);
mon = bcd2bin(mon);
year = bcd2bin(year);
}
/* PC-like is standard; used for year >= 70 */
epoch = 1900;
if (year < 20)
epoch = 2000;
else if (year >= 20 && year < 48)
/* NT epoch */
epoch = 1980;
else if (year >= 48 && year < 70)
/* Digital UNIX epoch */
epoch = 1952;
printk(KERN_INFO "Using epoch = %d\n", epoch);
if ((year += epoch) < 1970)
year += 100;
ts->tv_sec = mktime(year, mon, day, hour, min, sec);
}
/*
* timer_interrupt() needs to keep up the real-time clock,
* as well as call the "do_timer()" routine every clocktick
*/
irqreturn_t timer_interrupt(int irq, void *dev)
{
unsigned long delta;
__u32 now;
long nticks;
#ifndef CONFIG_SMP
/* Not SMP, do kernel PC profiling here. */
profile_tick(CPU_PROFILING);
#endif
write_seqlock(&xtime_lock);
/*
* Calculate how many ticks have passed since the last update,
* including any previous partial leftover. Save any resulting
* fraction for the next pass.
*/
now = rpcc();
delta = now - state.last_time;
state.last_time = now;
delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
nticks = delta >> FIX_SHIFT;
if (nticks)
do_timer(nticks);
write_sequnlock(&xtime_lock);
#ifndef CONFIG_SMP
while (nticks--)
update_process_times(user_mode(get_irq_regs()));
#endif
if (test_perf_event_pending()) {
clear_perf_event_pending();
perf_event_do_pending();
}
return IRQ_HANDLED;
}
void __init
common_init_rtc(void)
{
unsigned char x;
/* Reset periodic interrupt frequency. */
x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
/* Test includes known working values on various platforms
where 0x26 is wrong; we refuse to change those. */
if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
CMOS_WRITE(0x26, RTC_FREQ_SELECT);
}
/* Turn on periodic interrupts. */
x = CMOS_READ(RTC_CONTROL);
if (!(x & RTC_PIE)) {
printk("Turning on RTC interrupts.\n");
x |= RTC_PIE;
x &= ~(RTC_AIE | RTC_UIE);
CMOS_WRITE(x, RTC_CONTROL);
}
(void) CMOS_READ(RTC_INTR_FLAGS);
outb(0x36, 0x43); /* pit counter 0: system timer */
outb(0x00, 0x40);
outb(0x00, 0x40);
outb(0xb6, 0x43); /* pit counter 2: speaker */
outb(0x31, 0x42);
outb(0x13, 0x42);
init_rtc_irq();
}
unsigned int common_get_rtc_time(struct rtc_time *time)
{
return __get_rtc_time(time);
}
int common_set_rtc_time(struct rtc_time *time)
{
return __set_rtc_time(time);
}
/* Validate a computed cycle counter result against the known bounds for
the given processor core. There's too much brokenness in the way of
timing hardware for any one method to work everywhere. :-(
Return 0 if the result cannot be trusted, otherwise return the argument. */
static unsigned long __init
validate_cc_value(unsigned long cc)
{
static struct bounds {
unsigned int min, max;
} cpu_hz[] __initdata = {
[EV3_CPU] = { 50000000, 200000000 }, /* guess */
[EV4_CPU] = { 100000000, 300000000 },
[LCA4_CPU] = { 100000000, 300000000 }, /* guess */
[EV45_CPU] = { 200000000, 300000000 },
[EV5_CPU] = { 250000000, 433000000 },
[EV56_CPU] = { 333000000, 667000000 },
[PCA56_CPU] = { 400000000, 600000000 }, /* guess */
[PCA57_CPU] = { 500000000, 600000000 }, /* guess */
[EV6_CPU] = { 466000000, 600000000 },
[EV67_CPU] = { 600000000, 750000000 },
[EV68AL_CPU] = { 750000000, 940000000 },
[EV68CB_CPU] = { 1000000000, 1333333333 },
/* None of the following are shipping as of 2001-11-01. */
[EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
[EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
[EV7_CPU] = { 800000000, 1400000000 }, /* guess */
[EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
};
/* Allow for some drift in the crystal. 10MHz is more than enough. */
const unsigned int deviation = 10000000;
struct percpu_struct *cpu;
unsigned int index;
cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
index = cpu->type & 0xffffffff;
/* If index out of bounds, no way to validate. */
if (index >= ARRAY_SIZE(cpu_hz))
return cc;
/* If index contains no data, no way to validate. */
if (cpu_hz[index].max == 0)
return cc;
if (cc < cpu_hz[index].min - deviation
|| cc > cpu_hz[index].max + deviation)
return 0;
return cc;
}
/*
* Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
* arch/i386/time.c.
*/
#define CALIBRATE_LATCH 0xffff
#define TIMEOUT_COUNT 0x100000
static unsigned long __init
calibrate_cc_with_pit(void)
{
int cc, count = 0;
/* Set the Gate high, disable speaker */
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
/*
* Now let's take care of CTC channel 2
*
* Set the Gate high, program CTC channel 2 for mode 0,
* (interrupt on terminal count mode), binary count,
* load 5 * LATCH count, (LSB and MSB) to begin countdown.
*/
outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
cc = rpcc();
do {
count++;
} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
cc = rpcc() - cc;
/* Error: ECTCNEVERSET or ECPUTOOFAST. */
if (count <= 1 || count == TIMEOUT_COUNT)
return 0;
return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
}
/* The Linux interpretation of the CMOS clock register contents:
When the Update-In-Progress (UIP) flag goes from 1 to 0, the
RTC registers show the second which has precisely just started.
Let's hope other operating systems interpret the RTC the same way. */
static unsigned long __init
rpcc_after_update_in_progress(void)
{
do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
return rpcc();
}
#ifndef CONFIG_SMP
/* Until and unless we figure out how to get cpu cycle counters
in sync and keep them there, we can't use the rpcc. */
static cycle_t read_rpcc(struct clocksource *cs)
{
cycle_t ret = (cycle_t)rpcc();
return ret;
}
static struct clocksource clocksource_rpcc = {
.name = "rpcc",
.rating = 300,
.read = read_rpcc,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS
};
static inline void register_rpcc_clocksource(long cycle_freq)
{
clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4);
clocksource_register(&clocksource_rpcc);
}
#else /* !CONFIG_SMP */
static inline void register_rpcc_clocksource(long cycle_freq)
{
}
#endif /* !CONFIG_SMP */
void __init
time_init(void)
{
unsigned int cc1, cc2;
unsigned long cycle_freq, tolerance;
long diff;
/* Calibrate CPU clock -- attempt #1. */
if (!est_cycle_freq)
est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
cc1 = rpcc();
/* Calibrate CPU clock -- attempt #2. */
if (!est_cycle_freq) {
cc1 = rpcc_after_update_in_progress();
cc2 = rpcc_after_update_in_progress();
est_cycle_freq = validate_cc_value(cc2 - cc1);
cc1 = cc2;
}
cycle_freq = hwrpb->cycle_freq;
if (est_cycle_freq) {
/* If the given value is within 250 PPM of what we calculated,
accept it. Otherwise, use what we found. */
tolerance = cycle_freq / 4000;
diff = cycle_freq - est_cycle_freq;
if (diff < 0)
diff = -diff;
if ((unsigned long)diff > tolerance) {
cycle_freq = est_cycle_freq;
printk("HWRPB cycle frequency bogus. "
"Estimated %lu Hz\n", cycle_freq);
} else {
est_cycle_freq = 0;
}
} else if (! validate_cc_value (cycle_freq)) {
printk("HWRPB cycle frequency bogus, "
"and unable to estimate a proper value!\n");
}
/* From John Bowman <bowman@math.ualberta.ca>: allow the values
to settle, as the Update-In-Progress bit going low isn't good
enough on some hardware. 2ms is our guess; we haven't found
bogomips yet, but this is close on a 500Mhz box. */
__delay(1000000);
if (HZ > (1<<16)) {
extern void __you_loose (void);
__you_loose();
}
register_rpcc_clocksource(cycle_freq);
state.last_time = cc1;
state.scaled_ticks_per_cycle
= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
state.partial_tick = 0L;
/* Startup the timer source. */
alpha_mv.init_rtc();
}
/*
* In order to set the CMOS clock precisely, set_rtc_mmss has to be
* called 500 ms after the second nowtime has started, because when
* nowtime is written into the registers of the CMOS clock, it will
* jump to the next second precisely 500 ms later. Check the Motorola
* MC146818A or Dallas DS12887 data sheet for details.
*
* BUG: This routine does not handle hour overflow properly; it just
* sets the minutes. Usually you won't notice until after reboot!
*/
static int
set_rtc_mmss(unsigned long nowtime)
{
int retval = 0;
int real_seconds, real_minutes, cmos_minutes;
unsigned char save_control, save_freq_select;
/* irq are locally disabled here */
spin_lock(&rtc_lock);
/* Tell the clock it's being set */
save_control = CMOS_READ(RTC_CONTROL);
CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
/* Stop and reset prescaler */
save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
cmos_minutes = CMOS_READ(RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
cmos_minutes = bcd2bin(cmos_minutes);
/*
* since we're only adjusting minutes and seconds,
* don't interfere with hour overflow. This avoids
* messing with unknown time zones but requires your
* RTC not to be off by more than 15 minutes
*/
real_seconds = nowtime % 60;
real_minutes = nowtime / 60;
if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
/* correct for half hour time zone */
real_minutes += 30;
}
real_minutes %= 60;
if (abs(real_minutes - cmos_minutes) < 30) {
if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
real_seconds = bin2bcd(real_seconds);
real_minutes = bin2bcd(real_minutes);
}
CMOS_WRITE(real_seconds,RTC_SECONDS);
CMOS_WRITE(real_minutes,RTC_MINUTES);
} else {
printk(KERN_WARNING
"set_rtc_mmss: can't update from %d to %d\n",
cmos_minutes, real_minutes);
retval = -1;
}
/* The following flags have to be released exactly in this order,
* otherwise the DS12887 (popular MC146818A clone with integrated
* battery and quartz) will not reset the oscillator and will not
* update precisely 500 ms later. You won't find this mentioned in
* the Dallas Semiconductor data sheets, but who believes data
* sheets anyway ... -- Markus Kuhn
*/
CMOS_WRITE(save_control, RTC_CONTROL);
CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
spin_unlock(&rtc_lock);
return retval;
}