2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 14:14:00 +08:00
linux-next/drivers/gpu/drm/gma500/psb_intel_display.c
Matt Roper f4510a2752 drm: Replace crtc fb with primary plane fb (v3)
Now that CRTC's have a primary plane, there's no need to track the
framebuffer in the CRTC.  Replace all references to the CRTC fb with the
primary plane's fb.

This patch was generated by the Coccinelle semantic patching tool using
the following rules:

        @@ struct drm_crtc C; @@
        -   (C).fb
        +   C.primary->fb

        @@ struct drm_crtc *C; @@
        -   (C)->fb
        +   C->primary->fb

v3: Generate patch via coccinelle.  Actual removal of crtc->fb has been
    moved to a subsequent patch.

v2: Fixup several lingering crtc->fb instances that were missed in the
    first patch iteration.  [Rob Clark]

Signed-off-by: Matt Roper <matthew.d.roper@intel.com>
Reviewed-by: Rob Clark <robdclark@gmail.com>
2014-04-01 20:18:28 -04:00

585 lines
16 KiB
C

/*
* Copyright © 2006-2011 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
#include <drm/drmP.h>
#include "framebuffer.h"
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
#include "gma_display.h"
#include "power.h"
#define INTEL_LIMIT_I9XX_SDVO_DAC 0
#define INTEL_LIMIT_I9XX_LVDS 1
static const struct gma_limit_t psb_intel_limits[] = {
{ /* INTEL_LIMIT_I9XX_SDVO_DAC */
.dot = {.min = 20000, .max = 400000},
.vco = {.min = 1400000, .max = 2800000},
.n = {.min = 1, .max = 6},
.m = {.min = 70, .max = 120},
.m1 = {.min = 8, .max = 18},
.m2 = {.min = 3, .max = 7},
.p = {.min = 5, .max = 80},
.p1 = {.min = 1, .max = 8},
.p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
.find_pll = gma_find_best_pll,
},
{ /* INTEL_LIMIT_I9XX_LVDS */
.dot = {.min = 20000, .max = 400000},
.vco = {.min = 1400000, .max = 2800000},
.n = {.min = 1, .max = 6},
.m = {.min = 70, .max = 120},
.m1 = {.min = 8, .max = 18},
.m2 = {.min = 3, .max = 7},
.p = {.min = 7, .max = 98},
.p1 = {.min = 1, .max = 8},
/* The single-channel range is 25-112Mhz, and dual-channel
* is 80-224Mhz. Prefer single channel as much as possible.
*/
.p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
.find_pll = gma_find_best_pll,
},
};
static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
int refclk)
{
const struct gma_limit_t *limit;
if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
else
limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
return limit;
}
static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
{
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
/**
* Return the pipe currently connected to the panel fitter,
* or -1 if the panel fitter is not present or not in use
*/
static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
{
u32 pfit_control;
pfit_control = REG_READ(PFIT_CONTROL);
/* See if the panel fitter is in use */
if ((pfit_control & PFIT_ENABLE) == 0)
return -1;
/* Must be on PIPE 1 for PSB */
return 1;
}
static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
int pipe = gma_crtc->pipe;
const struct psb_offset *map = &dev_priv->regmap[pipe];
int refclk;
struct gma_clock_t clock;
u32 dpll = 0, fp = 0, dspcntr, pipeconf;
bool ok, is_sdvo = false;
bool is_lvds = false, is_tv = false;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
const struct gma_limit_t *limit;
/* No scan out no play */
if (crtc->primary->fb == NULL) {
crtc_funcs->mode_set_base(crtc, x, y, old_fb);
return 0;
}
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
if (!connector->encoder
|| connector->encoder->crtc != crtc)
continue;
switch (gma_encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
is_sdvo = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
}
}
refclk = 96000;
limit = gma_crtc->clock_funcs->limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
&clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
adjusted_mode->clock, clock.dot);
return 0;
}
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
dpll = DPLL_VGA_MODE_DIS;
if (is_lvds) {
dpll |= DPLLB_MODE_LVDS;
dpll |= DPLL_DVO_HIGH_SPEED;
} else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
int sdvo_pixel_multiply =
adjusted_mode->clock / mode->clock;
dpll |= DPLL_DVO_HIGH_SPEED;
dpll |=
(sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
}
/* compute bitmask from p1 value */
dpll |= (1 << (clock.p1 - 1)) << 16;
switch (clock.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (is_tv) {
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
}
dpll |= PLL_REF_INPUT_DREFCLK;
/* setup pipeconf */
pipeconf = REG_READ(map->conf);
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
if (pipe == 0)
dspcntr |= DISPPLANE_SEL_PIPE_A;
else
dspcntr |= DISPPLANE_SEL_PIPE_B;
dspcntr |= DISPLAY_PLANE_ENABLE;
pipeconf |= PIPEACONF_ENABLE;
dpll |= DPLL_VCO_ENABLE;
/* Disable the panel fitter if it was on our pipe */
if (psb_intel_panel_fitter_pipe(dev) == pipe)
REG_WRITE(PFIT_CONTROL, 0);
drm_mode_debug_printmodeline(mode);
if (dpll & DPLL_VCO_ENABLE) {
REG_WRITE(map->fp0, fp);
REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
REG_READ(map->dpll);
udelay(150);
}
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (is_lvds) {
u32 lvds = REG_READ(LVDS);
lvds &= ~LVDS_PIPEB_SELECT;
if (pipe == 1)
lvds |= LVDS_PIPEB_SELECT;
lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
/* Set the B0-B3 data pairs corresponding to
* whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
if (clock.p2 == 7)
lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more
* thoroughly into how panels behave in the two modes.
*/
REG_WRITE(LVDS, lvds);
REG_READ(LVDS);
}
REG_WRITE(map->fp0, fp);
REG_WRITE(map->dpll, dpll);
REG_READ(map->dpll);
/* Wait for the clocks to stabilize. */
udelay(150);
/* write it again -- the BIOS does, after all */
REG_WRITE(map->dpll, dpll);
REG_READ(map->dpll);
/* Wait for the clocks to stabilize. */
udelay(150);
REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc and dspsize control the size that is scaled from,
* which should always be the user's requested size.
*/
REG_WRITE(map->size,
((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
REG_WRITE(map->pos, 0);
REG_WRITE(map->src,
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
REG_WRITE(map->conf, pipeconf);
REG_READ(map->conf);
gma_wait_for_vblank(dev);
REG_WRITE(map->cntr, dspcntr);
/* Flush the plane changes */
crtc_funcs->mode_set_base(crtc, x, y, old_fb);
gma_wait_for_vblank(dev);
return 0;
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static int psb_intel_crtc_clock_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
struct drm_psb_private *dev_priv = dev->dev_private;
int pipe = gma_crtc->pipe;
const struct psb_offset *map = &dev_priv->regmap[pipe];
u32 dpll;
u32 fp;
struct gma_clock_t clock;
bool is_lvds;
struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
if (gma_power_begin(dev, false)) {
dpll = REG_READ(map->dpll);
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = REG_READ(map->fp0);
else
fp = REG_READ(map->fp1);
is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
gma_power_end(dev);
} else {
dpll = p->dpll;
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = p->fp0;
else
fp = p->fp1;
is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
LVDS_PORT_EN);
}
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
if (is_lvds) {
clock.p1 =
ffs((dpll &
DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
clock.p2 = 14;
if ((dpll & PLL_REF_INPUT_MASK) ==
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
/* XXX: might not be 66MHz */
psb_intel_clock(66000, &clock);
} else
psb_intel_clock(48000, &clock);
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 =
((dpll &
DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
psb_intel_clock(48000, &clock);
}
/* XXX: It would be nice to validate the clocks, but we can't reuse
* i830PllIsValid() because it relies on the xf86_config connector
* configuration being accurate, which it isn't necessarily.
*/
return clock.dot;
}
/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
int pipe = gma_crtc->pipe;
struct drm_display_mode *mode;
int htot;
int hsync;
int vtot;
int vsync;
struct drm_psb_private *dev_priv = dev->dev_private;
struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
const struct psb_offset *map = &dev_priv->regmap[pipe];
if (gma_power_begin(dev, false)) {
htot = REG_READ(map->htotal);
hsync = REG_READ(map->hsync);
vtot = REG_READ(map->vtotal);
vsync = REG_READ(map->vsync);
gma_power_end(dev);
} else {
htot = p->htotal;
hsync = p->hsync;
vtot = p->vtotal;
vsync = p->vsync;
}
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
mode->clock = psb_intel_crtc_clock_get(dev, crtc);
mode->hdisplay = (htot & 0xffff) + 1;
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
mode->hsync_start = (hsync & 0xffff) + 1;
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
mode->vdisplay = (vtot & 0xffff) + 1;
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->vsync_start = (vsync & 0xffff) + 1;
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
drm_mode_set_name(mode);
drm_mode_set_crtcinfo(mode, 0);
return mode;
}
const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
.dpms = gma_crtc_dpms,
.mode_fixup = gma_crtc_mode_fixup,
.mode_set = psb_intel_crtc_mode_set,
.mode_set_base = gma_pipe_set_base,
.prepare = gma_crtc_prepare,
.commit = gma_crtc_commit,
.disable = gma_crtc_disable,
};
const struct drm_crtc_funcs psb_intel_crtc_funcs = {
.save = gma_crtc_save,
.restore = gma_crtc_restore,
.cursor_set = gma_crtc_cursor_set,
.cursor_move = gma_crtc_cursor_move,
.gamma_set = gma_crtc_gamma_set,
.set_config = gma_crtc_set_config,
.destroy = gma_crtc_destroy,
};
const struct gma_clock_funcs psb_clock_funcs = {
.clock = psb_intel_clock,
.limit = psb_intel_limit,
.pll_is_valid = gma_pll_is_valid,
};
/*
* Set the default value of cursor control and base register
* to zero. This is a workaround for h/w defect on Oaktrail
*/
static void psb_intel_cursor_init(struct drm_device *dev,
struct gma_crtc *gma_crtc)
{
struct drm_psb_private *dev_priv = dev->dev_private;
u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
struct gtt_range *cursor_gt;
if (dev_priv->ops->cursor_needs_phys) {
/* Allocate 4 pages of stolen mem for a hardware cursor. That
* is enough for the 64 x 64 ARGB cursors we support.
*/
cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1,
PAGE_SIZE);
if (!cursor_gt) {
gma_crtc->cursor_gt = NULL;
goto out;
}
gma_crtc->cursor_gt = cursor_gt;
gma_crtc->cursor_addr = dev_priv->stolen_base +
cursor_gt->offset;
} else {
gma_crtc->cursor_gt = NULL;
}
out:
REG_WRITE(control[gma_crtc->pipe], 0);
REG_WRITE(base[gma_crtc->pipe], 0);
}
void psb_intel_crtc_init(struct drm_device *dev, int pipe,
struct psb_intel_mode_device *mode_dev)
{
struct drm_psb_private *dev_priv = dev->dev_private;
struct gma_crtc *gma_crtc;
int i;
uint16_t *r_base, *g_base, *b_base;
/* We allocate a extra array of drm_connector pointers
* for fbdev after the crtc */
gma_crtc = kzalloc(sizeof(struct gma_crtc) +
(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
GFP_KERNEL);
if (gma_crtc == NULL)
return;
gma_crtc->crtc_state =
kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
if (!gma_crtc->crtc_state) {
dev_err(dev->dev, "Crtc state error: No memory\n");
kfree(gma_crtc);
return;
}
/* Set the CRTC operations from the chip specific data */
drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);
/* Set the CRTC clock functions from chip specific data */
gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;
drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
gma_crtc->pipe = pipe;
gma_crtc->plane = pipe;
r_base = gma_crtc->base.gamma_store;
g_base = r_base + 256;
b_base = g_base + 256;
for (i = 0; i < 256; i++) {
gma_crtc->lut_r[i] = i;
gma_crtc->lut_g[i] = i;
gma_crtc->lut_b[i] = i;
r_base[i] = i << 8;
g_base[i] = i << 8;
b_base[i] = i << 8;
gma_crtc->lut_adj[i] = 0;
}
gma_crtc->mode_dev = mode_dev;
gma_crtc->cursor_addr = 0;
drm_crtc_helper_add(&gma_crtc->base,
dev_priv->ops->crtc_helper);
/* Setup the array of drm_connector pointer array */
gma_crtc->mode_set.crtc = &gma_crtc->base;
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
gma_crtc->mode_set.num_connectors = 0;
psb_intel_cursor_init(dev, gma_crtc);
/* Set to true so that the pipe is forced off on initial config. */
gma_crtc->active = true;
}
struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
{
struct drm_crtc *crtc = NULL;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
if (gma_crtc->pipe == pipe)
break;
}
return crtc;
}
int gma_connector_clones(struct drm_device *dev, int type_mask)
{
int index_mask = 0;
struct drm_connector *connector;
int entry = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list,
head) {
struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
if (type_mask & (1 << gma_encoder->type))
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}