2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-10 22:54:11 +08:00
linux-next/drivers/net/sunbmac.c
2008-10-11 12:39:35 -07:00

1312 lines
33 KiB
C

/* sunbmac.c: Driver for Sparc BigMAC 100baseT ethernet adapters.
*
* Copyright (C) 1997, 1998, 1999, 2003, 2008 David S. Miller (davem@davemloft.net)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/crc32.h>
#include <linux/errno.h>
#include <linux/ethtool.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/bitops.h>
#include <linux/dma-mapping.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <asm/auxio.h>
#include <asm/byteorder.h>
#include <asm/dma.h>
#include <asm/idprom.h>
#include <asm/io.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include "sunbmac.h"
#define DRV_NAME "sunbmac"
#define DRV_VERSION "2.1"
#define DRV_RELDATE "August 26, 2008"
#define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
static char version[] =
DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
MODULE_VERSION(DRV_VERSION);
MODULE_AUTHOR(DRV_AUTHOR);
MODULE_DESCRIPTION("Sun BigMAC 100baseT ethernet driver");
MODULE_LICENSE("GPL");
#undef DEBUG_PROBE
#undef DEBUG_TX
#undef DEBUG_IRQ
#ifdef DEBUG_PROBE
#define DP(x) printk x
#else
#define DP(x)
#endif
#ifdef DEBUG_TX
#define DTX(x) printk x
#else
#define DTX(x)
#endif
#ifdef DEBUG_IRQ
#define DIRQ(x) printk x
#else
#define DIRQ(x)
#endif
#define DEFAULT_JAMSIZE 4 /* Toe jam */
#define QEC_RESET_TRIES 200
static int qec_global_reset(void __iomem *gregs)
{
int tries = QEC_RESET_TRIES;
sbus_writel(GLOB_CTRL_RESET, gregs + GLOB_CTRL);
while (--tries) {
if (sbus_readl(gregs + GLOB_CTRL) & GLOB_CTRL_RESET) {
udelay(20);
continue;
}
break;
}
if (tries)
return 0;
printk(KERN_ERR "BigMAC: Cannot reset the QEC.\n");
return -1;
}
static void qec_init(struct bigmac *bp)
{
struct of_device *qec_op = bp->qec_op;
void __iomem *gregs = bp->gregs;
u8 bsizes = bp->bigmac_bursts;
u32 regval;
/* 64byte bursts do not work at the moment, do
* not even try to enable them. -DaveM
*/
if (bsizes & DMA_BURST32)
regval = GLOB_CTRL_B32;
else
regval = GLOB_CTRL_B16;
sbus_writel(regval | GLOB_CTRL_BMODE, gregs + GLOB_CTRL);
sbus_writel(GLOB_PSIZE_2048, gregs + GLOB_PSIZE);
/* All of memsize is given to bigmac. */
sbus_writel(resource_size(&qec_op->resource[1]),
gregs + GLOB_MSIZE);
/* Half to the transmitter, half to the receiver. */
sbus_writel(resource_size(&qec_op->resource[1]) >> 1,
gregs + GLOB_TSIZE);
sbus_writel(resource_size(&qec_op->resource[1]) >> 1,
gregs + GLOB_RSIZE);
}
#define TX_RESET_TRIES 32
#define RX_RESET_TRIES 32
static void bigmac_tx_reset(void __iomem *bregs)
{
int tries = TX_RESET_TRIES;
sbus_writel(0, bregs + BMAC_TXCFG);
/* The fifo threshold bit is read-only and does
* not clear. -DaveM
*/
while ((sbus_readl(bregs + BMAC_TXCFG) & ~(BIGMAC_TXCFG_FIFO)) != 0 &&
--tries != 0)
udelay(20);
if (!tries) {
printk(KERN_ERR "BIGMAC: Transmitter will not reset.\n");
printk(KERN_ERR "BIGMAC: tx_cfg is %08x\n",
sbus_readl(bregs + BMAC_TXCFG));
}
}
static void bigmac_rx_reset(void __iomem *bregs)
{
int tries = RX_RESET_TRIES;
sbus_writel(0, bregs + BMAC_RXCFG);
while (sbus_readl(bregs + BMAC_RXCFG) && --tries)
udelay(20);
if (!tries) {
printk(KERN_ERR "BIGMAC: Receiver will not reset.\n");
printk(KERN_ERR "BIGMAC: rx_cfg is %08x\n",
sbus_readl(bregs + BMAC_RXCFG));
}
}
/* Reset the transmitter and receiver. */
static void bigmac_stop(struct bigmac *bp)
{
bigmac_tx_reset(bp->bregs);
bigmac_rx_reset(bp->bregs);
}
static void bigmac_get_counters(struct bigmac *bp, void __iomem *bregs)
{
struct net_device_stats *stats = &bp->enet_stats;
stats->rx_crc_errors += sbus_readl(bregs + BMAC_RCRCECTR);
sbus_writel(0, bregs + BMAC_RCRCECTR);
stats->rx_frame_errors += sbus_readl(bregs + BMAC_UNALECTR);
sbus_writel(0, bregs + BMAC_UNALECTR);
stats->rx_length_errors += sbus_readl(bregs + BMAC_GLECTR);
sbus_writel(0, bregs + BMAC_GLECTR);
stats->tx_aborted_errors += sbus_readl(bregs + BMAC_EXCTR);
stats->collisions +=
(sbus_readl(bregs + BMAC_EXCTR) +
sbus_readl(bregs + BMAC_LTCTR));
sbus_writel(0, bregs + BMAC_EXCTR);
sbus_writel(0, bregs + BMAC_LTCTR);
}
static void bigmac_clean_rings(struct bigmac *bp)
{
int i;
for (i = 0; i < RX_RING_SIZE; i++) {
if (bp->rx_skbs[i] != NULL) {
dev_kfree_skb_any(bp->rx_skbs[i]);
bp->rx_skbs[i] = NULL;
}
}
for (i = 0; i < TX_RING_SIZE; i++) {
if (bp->tx_skbs[i] != NULL) {
dev_kfree_skb_any(bp->tx_skbs[i]);
bp->tx_skbs[i] = NULL;
}
}
}
static void bigmac_init_rings(struct bigmac *bp, int from_irq)
{
struct bmac_init_block *bb = bp->bmac_block;
struct net_device *dev = bp->dev;
int i;
gfp_t gfp_flags = GFP_KERNEL;
if (from_irq || in_interrupt())
gfp_flags = GFP_ATOMIC;
bp->rx_new = bp->rx_old = bp->tx_new = bp->tx_old = 0;
/* Free any skippy bufs left around in the rings. */
bigmac_clean_rings(bp);
/* Now get new skbufs for the receive ring. */
for (i = 0; i < RX_RING_SIZE; i++) {
struct sk_buff *skb;
skb = big_mac_alloc_skb(RX_BUF_ALLOC_SIZE, gfp_flags);
if (!skb)
continue;
bp->rx_skbs[i] = skb;
skb->dev = dev;
/* Because we reserve afterwards. */
skb_put(skb, ETH_FRAME_LEN);
skb_reserve(skb, 34);
bb->be_rxd[i].rx_addr =
dma_map_single(&bp->bigmac_op->dev,
skb->data,
RX_BUF_ALLOC_SIZE - 34,
DMA_FROM_DEVICE);
bb->be_rxd[i].rx_flags =
(RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH));
}
for (i = 0; i < TX_RING_SIZE; i++)
bb->be_txd[i].tx_flags = bb->be_txd[i].tx_addr = 0;
}
#define MGMT_CLKON (MGMT_PAL_INT_MDIO|MGMT_PAL_EXT_MDIO|MGMT_PAL_OENAB|MGMT_PAL_DCLOCK)
#define MGMT_CLKOFF (MGMT_PAL_INT_MDIO|MGMT_PAL_EXT_MDIO|MGMT_PAL_OENAB)
static void idle_transceiver(void __iomem *tregs)
{
int i = 20;
while (i--) {
sbus_writel(MGMT_CLKOFF, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
sbus_writel(MGMT_CLKON, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
}
}
static void write_tcvr_bit(struct bigmac *bp, void __iomem *tregs, int bit)
{
if (bp->tcvr_type == internal) {
bit = (bit & 1) << 3;
sbus_writel(bit | (MGMT_PAL_OENAB | MGMT_PAL_EXT_MDIO),
tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
sbus_writel(bit | MGMT_PAL_OENAB | MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK,
tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
} else if (bp->tcvr_type == external) {
bit = (bit & 1) << 2;
sbus_writel(bit | MGMT_PAL_INT_MDIO | MGMT_PAL_OENAB,
tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
sbus_writel(bit | MGMT_PAL_INT_MDIO | MGMT_PAL_OENAB | MGMT_PAL_DCLOCK,
tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
} else {
printk(KERN_ERR "write_tcvr_bit: No transceiver type known!\n");
}
}
static int read_tcvr_bit(struct bigmac *bp, void __iomem *tregs)
{
int retval = 0;
if (bp->tcvr_type == internal) {
sbus_writel(MGMT_PAL_EXT_MDIO, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
sbus_writel(MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK,
tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_INT_MDIO) >> 3;
} else if (bp->tcvr_type == external) {
sbus_writel(MGMT_PAL_INT_MDIO, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_EXT_MDIO) >> 2;
} else {
printk(KERN_ERR "read_tcvr_bit: No transceiver type known!\n");
}
return retval;
}
static int read_tcvr_bit2(struct bigmac *bp, void __iomem *tregs)
{
int retval = 0;
if (bp->tcvr_type == internal) {
sbus_writel(MGMT_PAL_EXT_MDIO, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_INT_MDIO) >> 3;
sbus_writel(MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
} else if (bp->tcvr_type == external) {
sbus_writel(MGMT_PAL_INT_MDIO, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
retval = (sbus_readl(tregs + TCVR_MPAL) & MGMT_PAL_EXT_MDIO) >> 2;
sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_DCLOCK, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
} else {
printk(KERN_ERR "read_tcvr_bit2: No transceiver type known!\n");
}
return retval;
}
static void put_tcvr_byte(struct bigmac *bp,
void __iomem *tregs,
unsigned int byte)
{
int shift = 4;
do {
write_tcvr_bit(bp, tregs, ((byte >> shift) & 1));
shift -= 1;
} while (shift >= 0);
}
static void bigmac_tcvr_write(struct bigmac *bp, void __iomem *tregs,
int reg, unsigned short val)
{
int shift;
reg &= 0xff;
val &= 0xffff;
switch(bp->tcvr_type) {
case internal:
case external:
break;
default:
printk(KERN_ERR "bigmac_tcvr_read: Whoops, no known transceiver type.\n");
return;
};
idle_transceiver(tregs);
write_tcvr_bit(bp, tregs, 0);
write_tcvr_bit(bp, tregs, 1);
write_tcvr_bit(bp, tregs, 0);
write_tcvr_bit(bp, tregs, 1);
put_tcvr_byte(bp, tregs,
((bp->tcvr_type == internal) ?
BIGMAC_PHY_INTERNAL : BIGMAC_PHY_EXTERNAL));
put_tcvr_byte(bp, tregs, reg);
write_tcvr_bit(bp, tregs, 1);
write_tcvr_bit(bp, tregs, 0);
shift = 15;
do {
write_tcvr_bit(bp, tregs, (val >> shift) & 1);
shift -= 1;
} while (shift >= 0);
}
static unsigned short bigmac_tcvr_read(struct bigmac *bp,
void __iomem *tregs,
int reg)
{
unsigned short retval = 0;
reg &= 0xff;
switch(bp->tcvr_type) {
case internal:
case external:
break;
default:
printk(KERN_ERR "bigmac_tcvr_read: Whoops, no known transceiver type.\n");
return 0xffff;
};
idle_transceiver(tregs);
write_tcvr_bit(bp, tregs, 0);
write_tcvr_bit(bp, tregs, 1);
write_tcvr_bit(bp, tregs, 1);
write_tcvr_bit(bp, tregs, 0);
put_tcvr_byte(bp, tregs,
((bp->tcvr_type == internal) ?
BIGMAC_PHY_INTERNAL : BIGMAC_PHY_EXTERNAL));
put_tcvr_byte(bp, tregs, reg);
if (bp->tcvr_type == external) {
int shift = 15;
(void) read_tcvr_bit2(bp, tregs);
(void) read_tcvr_bit2(bp, tregs);
do {
int tmp;
tmp = read_tcvr_bit2(bp, tregs);
retval |= ((tmp & 1) << shift);
shift -= 1;
} while (shift >= 0);
(void) read_tcvr_bit2(bp, tregs);
(void) read_tcvr_bit2(bp, tregs);
(void) read_tcvr_bit2(bp, tregs);
} else {
int shift = 15;
(void) read_tcvr_bit(bp, tregs);
(void) read_tcvr_bit(bp, tregs);
do {
int tmp;
tmp = read_tcvr_bit(bp, tregs);
retval |= ((tmp & 1) << shift);
shift -= 1;
} while (shift >= 0);
(void) read_tcvr_bit(bp, tregs);
(void) read_tcvr_bit(bp, tregs);
(void) read_tcvr_bit(bp, tregs);
}
return retval;
}
static void bigmac_tcvr_init(struct bigmac *bp)
{
void __iomem *tregs = bp->tregs;
u32 mpal;
idle_transceiver(tregs);
sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_EXT_MDIO | MGMT_PAL_DCLOCK,
tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
/* Only the bit for the present transceiver (internal or
* external) will stick, set them both and see what stays.
*/
sbus_writel(MGMT_PAL_INT_MDIO | MGMT_PAL_EXT_MDIO, tregs + TCVR_MPAL);
sbus_readl(tregs + TCVR_MPAL);
udelay(20);
mpal = sbus_readl(tregs + TCVR_MPAL);
if (mpal & MGMT_PAL_EXT_MDIO) {
bp->tcvr_type = external;
sbus_writel(~(TCVR_PAL_EXTLBACK | TCVR_PAL_MSENSE | TCVR_PAL_LTENABLE),
tregs + TCVR_TPAL);
sbus_readl(tregs + TCVR_TPAL);
} else if (mpal & MGMT_PAL_INT_MDIO) {
bp->tcvr_type = internal;
sbus_writel(~(TCVR_PAL_SERIAL | TCVR_PAL_EXTLBACK |
TCVR_PAL_MSENSE | TCVR_PAL_LTENABLE),
tregs + TCVR_TPAL);
sbus_readl(tregs + TCVR_TPAL);
} else {
printk(KERN_ERR "BIGMAC: AIEEE, neither internal nor "
"external MDIO available!\n");
printk(KERN_ERR "BIGMAC: mgmt_pal[%08x] tcvr_pal[%08x]\n",
sbus_readl(tregs + TCVR_MPAL),
sbus_readl(tregs + TCVR_TPAL));
}
}
static int bigmac_init_hw(struct bigmac *, int);
static int try_next_permutation(struct bigmac *bp, void __iomem *tregs)
{
if (bp->sw_bmcr & BMCR_SPEED100) {
int timeout;
/* Reset the PHY. */
bp->sw_bmcr = (BMCR_ISOLATE | BMCR_PDOWN | BMCR_LOOPBACK);
bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr);
bp->sw_bmcr = (BMCR_RESET);
bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr);
timeout = 64;
while (--timeout) {
bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR);
if ((bp->sw_bmcr & BMCR_RESET) == 0)
break;
udelay(20);
}
if (timeout == 0)
printk(KERN_ERR "%s: PHY reset failed.\n", bp->dev->name);
bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR);
/* Now we try 10baseT. */
bp->sw_bmcr &= ~(BMCR_SPEED100);
bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr);
return 0;
}
/* We've tried them all. */
return -1;
}
static void bigmac_timer(unsigned long data)
{
struct bigmac *bp = (struct bigmac *) data;
void __iomem *tregs = bp->tregs;
int restart_timer = 0;
bp->timer_ticks++;
if (bp->timer_state == ltrywait) {
bp->sw_bmsr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMSR);
bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR);
if (bp->sw_bmsr & BMSR_LSTATUS) {
printk(KERN_INFO "%s: Link is now up at %s.\n",
bp->dev->name,
(bp->sw_bmcr & BMCR_SPEED100) ?
"100baseT" : "10baseT");
bp->timer_state = asleep;
restart_timer = 0;
} else {
if (bp->timer_ticks >= 4) {
int ret;
ret = try_next_permutation(bp, tregs);
if (ret == -1) {
printk(KERN_ERR "%s: Link down, cable problem?\n",
bp->dev->name);
ret = bigmac_init_hw(bp, 0);
if (ret) {
printk(KERN_ERR "%s: Error, cannot re-init the "
"BigMAC.\n", bp->dev->name);
}
return;
}
bp->timer_ticks = 0;
restart_timer = 1;
} else {
restart_timer = 1;
}
}
} else {
/* Can't happens.... */
printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
bp->dev->name);
restart_timer = 0;
bp->timer_ticks = 0;
bp->timer_state = asleep; /* foo on you */
}
if (restart_timer != 0) {
bp->bigmac_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
add_timer(&bp->bigmac_timer);
}
}
/* Well, really we just force the chip into 100baseT then
* 10baseT, each time checking for a link status.
*/
static void bigmac_begin_auto_negotiation(struct bigmac *bp)
{
void __iomem *tregs = bp->tregs;
int timeout;
/* Grab new software copies of PHY registers. */
bp->sw_bmsr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMSR);
bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR);
/* Reset the PHY. */
bp->sw_bmcr = (BMCR_ISOLATE | BMCR_PDOWN | BMCR_LOOPBACK);
bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr);
bp->sw_bmcr = (BMCR_RESET);
bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr);
timeout = 64;
while (--timeout) {
bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR);
if ((bp->sw_bmcr & BMCR_RESET) == 0)
break;
udelay(20);
}
if (timeout == 0)
printk(KERN_ERR "%s: PHY reset failed.\n", bp->dev->name);
bp->sw_bmcr = bigmac_tcvr_read(bp, tregs, BIGMAC_BMCR);
/* First we try 100baseT. */
bp->sw_bmcr |= BMCR_SPEED100;
bigmac_tcvr_write(bp, tregs, BIGMAC_BMCR, bp->sw_bmcr);
bp->timer_state = ltrywait;
bp->timer_ticks = 0;
bp->bigmac_timer.expires = jiffies + (12 * HZ) / 10;
bp->bigmac_timer.data = (unsigned long) bp;
bp->bigmac_timer.function = &bigmac_timer;
add_timer(&bp->bigmac_timer);
}
static int bigmac_init_hw(struct bigmac *bp, int from_irq)
{
void __iomem *gregs = bp->gregs;
void __iomem *cregs = bp->creg;
void __iomem *bregs = bp->bregs;
unsigned char *e = &bp->dev->dev_addr[0];
/* Latch current counters into statistics. */
bigmac_get_counters(bp, bregs);
/* Reset QEC. */
qec_global_reset(gregs);
/* Init QEC. */
qec_init(bp);
/* Alloc and reset the tx/rx descriptor chains. */
bigmac_init_rings(bp, from_irq);
/* Initialize the PHY. */
bigmac_tcvr_init(bp);
/* Stop transmitter and receiver. */
bigmac_stop(bp);
/* Set hardware ethernet address. */
sbus_writel(((e[4] << 8) | e[5]), bregs + BMAC_MACADDR2);
sbus_writel(((e[2] << 8) | e[3]), bregs + BMAC_MACADDR1);
sbus_writel(((e[0] << 8) | e[1]), bregs + BMAC_MACADDR0);
/* Clear the hash table until mc upload occurs. */
sbus_writel(0, bregs + BMAC_HTABLE3);
sbus_writel(0, bregs + BMAC_HTABLE2);
sbus_writel(0, bregs + BMAC_HTABLE1);
sbus_writel(0, bregs + BMAC_HTABLE0);
/* Enable Big Mac hash table filter. */
sbus_writel(BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_FIFO,
bregs + BMAC_RXCFG);
udelay(20);
/* Ok, configure the Big Mac transmitter. */
sbus_writel(BIGMAC_TXCFG_FIFO, bregs + BMAC_TXCFG);
/* The HME docs recommend to use the 10LSB of our MAC here. */
sbus_writel(((e[5] | e[4] << 8) & 0x3ff),
bregs + BMAC_RSEED);
/* Enable the output drivers no matter what. */
sbus_writel(BIGMAC_XCFG_ODENABLE | BIGMAC_XCFG_RESV,
bregs + BMAC_XIFCFG);
/* Tell the QEC where the ring descriptors are. */
sbus_writel(bp->bblock_dvma + bib_offset(be_rxd, 0),
cregs + CREG_RXDS);
sbus_writel(bp->bblock_dvma + bib_offset(be_txd, 0),
cregs + CREG_TXDS);
/* Setup the FIFO pointers into QEC local memory. */
sbus_writel(0, cregs + CREG_RXRBUFPTR);
sbus_writel(0, cregs + CREG_RXWBUFPTR);
sbus_writel(sbus_readl(gregs + GLOB_RSIZE),
cregs + CREG_TXRBUFPTR);
sbus_writel(sbus_readl(gregs + GLOB_RSIZE),
cregs + CREG_TXWBUFPTR);
/* Tell bigmac what interrupts we don't want to hear about. */
sbus_writel(BIGMAC_IMASK_GOTFRAME | BIGMAC_IMASK_SENTFRAME,
bregs + BMAC_IMASK);
/* Enable the various other irq's. */
sbus_writel(0, cregs + CREG_RIMASK);
sbus_writel(0, cregs + CREG_TIMASK);
sbus_writel(0, cregs + CREG_QMASK);
sbus_writel(0, cregs + CREG_BMASK);
/* Set jam size to a reasonable default. */
sbus_writel(DEFAULT_JAMSIZE, bregs + BMAC_JSIZE);
/* Clear collision counter. */
sbus_writel(0, cregs + CREG_CCNT);
/* Enable transmitter and receiver. */
sbus_writel(sbus_readl(bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE,
bregs + BMAC_TXCFG);
sbus_writel(sbus_readl(bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE,
bregs + BMAC_RXCFG);
/* Ok, start detecting link speed/duplex. */
bigmac_begin_auto_negotiation(bp);
/* Success. */
return 0;
}
/* Error interrupts get sent here. */
static void bigmac_is_medium_rare(struct bigmac *bp, u32 qec_status, u32 bmac_status)
{
printk(KERN_ERR "bigmac_is_medium_rare: ");
if (qec_status & (GLOB_STAT_ER | GLOB_STAT_BM)) {
if (qec_status & GLOB_STAT_ER)
printk("QEC_ERROR, ");
if (qec_status & GLOB_STAT_BM)
printk("QEC_BMAC_ERROR, ");
}
if (bmac_status & CREG_STAT_ERRORS) {
if (bmac_status & CREG_STAT_BERROR)
printk("BMAC_ERROR, ");
if (bmac_status & CREG_STAT_TXDERROR)
printk("TXD_ERROR, ");
if (bmac_status & CREG_STAT_TXLERR)
printk("TX_LATE_ERROR, ");
if (bmac_status & CREG_STAT_TXPERR)
printk("TX_PARITY_ERROR, ");
if (bmac_status & CREG_STAT_TXSERR)
printk("TX_SBUS_ERROR, ");
if (bmac_status & CREG_STAT_RXDROP)
printk("RX_DROP_ERROR, ");
if (bmac_status & CREG_STAT_RXSMALL)
printk("RX_SMALL_ERROR, ");
if (bmac_status & CREG_STAT_RXLERR)
printk("RX_LATE_ERROR, ");
if (bmac_status & CREG_STAT_RXPERR)
printk("RX_PARITY_ERROR, ");
if (bmac_status & CREG_STAT_RXSERR)
printk("RX_SBUS_ERROR, ");
}
printk(" RESET\n");
bigmac_init_hw(bp, 1);
}
/* BigMAC transmit complete service routines. */
static void bigmac_tx(struct bigmac *bp)
{
struct be_txd *txbase = &bp->bmac_block->be_txd[0];
struct net_device *dev = bp->dev;
int elem;
spin_lock(&bp->lock);
elem = bp->tx_old;
DTX(("bigmac_tx: tx_old[%d] ", elem));
while (elem != bp->tx_new) {
struct sk_buff *skb;
struct be_txd *this = &txbase[elem];
DTX(("this(%p) [flags(%08x)addr(%08x)]",
this, this->tx_flags, this->tx_addr));
if (this->tx_flags & TXD_OWN)
break;
skb = bp->tx_skbs[elem];
bp->enet_stats.tx_packets++;
bp->enet_stats.tx_bytes += skb->len;
dma_unmap_single(&bp->bigmac_op->dev,
this->tx_addr, skb->len,
DMA_TO_DEVICE);
DTX(("skb(%p) ", skb));
bp->tx_skbs[elem] = NULL;
dev_kfree_skb_irq(skb);
elem = NEXT_TX(elem);
}
DTX((" DONE, tx_old=%d\n", elem));
bp->tx_old = elem;
if (netif_queue_stopped(dev) &&
TX_BUFFS_AVAIL(bp) > 0)
netif_wake_queue(bp->dev);
spin_unlock(&bp->lock);
}
/* BigMAC receive complete service routines. */
static void bigmac_rx(struct bigmac *bp)
{
struct be_rxd *rxbase = &bp->bmac_block->be_rxd[0];
struct be_rxd *this;
int elem = bp->rx_new, drops = 0;
u32 flags;
this = &rxbase[elem];
while (!((flags = this->rx_flags) & RXD_OWN)) {
struct sk_buff *skb;
int len = (flags & RXD_LENGTH); /* FCS not included */
/* Check for errors. */
if (len < ETH_ZLEN) {
bp->enet_stats.rx_errors++;
bp->enet_stats.rx_length_errors++;
drop_it:
/* Return it to the BigMAC. */
bp->enet_stats.rx_dropped++;
this->rx_flags =
(RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH));
goto next;
}
skb = bp->rx_skbs[elem];
if (len > RX_COPY_THRESHOLD) {
struct sk_buff *new_skb;
/* Now refill the entry, if we can. */
new_skb = big_mac_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
if (new_skb == NULL) {
drops++;
goto drop_it;
}
dma_unmap_single(&bp->bigmac_op->dev,
this->rx_addr,
RX_BUF_ALLOC_SIZE - 34,
DMA_FROM_DEVICE);
bp->rx_skbs[elem] = new_skb;
new_skb->dev = bp->dev;
skb_put(new_skb, ETH_FRAME_LEN);
skb_reserve(new_skb, 34);
this->rx_addr =
dma_map_single(&bp->bigmac_op->dev,
new_skb->data,
RX_BUF_ALLOC_SIZE - 34,
DMA_FROM_DEVICE);
this->rx_flags =
(RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH));
/* Trim the original skb for the netif. */
skb_trim(skb, len);
} else {
struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
if (copy_skb == NULL) {
drops++;
goto drop_it;
}
skb_reserve(copy_skb, 2);
skb_put(copy_skb, len);
dma_sync_single_for_cpu(&bp->bigmac_op->dev,
this->rx_addr, len,
DMA_FROM_DEVICE);
skb_copy_to_linear_data(copy_skb, (unsigned char *)skb->data, len);
dma_sync_single_for_device(&bp->bigmac_op->dev,
this->rx_addr, len,
DMA_FROM_DEVICE);
/* Reuse original ring buffer. */
this->rx_flags =
(RXD_OWN | ((RX_BUF_ALLOC_SIZE - 34) & RXD_LENGTH));
skb = copy_skb;
}
/* No checksums done by the BigMAC ;-( */
skb->protocol = eth_type_trans(skb, bp->dev);
netif_rx(skb);
bp->dev->last_rx = jiffies;
bp->enet_stats.rx_packets++;
bp->enet_stats.rx_bytes += len;
next:
elem = NEXT_RX(elem);
this = &rxbase[elem];
}
bp->rx_new = elem;
if (drops)
printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n", bp->dev->name);
}
static irqreturn_t bigmac_interrupt(int irq, void *dev_id)
{
struct bigmac *bp = (struct bigmac *) dev_id;
u32 qec_status, bmac_status;
DIRQ(("bigmac_interrupt: "));
/* Latch status registers now. */
bmac_status = sbus_readl(bp->creg + CREG_STAT);
qec_status = sbus_readl(bp->gregs + GLOB_STAT);
DIRQ(("qec_status=%08x bmac_status=%08x\n", qec_status, bmac_status));
if ((qec_status & (GLOB_STAT_ER | GLOB_STAT_BM)) ||
(bmac_status & CREG_STAT_ERRORS))
bigmac_is_medium_rare(bp, qec_status, bmac_status);
if (bmac_status & CREG_STAT_TXIRQ)
bigmac_tx(bp);
if (bmac_status & CREG_STAT_RXIRQ)
bigmac_rx(bp);
return IRQ_HANDLED;
}
static int bigmac_open(struct net_device *dev)
{
struct bigmac *bp = (struct bigmac *) dev->priv;
int ret;
ret = request_irq(dev->irq, &bigmac_interrupt, IRQF_SHARED, dev->name, bp);
if (ret) {
printk(KERN_ERR "BIGMAC: Can't order irq %d to go.\n", dev->irq);
return ret;
}
init_timer(&bp->bigmac_timer);
ret = bigmac_init_hw(bp, 0);
if (ret)
free_irq(dev->irq, bp);
return ret;
}
static int bigmac_close(struct net_device *dev)
{
struct bigmac *bp = (struct bigmac *) dev->priv;
del_timer(&bp->bigmac_timer);
bp->timer_state = asleep;
bp->timer_ticks = 0;
bigmac_stop(bp);
bigmac_clean_rings(bp);
free_irq(dev->irq, bp);
return 0;
}
static void bigmac_tx_timeout(struct net_device *dev)
{
struct bigmac *bp = (struct bigmac *) dev->priv;
bigmac_init_hw(bp, 0);
netif_wake_queue(dev);
}
/* Put a packet on the wire. */
static int bigmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bigmac *bp = (struct bigmac *) dev->priv;
int len, entry;
u32 mapping;
len = skb->len;
mapping = dma_map_single(&bp->bigmac_op->dev, skb->data,
len, DMA_TO_DEVICE);
/* Avoid a race... */
spin_lock_irq(&bp->lock);
entry = bp->tx_new;
DTX(("bigmac_start_xmit: len(%d) entry(%d)\n", len, entry));
bp->bmac_block->be_txd[entry].tx_flags = TXD_UPDATE;
bp->tx_skbs[entry] = skb;
bp->bmac_block->be_txd[entry].tx_addr = mapping;
bp->bmac_block->be_txd[entry].tx_flags =
(TXD_OWN | TXD_SOP | TXD_EOP | (len & TXD_LENGTH));
bp->tx_new = NEXT_TX(entry);
if (TX_BUFFS_AVAIL(bp) <= 0)
netif_stop_queue(dev);
spin_unlock_irq(&bp->lock);
/* Get it going. */
sbus_writel(CREG_CTRL_TWAKEUP, bp->creg + CREG_CTRL);
dev->trans_start = jiffies;
return 0;
}
static struct net_device_stats *bigmac_get_stats(struct net_device *dev)
{
struct bigmac *bp = (struct bigmac *) dev->priv;
bigmac_get_counters(bp, bp->bregs);
return &bp->enet_stats;
}
static void bigmac_set_multicast(struct net_device *dev)
{
struct bigmac *bp = (struct bigmac *) dev->priv;
void __iomem *bregs = bp->bregs;
struct dev_mc_list *dmi = dev->mc_list;
char *addrs;
int i;
u32 tmp, crc;
/* Disable the receiver. The bit self-clears when
* the operation is complete.
*/
tmp = sbus_readl(bregs + BMAC_RXCFG);
tmp &= ~(BIGMAC_RXCFG_ENABLE);
sbus_writel(tmp, bregs + BMAC_RXCFG);
while ((sbus_readl(bregs + BMAC_RXCFG) & BIGMAC_RXCFG_ENABLE) != 0)
udelay(20);
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
sbus_writel(0xffff, bregs + BMAC_HTABLE0);
sbus_writel(0xffff, bregs + BMAC_HTABLE1);
sbus_writel(0xffff, bregs + BMAC_HTABLE2);
sbus_writel(0xffff, bregs + BMAC_HTABLE3);
} else if (dev->flags & IFF_PROMISC) {
tmp = sbus_readl(bregs + BMAC_RXCFG);
tmp |= BIGMAC_RXCFG_PMISC;
sbus_writel(tmp, bregs + BMAC_RXCFG);
} else {
u16 hash_table[4];
for (i = 0; i < 4; i++)
hash_table[i] = 0;
for (i = 0; i < dev->mc_count; i++) {
addrs = dmi->dmi_addr;
dmi = dmi->next;
if (!(*addrs & 1))
continue;
crc = ether_crc_le(6, addrs);
crc >>= 26;
hash_table[crc >> 4] |= 1 << (crc & 0xf);
}
sbus_writel(hash_table[0], bregs + BMAC_HTABLE0);
sbus_writel(hash_table[1], bregs + BMAC_HTABLE1);
sbus_writel(hash_table[2], bregs + BMAC_HTABLE2);
sbus_writel(hash_table[3], bregs + BMAC_HTABLE3);
}
/* Re-enable the receiver. */
tmp = sbus_readl(bregs + BMAC_RXCFG);
tmp |= BIGMAC_RXCFG_ENABLE;
sbus_writel(tmp, bregs + BMAC_RXCFG);
}
/* Ethtool support... */
static void bigmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strcpy(info->driver, "sunbmac");
strcpy(info->version, "2.0");
}
static u32 bigmac_get_link(struct net_device *dev)
{
struct bigmac *bp = dev->priv;
spin_lock_irq(&bp->lock);
bp->sw_bmsr = bigmac_tcvr_read(bp, bp->tregs, BIGMAC_BMSR);
spin_unlock_irq(&bp->lock);
return (bp->sw_bmsr & BMSR_LSTATUS);
}
static const struct ethtool_ops bigmac_ethtool_ops = {
.get_drvinfo = bigmac_get_drvinfo,
.get_link = bigmac_get_link,
};
static int __devinit bigmac_ether_init(struct of_device *op,
struct of_device *qec_op)
{
static int version_printed;
struct net_device *dev;
u8 bsizes, bsizes_more;
DECLARE_MAC_BUF(mac);
struct bigmac *bp;
int i;
/* Get a new device struct for this interface. */
dev = alloc_etherdev(sizeof(struct bigmac));
if (!dev)
return -ENOMEM;
if (version_printed++ == 0)
printk(KERN_INFO "%s", version);
for (i = 0; i < 6; i++)
dev->dev_addr[i] = idprom->id_ethaddr[i];
/* Setup softc, with backpointers to QEC and BigMAC SBUS device structs. */
bp = netdev_priv(dev);
bp->qec_op = qec_op;
bp->bigmac_op = op;
SET_NETDEV_DEV(dev, &op->dev);
spin_lock_init(&bp->lock);
/* Map in QEC global control registers. */
bp->gregs = of_ioremap(&qec_op->resource[0], 0,
GLOB_REG_SIZE, "BigMAC QEC GLobal Regs");
if (!bp->gregs) {
printk(KERN_ERR "BIGMAC: Cannot map QEC global registers.\n");
goto fail_and_cleanup;
}
/* Make sure QEC is in BigMAC mode. */
if ((sbus_readl(bp->gregs + GLOB_CTRL) & 0xf0000000) != GLOB_CTRL_BMODE) {
printk(KERN_ERR "BigMAC: AIEEE, QEC is not in BigMAC mode!\n");
goto fail_and_cleanup;
}
/* Reset the QEC. */
if (qec_global_reset(bp->gregs))
goto fail_and_cleanup;
/* Get supported SBUS burst sizes. */
bsizes = of_getintprop_default(qec_op->node, "burst-sizes", 0xff);
bsizes_more = of_getintprop_default(qec_op->node, "burst-sizes", 0xff);
bsizes &= 0xff;
if (bsizes_more != 0xff)
bsizes &= bsizes_more;
if (bsizes == 0xff || (bsizes & DMA_BURST16) == 0 ||
(bsizes & DMA_BURST32) == 0)
bsizes = (DMA_BURST32 - 1);
bp->bigmac_bursts = bsizes;
/* Perform QEC initialization. */
qec_init(bp);
/* Map in the BigMAC channel registers. */
bp->creg = of_ioremap(&op->resource[0], 0,
CREG_REG_SIZE, "BigMAC QEC Channel Regs");
if (!bp->creg) {
printk(KERN_ERR "BIGMAC: Cannot map QEC channel registers.\n");
goto fail_and_cleanup;
}
/* Map in the BigMAC control registers. */
bp->bregs = of_ioremap(&op->resource[1], 0,
BMAC_REG_SIZE, "BigMAC Primary Regs");
if (!bp->bregs) {
printk(KERN_ERR "BIGMAC: Cannot map BigMAC primary registers.\n");
goto fail_and_cleanup;
}
/* Map in the BigMAC transceiver registers, this is how you poke at
* the BigMAC's PHY.
*/
bp->tregs = of_ioremap(&op->resource[2], 0,
TCVR_REG_SIZE, "BigMAC Transceiver Regs");
if (!bp->tregs) {
printk(KERN_ERR "BIGMAC: Cannot map BigMAC transceiver registers.\n");
goto fail_and_cleanup;
}
/* Stop the BigMAC. */
bigmac_stop(bp);
/* Allocate transmit/receive descriptor DVMA block. */
bp->bmac_block = dma_alloc_coherent(&bp->bigmac_op->dev,
PAGE_SIZE,
&bp->bblock_dvma, GFP_ATOMIC);
if (bp->bmac_block == NULL || bp->bblock_dvma == 0) {
printk(KERN_ERR "BIGMAC: Cannot allocate consistent DMA.\n");
goto fail_and_cleanup;
}
/* Get the board revision of this BigMAC. */
bp->board_rev = of_getintprop_default(bp->bigmac_op->node,
"board-version", 1);
/* Init auto-negotiation timer state. */
init_timer(&bp->bigmac_timer);
bp->timer_state = asleep;
bp->timer_ticks = 0;
/* Backlink to generic net device struct. */
bp->dev = dev;
/* Set links to our BigMAC open and close routines. */
dev->open = &bigmac_open;
dev->stop = &bigmac_close;
dev->hard_start_xmit = &bigmac_start_xmit;
dev->ethtool_ops = &bigmac_ethtool_ops;
/* Set links to BigMAC statistic and multi-cast loading code. */
dev->get_stats = &bigmac_get_stats;
dev->set_multicast_list = &bigmac_set_multicast;
dev->tx_timeout = &bigmac_tx_timeout;
dev->watchdog_timeo = 5*HZ;
/* Finish net device registration. */
dev->irq = bp->bigmac_op->irqs[0];
dev->dma = 0;
if (register_netdev(dev)) {
printk(KERN_ERR "BIGMAC: Cannot register device.\n");
goto fail_and_cleanup;
}
dev_set_drvdata(&bp->bigmac_op->dev, bp);
printk(KERN_INFO "%s: BigMAC 100baseT Ethernet %s\n",
dev->name, print_mac(mac, dev->dev_addr));
return 0;
fail_and_cleanup:
/* Something went wrong, undo whatever we did so far. */
/* Free register mappings if any. */
if (bp->gregs)
of_iounmap(&qec_op->resource[0], bp->gregs, GLOB_REG_SIZE);
if (bp->creg)
of_iounmap(&op->resource[0], bp->creg, CREG_REG_SIZE);
if (bp->bregs)
of_iounmap(&op->resource[1], bp->bregs, BMAC_REG_SIZE);
if (bp->tregs)
of_iounmap(&op->resource[2], bp->tregs, TCVR_REG_SIZE);
if (bp->bmac_block)
dma_free_coherent(&bp->bigmac_op->dev,
PAGE_SIZE,
bp->bmac_block,
bp->bblock_dvma);
/* This also frees the co-located 'dev->priv' */
free_netdev(dev);
return -ENODEV;
}
/* QEC can be the parent of either QuadEthernet or a BigMAC. We want
* the latter.
*/
static int __devinit bigmac_sbus_probe(struct of_device *op,
const struct of_device_id *match)
{
struct device *parent = op->dev.parent;
struct of_device *qec_op;
qec_op = to_of_device(parent);
return bigmac_ether_init(op, qec_op);
}
static int __devexit bigmac_sbus_remove(struct of_device *op)
{
struct bigmac *bp = dev_get_drvdata(&op->dev);
struct device *parent = op->dev.parent;
struct net_device *net_dev = bp->dev;
struct of_device *qec_op;
qec_op = to_of_device(parent);
unregister_netdev(net_dev);
of_iounmap(&qec_op->resource[0], bp->gregs, GLOB_REG_SIZE);
of_iounmap(&op->resource[0], bp->creg, CREG_REG_SIZE);
of_iounmap(&op->resource[1], bp->bregs, BMAC_REG_SIZE);
of_iounmap(&op->resource[2], bp->tregs, TCVR_REG_SIZE);
dma_free_coherent(&op->dev,
PAGE_SIZE,
bp->bmac_block,
bp->bblock_dvma);
free_netdev(net_dev);
dev_set_drvdata(&op->dev, NULL);
return 0;
}
static const struct of_device_id bigmac_sbus_match[] = {
{
.name = "be",
},
{},
};
MODULE_DEVICE_TABLE(of, bigmac_sbus_match);
static struct of_platform_driver bigmac_sbus_driver = {
.name = "sunbmac",
.match_table = bigmac_sbus_match,
.probe = bigmac_sbus_probe,
.remove = __devexit_p(bigmac_sbus_remove),
};
static int __init bigmac_init(void)
{
return of_register_driver(&bigmac_sbus_driver, &of_bus_type);
}
static void __exit bigmac_exit(void)
{
of_unregister_driver(&bigmac_sbus_driver);
}
module_init(bigmac_init);
module_exit(bigmac_exit);