mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-05 04:04:01 +08:00
0af10eed9b
Only warn once of oversize hid report value field On HP spectre x360 convertible the message: hid-sensor-hub 001F:8087:0AC2.0002: hid_field_extract() called with n (192) > 32! (kworker/1:2) is continually printed many times per second, crowding out all else. Protect dmesg by printing the warning only one time. The size of the hid report field data structure should probably be increased. The data structure is treated as a u32 in Linux, but an unlimited number of bits in the USB hid spec, so there is some rearchitecture needed now that devices are sending more than 32 bits. Signed-off-by: Joshua Clayton <stillcompiling@gmail.com> Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
2561 lines
63 KiB
C
2561 lines
63 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* HID support for Linux
|
|
*
|
|
* Copyright (c) 1999 Andreas Gal
|
|
* Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
|
|
* Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
|
|
* Copyright (c) 2006-2012 Jiri Kosina
|
|
*/
|
|
|
|
/*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/spinlock.h>
|
|
#include <asm/unaligned.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/input.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/semaphore.h>
|
|
|
|
#include <linux/hid.h>
|
|
#include <linux/hiddev.h>
|
|
#include <linux/hid-debug.h>
|
|
#include <linux/hidraw.h>
|
|
|
|
#include "hid-ids.h"
|
|
|
|
/*
|
|
* Version Information
|
|
*/
|
|
|
|
#define DRIVER_DESC "HID core driver"
|
|
|
|
int hid_debug = 0;
|
|
module_param_named(debug, hid_debug, int, 0600);
|
|
MODULE_PARM_DESC(debug, "toggle HID debugging messages");
|
|
EXPORT_SYMBOL_GPL(hid_debug);
|
|
|
|
static int hid_ignore_special_drivers = 0;
|
|
module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
|
|
MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
|
|
|
|
/*
|
|
* Register a new report for a device.
|
|
*/
|
|
|
|
struct hid_report *hid_register_report(struct hid_device *device,
|
|
unsigned int type, unsigned int id,
|
|
unsigned int application)
|
|
{
|
|
struct hid_report_enum *report_enum = device->report_enum + type;
|
|
struct hid_report *report;
|
|
|
|
if (id >= HID_MAX_IDS)
|
|
return NULL;
|
|
if (report_enum->report_id_hash[id])
|
|
return report_enum->report_id_hash[id];
|
|
|
|
report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
|
|
if (!report)
|
|
return NULL;
|
|
|
|
if (id != 0)
|
|
report_enum->numbered = 1;
|
|
|
|
report->id = id;
|
|
report->type = type;
|
|
report->size = 0;
|
|
report->device = device;
|
|
report->application = application;
|
|
report_enum->report_id_hash[id] = report;
|
|
|
|
list_add_tail(&report->list, &report_enum->report_list);
|
|
|
|
return report;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_register_report);
|
|
|
|
/*
|
|
* Register a new field for this report.
|
|
*/
|
|
|
|
static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
|
|
{
|
|
struct hid_field *field;
|
|
|
|
if (report->maxfield == HID_MAX_FIELDS) {
|
|
hid_err(report->device, "too many fields in report\n");
|
|
return NULL;
|
|
}
|
|
|
|
field = kzalloc((sizeof(struct hid_field) +
|
|
usages * sizeof(struct hid_usage) +
|
|
values * sizeof(unsigned)), GFP_KERNEL);
|
|
if (!field)
|
|
return NULL;
|
|
|
|
field->index = report->maxfield++;
|
|
report->field[field->index] = field;
|
|
field->usage = (struct hid_usage *)(field + 1);
|
|
field->value = (s32 *)(field->usage + usages);
|
|
field->report = report;
|
|
|
|
return field;
|
|
}
|
|
|
|
/*
|
|
* Open a collection. The type/usage is pushed on the stack.
|
|
*/
|
|
|
|
static int open_collection(struct hid_parser *parser, unsigned type)
|
|
{
|
|
struct hid_collection *collection;
|
|
unsigned usage;
|
|
int collection_index;
|
|
|
|
usage = parser->local.usage[0];
|
|
|
|
if (parser->collection_stack_ptr == parser->collection_stack_size) {
|
|
unsigned int *collection_stack;
|
|
unsigned int new_size = parser->collection_stack_size +
|
|
HID_COLLECTION_STACK_SIZE;
|
|
|
|
collection_stack = krealloc(parser->collection_stack,
|
|
new_size * sizeof(unsigned int),
|
|
GFP_KERNEL);
|
|
if (!collection_stack)
|
|
return -ENOMEM;
|
|
|
|
parser->collection_stack = collection_stack;
|
|
parser->collection_stack_size = new_size;
|
|
}
|
|
|
|
if (parser->device->maxcollection == parser->device->collection_size) {
|
|
collection = kmalloc(
|
|
array3_size(sizeof(struct hid_collection),
|
|
parser->device->collection_size,
|
|
2),
|
|
GFP_KERNEL);
|
|
if (collection == NULL) {
|
|
hid_err(parser->device, "failed to reallocate collection array\n");
|
|
return -ENOMEM;
|
|
}
|
|
memcpy(collection, parser->device->collection,
|
|
sizeof(struct hid_collection) *
|
|
parser->device->collection_size);
|
|
memset(collection + parser->device->collection_size, 0,
|
|
sizeof(struct hid_collection) *
|
|
parser->device->collection_size);
|
|
kfree(parser->device->collection);
|
|
parser->device->collection = collection;
|
|
parser->device->collection_size *= 2;
|
|
}
|
|
|
|
parser->collection_stack[parser->collection_stack_ptr++] =
|
|
parser->device->maxcollection;
|
|
|
|
collection_index = parser->device->maxcollection++;
|
|
collection = parser->device->collection + collection_index;
|
|
collection->type = type;
|
|
collection->usage = usage;
|
|
collection->level = parser->collection_stack_ptr - 1;
|
|
collection->parent_idx = (collection->level == 0) ? -1 :
|
|
parser->collection_stack[collection->level - 1];
|
|
|
|
if (type == HID_COLLECTION_APPLICATION)
|
|
parser->device->maxapplication++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Close a collection.
|
|
*/
|
|
|
|
static int close_collection(struct hid_parser *parser)
|
|
{
|
|
if (!parser->collection_stack_ptr) {
|
|
hid_err(parser->device, "collection stack underflow\n");
|
|
return -EINVAL;
|
|
}
|
|
parser->collection_stack_ptr--;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Climb up the stack, search for the specified collection type
|
|
* and return the usage.
|
|
*/
|
|
|
|
static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
|
|
{
|
|
struct hid_collection *collection = parser->device->collection;
|
|
int n;
|
|
|
|
for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
|
|
unsigned index = parser->collection_stack[n];
|
|
if (collection[index].type == type)
|
|
return collection[index].usage;
|
|
}
|
|
return 0; /* we know nothing about this usage type */
|
|
}
|
|
|
|
/*
|
|
* Add a usage to the temporary parser table.
|
|
*/
|
|
|
|
static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
|
|
{
|
|
if (parser->local.usage_index >= HID_MAX_USAGES) {
|
|
hid_err(parser->device, "usage index exceeded\n");
|
|
return -1;
|
|
}
|
|
parser->local.usage[parser->local.usage_index] = usage;
|
|
parser->local.usage_size[parser->local.usage_index] = size;
|
|
parser->local.collection_index[parser->local.usage_index] =
|
|
parser->collection_stack_ptr ?
|
|
parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
|
|
parser->local.usage_index++;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Register a new field for this report.
|
|
*/
|
|
|
|
static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
|
|
{
|
|
struct hid_report *report;
|
|
struct hid_field *field;
|
|
unsigned int usages;
|
|
unsigned int offset;
|
|
unsigned int i;
|
|
unsigned int application;
|
|
|
|
application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
|
|
|
|
report = hid_register_report(parser->device, report_type,
|
|
parser->global.report_id, application);
|
|
if (!report) {
|
|
hid_err(parser->device, "hid_register_report failed\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Handle both signed and unsigned cases properly */
|
|
if ((parser->global.logical_minimum < 0 &&
|
|
parser->global.logical_maximum <
|
|
parser->global.logical_minimum) ||
|
|
(parser->global.logical_minimum >= 0 &&
|
|
(__u32)parser->global.logical_maximum <
|
|
(__u32)parser->global.logical_minimum)) {
|
|
dbg_hid("logical range invalid 0x%x 0x%x\n",
|
|
parser->global.logical_minimum,
|
|
parser->global.logical_maximum);
|
|
return -1;
|
|
}
|
|
|
|
offset = report->size;
|
|
report->size += parser->global.report_size * parser->global.report_count;
|
|
|
|
if (!parser->local.usage_index) /* Ignore padding fields */
|
|
return 0;
|
|
|
|
usages = max_t(unsigned, parser->local.usage_index,
|
|
parser->global.report_count);
|
|
|
|
field = hid_register_field(report, usages, parser->global.report_count);
|
|
if (!field)
|
|
return 0;
|
|
|
|
field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
|
|
field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
|
|
field->application = application;
|
|
|
|
for (i = 0; i < usages; i++) {
|
|
unsigned j = i;
|
|
/* Duplicate the last usage we parsed if we have excess values */
|
|
if (i >= parser->local.usage_index)
|
|
j = parser->local.usage_index - 1;
|
|
field->usage[i].hid = parser->local.usage[j];
|
|
field->usage[i].collection_index =
|
|
parser->local.collection_index[j];
|
|
field->usage[i].usage_index = i;
|
|
field->usage[i].resolution_multiplier = 1;
|
|
}
|
|
|
|
field->maxusage = usages;
|
|
field->flags = flags;
|
|
field->report_offset = offset;
|
|
field->report_type = report_type;
|
|
field->report_size = parser->global.report_size;
|
|
field->report_count = parser->global.report_count;
|
|
field->logical_minimum = parser->global.logical_minimum;
|
|
field->logical_maximum = parser->global.logical_maximum;
|
|
field->physical_minimum = parser->global.physical_minimum;
|
|
field->physical_maximum = parser->global.physical_maximum;
|
|
field->unit_exponent = parser->global.unit_exponent;
|
|
field->unit = parser->global.unit;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read data value from item.
|
|
*/
|
|
|
|
static u32 item_udata(struct hid_item *item)
|
|
{
|
|
switch (item->size) {
|
|
case 1: return item->data.u8;
|
|
case 2: return item->data.u16;
|
|
case 4: return item->data.u32;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static s32 item_sdata(struct hid_item *item)
|
|
{
|
|
switch (item->size) {
|
|
case 1: return item->data.s8;
|
|
case 2: return item->data.s16;
|
|
case 4: return item->data.s32;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process a global item.
|
|
*/
|
|
|
|
static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
|
|
{
|
|
__s32 raw_value;
|
|
switch (item->tag) {
|
|
case HID_GLOBAL_ITEM_TAG_PUSH:
|
|
|
|
if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
|
|
hid_err(parser->device, "global environment stack overflow\n");
|
|
return -1;
|
|
}
|
|
|
|
memcpy(parser->global_stack + parser->global_stack_ptr++,
|
|
&parser->global, sizeof(struct hid_global));
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_POP:
|
|
|
|
if (!parser->global_stack_ptr) {
|
|
hid_err(parser->device, "global environment stack underflow\n");
|
|
return -1;
|
|
}
|
|
|
|
memcpy(&parser->global, parser->global_stack +
|
|
--parser->global_stack_ptr, sizeof(struct hid_global));
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
|
|
parser->global.usage_page = item_udata(item);
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
|
|
parser->global.logical_minimum = item_sdata(item);
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
|
|
if (parser->global.logical_minimum < 0)
|
|
parser->global.logical_maximum = item_sdata(item);
|
|
else
|
|
parser->global.logical_maximum = item_udata(item);
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
|
|
parser->global.physical_minimum = item_sdata(item);
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
|
|
if (parser->global.physical_minimum < 0)
|
|
parser->global.physical_maximum = item_sdata(item);
|
|
else
|
|
parser->global.physical_maximum = item_udata(item);
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
|
|
/* Many devices provide unit exponent as a two's complement
|
|
* nibble due to the common misunderstanding of HID
|
|
* specification 1.11, 6.2.2.7 Global Items. Attempt to handle
|
|
* both this and the standard encoding. */
|
|
raw_value = item_sdata(item);
|
|
if (!(raw_value & 0xfffffff0))
|
|
parser->global.unit_exponent = hid_snto32(raw_value, 4);
|
|
else
|
|
parser->global.unit_exponent = raw_value;
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_UNIT:
|
|
parser->global.unit = item_udata(item);
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
|
|
parser->global.report_size = item_udata(item);
|
|
if (parser->global.report_size > 256) {
|
|
hid_err(parser->device, "invalid report_size %d\n",
|
|
parser->global.report_size);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
|
|
parser->global.report_count = item_udata(item);
|
|
if (parser->global.report_count > HID_MAX_USAGES) {
|
|
hid_err(parser->device, "invalid report_count %d\n",
|
|
parser->global.report_count);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
|
|
case HID_GLOBAL_ITEM_TAG_REPORT_ID:
|
|
parser->global.report_id = item_udata(item);
|
|
if (parser->global.report_id == 0 ||
|
|
parser->global.report_id >= HID_MAX_IDS) {
|
|
hid_err(parser->device, "report_id %u is invalid\n",
|
|
parser->global.report_id);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
|
|
default:
|
|
hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process a local item.
|
|
*/
|
|
|
|
static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
|
|
{
|
|
__u32 data;
|
|
unsigned n;
|
|
__u32 count;
|
|
|
|
data = item_udata(item);
|
|
|
|
switch (item->tag) {
|
|
case HID_LOCAL_ITEM_TAG_DELIMITER:
|
|
|
|
if (data) {
|
|
/*
|
|
* We treat items before the first delimiter
|
|
* as global to all usage sets (branch 0).
|
|
* In the moment we process only these global
|
|
* items and the first delimiter set.
|
|
*/
|
|
if (parser->local.delimiter_depth != 0) {
|
|
hid_err(parser->device, "nested delimiters\n");
|
|
return -1;
|
|
}
|
|
parser->local.delimiter_depth++;
|
|
parser->local.delimiter_branch++;
|
|
} else {
|
|
if (parser->local.delimiter_depth < 1) {
|
|
hid_err(parser->device, "bogus close delimiter\n");
|
|
return -1;
|
|
}
|
|
parser->local.delimiter_depth--;
|
|
}
|
|
return 0;
|
|
|
|
case HID_LOCAL_ITEM_TAG_USAGE:
|
|
|
|
if (parser->local.delimiter_branch > 1) {
|
|
dbg_hid("alternative usage ignored\n");
|
|
return 0;
|
|
}
|
|
|
|
return hid_add_usage(parser, data, item->size);
|
|
|
|
case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
|
|
|
|
if (parser->local.delimiter_branch > 1) {
|
|
dbg_hid("alternative usage ignored\n");
|
|
return 0;
|
|
}
|
|
|
|
parser->local.usage_minimum = data;
|
|
return 0;
|
|
|
|
case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
|
|
|
|
if (parser->local.delimiter_branch > 1) {
|
|
dbg_hid("alternative usage ignored\n");
|
|
return 0;
|
|
}
|
|
|
|
count = data - parser->local.usage_minimum;
|
|
if (count + parser->local.usage_index >= HID_MAX_USAGES) {
|
|
/*
|
|
* We do not warn if the name is not set, we are
|
|
* actually pre-scanning the device.
|
|
*/
|
|
if (dev_name(&parser->device->dev))
|
|
hid_warn(parser->device,
|
|
"ignoring exceeding usage max\n");
|
|
data = HID_MAX_USAGES - parser->local.usage_index +
|
|
parser->local.usage_minimum - 1;
|
|
if (data <= 0) {
|
|
hid_err(parser->device,
|
|
"no more usage index available\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
for (n = parser->local.usage_minimum; n <= data; n++)
|
|
if (hid_add_usage(parser, n, item->size)) {
|
|
dbg_hid("hid_add_usage failed\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
|
|
default:
|
|
|
|
dbg_hid("unknown local item tag 0x%x\n", item->tag);
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Concatenate Usage Pages into Usages where relevant:
|
|
* As per specification, 6.2.2.8: "When the parser encounters a main item it
|
|
* concatenates the last declared Usage Page with a Usage to form a complete
|
|
* usage value."
|
|
*/
|
|
|
|
static void hid_concatenate_usage_page(struct hid_parser *parser)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < parser->local.usage_index; i++)
|
|
if (parser->local.usage_size[i] <= 2)
|
|
parser->local.usage[i] += parser->global.usage_page << 16;
|
|
}
|
|
|
|
/*
|
|
* Process a main item.
|
|
*/
|
|
|
|
static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
|
|
{
|
|
__u32 data;
|
|
int ret;
|
|
|
|
hid_concatenate_usage_page(parser);
|
|
|
|
data = item_udata(item);
|
|
|
|
switch (item->tag) {
|
|
case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
|
|
ret = open_collection(parser, data & 0xff);
|
|
break;
|
|
case HID_MAIN_ITEM_TAG_END_COLLECTION:
|
|
ret = close_collection(parser);
|
|
break;
|
|
case HID_MAIN_ITEM_TAG_INPUT:
|
|
ret = hid_add_field(parser, HID_INPUT_REPORT, data);
|
|
break;
|
|
case HID_MAIN_ITEM_TAG_OUTPUT:
|
|
ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
|
|
break;
|
|
case HID_MAIN_ITEM_TAG_FEATURE:
|
|
ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
|
|
break;
|
|
default:
|
|
hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
|
|
ret = 0;
|
|
}
|
|
|
|
memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Process a reserved item.
|
|
*/
|
|
|
|
static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
|
|
{
|
|
dbg_hid("reserved item type, tag 0x%x\n", item->tag);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free a report and all registered fields. The field->usage and
|
|
* field->value table's are allocated behind the field, so we need
|
|
* only to free(field) itself.
|
|
*/
|
|
|
|
static void hid_free_report(struct hid_report *report)
|
|
{
|
|
unsigned n;
|
|
|
|
for (n = 0; n < report->maxfield; n++)
|
|
kfree(report->field[n]);
|
|
kfree(report);
|
|
}
|
|
|
|
/*
|
|
* Close report. This function returns the device
|
|
* state to the point prior to hid_open_report().
|
|
*/
|
|
static void hid_close_report(struct hid_device *device)
|
|
{
|
|
unsigned i, j;
|
|
|
|
for (i = 0; i < HID_REPORT_TYPES; i++) {
|
|
struct hid_report_enum *report_enum = device->report_enum + i;
|
|
|
|
for (j = 0; j < HID_MAX_IDS; j++) {
|
|
struct hid_report *report = report_enum->report_id_hash[j];
|
|
if (report)
|
|
hid_free_report(report);
|
|
}
|
|
memset(report_enum, 0, sizeof(*report_enum));
|
|
INIT_LIST_HEAD(&report_enum->report_list);
|
|
}
|
|
|
|
kfree(device->rdesc);
|
|
device->rdesc = NULL;
|
|
device->rsize = 0;
|
|
|
|
kfree(device->collection);
|
|
device->collection = NULL;
|
|
device->collection_size = 0;
|
|
device->maxcollection = 0;
|
|
device->maxapplication = 0;
|
|
|
|
device->status &= ~HID_STAT_PARSED;
|
|
}
|
|
|
|
/*
|
|
* Free a device structure, all reports, and all fields.
|
|
*/
|
|
|
|
static void hid_device_release(struct device *dev)
|
|
{
|
|
struct hid_device *hid = to_hid_device(dev);
|
|
|
|
hid_close_report(hid);
|
|
kfree(hid->dev_rdesc);
|
|
kfree(hid);
|
|
}
|
|
|
|
/*
|
|
* Fetch a report description item from the data stream. We support long
|
|
* items, though they are not used yet.
|
|
*/
|
|
|
|
static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
|
|
{
|
|
u8 b;
|
|
|
|
if ((end - start) <= 0)
|
|
return NULL;
|
|
|
|
b = *start++;
|
|
|
|
item->type = (b >> 2) & 3;
|
|
item->tag = (b >> 4) & 15;
|
|
|
|
if (item->tag == HID_ITEM_TAG_LONG) {
|
|
|
|
item->format = HID_ITEM_FORMAT_LONG;
|
|
|
|
if ((end - start) < 2)
|
|
return NULL;
|
|
|
|
item->size = *start++;
|
|
item->tag = *start++;
|
|
|
|
if ((end - start) < item->size)
|
|
return NULL;
|
|
|
|
item->data.longdata = start;
|
|
start += item->size;
|
|
return start;
|
|
}
|
|
|
|
item->format = HID_ITEM_FORMAT_SHORT;
|
|
item->size = b & 3;
|
|
|
|
switch (item->size) {
|
|
case 0:
|
|
return start;
|
|
|
|
case 1:
|
|
if ((end - start) < 1)
|
|
return NULL;
|
|
item->data.u8 = *start++;
|
|
return start;
|
|
|
|
case 2:
|
|
if ((end - start) < 2)
|
|
return NULL;
|
|
item->data.u16 = get_unaligned_le16(start);
|
|
start = (__u8 *)((__le16 *)start + 1);
|
|
return start;
|
|
|
|
case 3:
|
|
item->size++;
|
|
if ((end - start) < 4)
|
|
return NULL;
|
|
item->data.u32 = get_unaligned_le32(start);
|
|
start = (__u8 *)((__le32 *)start + 1);
|
|
return start;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
|
|
{
|
|
struct hid_device *hid = parser->device;
|
|
|
|
if (usage == HID_DG_CONTACTID)
|
|
hid->group = HID_GROUP_MULTITOUCH;
|
|
}
|
|
|
|
static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
|
|
{
|
|
if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
|
|
parser->global.report_size == 8)
|
|
parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
|
|
}
|
|
|
|
static void hid_scan_collection(struct hid_parser *parser, unsigned type)
|
|
{
|
|
struct hid_device *hid = parser->device;
|
|
int i;
|
|
|
|
if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
|
|
type == HID_COLLECTION_PHYSICAL)
|
|
hid->group = HID_GROUP_SENSOR_HUB;
|
|
|
|
if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
|
|
hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
|
|
hid->group == HID_GROUP_MULTITOUCH)
|
|
hid->group = HID_GROUP_GENERIC;
|
|
|
|
if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
|
|
for (i = 0; i < parser->local.usage_index; i++)
|
|
if (parser->local.usage[i] == HID_GD_POINTER)
|
|
parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
|
|
|
|
if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
|
|
parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
|
|
}
|
|
|
|
static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
|
|
{
|
|
__u32 data;
|
|
int i;
|
|
|
|
hid_concatenate_usage_page(parser);
|
|
|
|
data = item_udata(item);
|
|
|
|
switch (item->tag) {
|
|
case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
|
|
hid_scan_collection(parser, data & 0xff);
|
|
break;
|
|
case HID_MAIN_ITEM_TAG_END_COLLECTION:
|
|
break;
|
|
case HID_MAIN_ITEM_TAG_INPUT:
|
|
/* ignore constant inputs, they will be ignored by hid-input */
|
|
if (data & HID_MAIN_ITEM_CONSTANT)
|
|
break;
|
|
for (i = 0; i < parser->local.usage_index; i++)
|
|
hid_scan_input_usage(parser, parser->local.usage[i]);
|
|
break;
|
|
case HID_MAIN_ITEM_TAG_OUTPUT:
|
|
break;
|
|
case HID_MAIN_ITEM_TAG_FEATURE:
|
|
for (i = 0; i < parser->local.usage_index; i++)
|
|
hid_scan_feature_usage(parser, parser->local.usage[i]);
|
|
break;
|
|
}
|
|
|
|
/* Reset the local parser environment */
|
|
memset(&parser->local, 0, sizeof(parser->local));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Scan a report descriptor before the device is added to the bus.
|
|
* Sets device groups and other properties that determine what driver
|
|
* to load.
|
|
*/
|
|
static int hid_scan_report(struct hid_device *hid)
|
|
{
|
|
struct hid_parser *parser;
|
|
struct hid_item item;
|
|
__u8 *start = hid->dev_rdesc;
|
|
__u8 *end = start + hid->dev_rsize;
|
|
static int (*dispatch_type[])(struct hid_parser *parser,
|
|
struct hid_item *item) = {
|
|
hid_scan_main,
|
|
hid_parser_global,
|
|
hid_parser_local,
|
|
hid_parser_reserved
|
|
};
|
|
|
|
parser = vzalloc(sizeof(struct hid_parser));
|
|
if (!parser)
|
|
return -ENOMEM;
|
|
|
|
parser->device = hid;
|
|
hid->group = HID_GROUP_GENERIC;
|
|
|
|
/*
|
|
* The parsing is simpler than the one in hid_open_report() as we should
|
|
* be robust against hid errors. Those errors will be raised by
|
|
* hid_open_report() anyway.
|
|
*/
|
|
while ((start = fetch_item(start, end, &item)) != NULL)
|
|
dispatch_type[item.type](parser, &item);
|
|
|
|
/*
|
|
* Handle special flags set during scanning.
|
|
*/
|
|
if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
|
|
(hid->group == HID_GROUP_MULTITOUCH))
|
|
hid->group = HID_GROUP_MULTITOUCH_WIN_8;
|
|
|
|
/*
|
|
* Vendor specific handlings
|
|
*/
|
|
switch (hid->vendor) {
|
|
case USB_VENDOR_ID_WACOM:
|
|
hid->group = HID_GROUP_WACOM;
|
|
break;
|
|
case USB_VENDOR_ID_SYNAPTICS:
|
|
if (hid->group == HID_GROUP_GENERIC)
|
|
if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
|
|
&& (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
|
|
/*
|
|
* hid-rmi should take care of them,
|
|
* not hid-generic
|
|
*/
|
|
hid->group = HID_GROUP_RMI;
|
|
break;
|
|
}
|
|
|
|
kfree(parser->collection_stack);
|
|
vfree(parser);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hid_parse_report - parse device report
|
|
*
|
|
* @device: hid device
|
|
* @start: report start
|
|
* @size: report size
|
|
*
|
|
* Allocate the device report as read by the bus driver. This function should
|
|
* only be called from parse() in ll drivers.
|
|
*/
|
|
int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
|
|
{
|
|
hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
|
|
if (!hid->dev_rdesc)
|
|
return -ENOMEM;
|
|
hid->dev_rsize = size;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_parse_report);
|
|
|
|
static const char * const hid_report_names[] = {
|
|
"HID_INPUT_REPORT",
|
|
"HID_OUTPUT_REPORT",
|
|
"HID_FEATURE_REPORT",
|
|
};
|
|
/**
|
|
* hid_validate_values - validate existing device report's value indexes
|
|
*
|
|
* @device: hid device
|
|
* @type: which report type to examine
|
|
* @id: which report ID to examine (0 for first)
|
|
* @field_index: which report field to examine
|
|
* @report_counts: expected number of values
|
|
*
|
|
* Validate the number of values in a given field of a given report, after
|
|
* parsing.
|
|
*/
|
|
struct hid_report *hid_validate_values(struct hid_device *hid,
|
|
unsigned int type, unsigned int id,
|
|
unsigned int field_index,
|
|
unsigned int report_counts)
|
|
{
|
|
struct hid_report *report;
|
|
|
|
if (type > HID_FEATURE_REPORT) {
|
|
hid_err(hid, "invalid HID report type %u\n", type);
|
|
return NULL;
|
|
}
|
|
|
|
if (id >= HID_MAX_IDS) {
|
|
hid_err(hid, "invalid HID report id %u\n", id);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Explicitly not using hid_get_report() here since it depends on
|
|
* ->numbered being checked, which may not always be the case when
|
|
* drivers go to access report values.
|
|
*/
|
|
if (id == 0) {
|
|
/*
|
|
* Validating on id 0 means we should examine the first
|
|
* report in the list.
|
|
*/
|
|
report = list_entry(
|
|
hid->report_enum[type].report_list.next,
|
|
struct hid_report, list);
|
|
} else {
|
|
report = hid->report_enum[type].report_id_hash[id];
|
|
}
|
|
if (!report) {
|
|
hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
|
|
return NULL;
|
|
}
|
|
if (report->maxfield <= field_index) {
|
|
hid_err(hid, "not enough fields in %s %u\n",
|
|
hid_report_names[type], id);
|
|
return NULL;
|
|
}
|
|
if (report->field[field_index]->report_count < report_counts) {
|
|
hid_err(hid, "not enough values in %s %u field %u\n",
|
|
hid_report_names[type], id, field_index);
|
|
return NULL;
|
|
}
|
|
return report;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_validate_values);
|
|
|
|
static int hid_calculate_multiplier(struct hid_device *hid,
|
|
struct hid_field *multiplier)
|
|
{
|
|
int m;
|
|
__s32 v = *multiplier->value;
|
|
__s32 lmin = multiplier->logical_minimum;
|
|
__s32 lmax = multiplier->logical_maximum;
|
|
__s32 pmin = multiplier->physical_minimum;
|
|
__s32 pmax = multiplier->physical_maximum;
|
|
|
|
/*
|
|
* "Because OS implementations will generally divide the control's
|
|
* reported count by the Effective Resolution Multiplier, designers
|
|
* should take care not to establish a potential Effective
|
|
* Resolution Multiplier of zero."
|
|
* HID Usage Table, v1.12, Section 4.3.1, p31
|
|
*/
|
|
if (lmax - lmin == 0)
|
|
return 1;
|
|
/*
|
|
* Handling the unit exponent is left as an exercise to whoever
|
|
* finds a device where that exponent is not 0.
|
|
*/
|
|
m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
|
|
if (unlikely(multiplier->unit_exponent != 0)) {
|
|
hid_warn(hid,
|
|
"unsupported Resolution Multiplier unit exponent %d\n",
|
|
multiplier->unit_exponent);
|
|
}
|
|
|
|
/* There are no devices with an effective multiplier > 255 */
|
|
if (unlikely(m == 0 || m > 255 || m < -255)) {
|
|
hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
|
|
m = 1;
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
static void hid_apply_multiplier_to_field(struct hid_device *hid,
|
|
struct hid_field *field,
|
|
struct hid_collection *multiplier_collection,
|
|
int effective_multiplier)
|
|
{
|
|
struct hid_collection *collection;
|
|
struct hid_usage *usage;
|
|
int i;
|
|
|
|
/*
|
|
* If multiplier_collection is NULL, the multiplier applies
|
|
* to all fields in the report.
|
|
* Otherwise, it is the Logical Collection the multiplier applies to
|
|
* but our field may be in a subcollection of that collection.
|
|
*/
|
|
for (i = 0; i < field->maxusage; i++) {
|
|
usage = &field->usage[i];
|
|
|
|
collection = &hid->collection[usage->collection_index];
|
|
while (collection->parent_idx != -1 &&
|
|
collection != multiplier_collection)
|
|
collection = &hid->collection[collection->parent_idx];
|
|
|
|
if (collection->parent_idx != -1 ||
|
|
multiplier_collection == NULL)
|
|
usage->resolution_multiplier = effective_multiplier;
|
|
|
|
}
|
|
}
|
|
|
|
static void hid_apply_multiplier(struct hid_device *hid,
|
|
struct hid_field *multiplier)
|
|
{
|
|
struct hid_report_enum *rep_enum;
|
|
struct hid_report *rep;
|
|
struct hid_field *field;
|
|
struct hid_collection *multiplier_collection;
|
|
int effective_multiplier;
|
|
int i;
|
|
|
|
/*
|
|
* "The Resolution Multiplier control must be contained in the same
|
|
* Logical Collection as the control(s) to which it is to be applied.
|
|
* If no Resolution Multiplier is defined, then the Resolution
|
|
* Multiplier defaults to 1. If more than one control exists in a
|
|
* Logical Collection, the Resolution Multiplier is associated with
|
|
* all controls in the collection. If no Logical Collection is
|
|
* defined, the Resolution Multiplier is associated with all
|
|
* controls in the report."
|
|
* HID Usage Table, v1.12, Section 4.3.1, p30
|
|
*
|
|
* Thus, search from the current collection upwards until we find a
|
|
* logical collection. Then search all fields for that same parent
|
|
* collection. Those are the fields the multiplier applies to.
|
|
*
|
|
* If we have more than one multiplier, it will overwrite the
|
|
* applicable fields later.
|
|
*/
|
|
multiplier_collection = &hid->collection[multiplier->usage->collection_index];
|
|
while (multiplier_collection->parent_idx != -1 &&
|
|
multiplier_collection->type != HID_COLLECTION_LOGICAL)
|
|
multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
|
|
|
|
effective_multiplier = hid_calculate_multiplier(hid, multiplier);
|
|
|
|
rep_enum = &hid->report_enum[HID_INPUT_REPORT];
|
|
list_for_each_entry(rep, &rep_enum->report_list, list) {
|
|
for (i = 0; i < rep->maxfield; i++) {
|
|
field = rep->field[i];
|
|
hid_apply_multiplier_to_field(hid, field,
|
|
multiplier_collection,
|
|
effective_multiplier);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* hid_setup_resolution_multiplier - set up all resolution multipliers
|
|
*
|
|
* @device: hid device
|
|
*
|
|
* Search for all Resolution Multiplier Feature Reports and apply their
|
|
* value to all matching Input items. This only updates the internal struct
|
|
* fields.
|
|
*
|
|
* The Resolution Multiplier is applied by the hardware. If the multiplier
|
|
* is anything other than 1, the hardware will send pre-multiplied events
|
|
* so that the same physical interaction generates an accumulated
|
|
* accumulated_value = value * * multiplier
|
|
* This may be achieved by sending
|
|
* - "value * multiplier" for each event, or
|
|
* - "value" but "multiplier" times as frequently, or
|
|
* - a combination of the above
|
|
* The only guarantee is that the same physical interaction always generates
|
|
* an accumulated 'value * multiplier'.
|
|
*
|
|
* This function must be called before any event processing and after
|
|
* any SetRequest to the Resolution Multiplier.
|
|
*/
|
|
void hid_setup_resolution_multiplier(struct hid_device *hid)
|
|
{
|
|
struct hid_report_enum *rep_enum;
|
|
struct hid_report *rep;
|
|
struct hid_usage *usage;
|
|
int i, j;
|
|
|
|
rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
|
|
list_for_each_entry(rep, &rep_enum->report_list, list) {
|
|
for (i = 0; i < rep->maxfield; i++) {
|
|
/* Ignore if report count is out of bounds. */
|
|
if (rep->field[i]->report_count < 1)
|
|
continue;
|
|
|
|
for (j = 0; j < rep->field[i]->maxusage; j++) {
|
|
usage = &rep->field[i]->usage[j];
|
|
if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
|
|
hid_apply_multiplier(hid,
|
|
rep->field[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
|
|
|
|
/**
|
|
* hid_open_report - open a driver-specific device report
|
|
*
|
|
* @device: hid device
|
|
*
|
|
* Parse a report description into a hid_device structure. Reports are
|
|
* enumerated, fields are attached to these reports.
|
|
* 0 returned on success, otherwise nonzero error value.
|
|
*
|
|
* This function (or the equivalent hid_parse() macro) should only be
|
|
* called from probe() in drivers, before starting the device.
|
|
*/
|
|
int hid_open_report(struct hid_device *device)
|
|
{
|
|
struct hid_parser *parser;
|
|
struct hid_item item;
|
|
unsigned int size;
|
|
__u8 *start;
|
|
__u8 *buf;
|
|
__u8 *end;
|
|
int ret;
|
|
static int (*dispatch_type[])(struct hid_parser *parser,
|
|
struct hid_item *item) = {
|
|
hid_parser_main,
|
|
hid_parser_global,
|
|
hid_parser_local,
|
|
hid_parser_reserved
|
|
};
|
|
|
|
if (WARN_ON(device->status & HID_STAT_PARSED))
|
|
return -EBUSY;
|
|
|
|
start = device->dev_rdesc;
|
|
if (WARN_ON(!start))
|
|
return -ENODEV;
|
|
size = device->dev_rsize;
|
|
|
|
buf = kmemdup(start, size, GFP_KERNEL);
|
|
if (buf == NULL)
|
|
return -ENOMEM;
|
|
|
|
if (device->driver->report_fixup)
|
|
start = device->driver->report_fixup(device, buf, &size);
|
|
else
|
|
start = buf;
|
|
|
|
start = kmemdup(start, size, GFP_KERNEL);
|
|
kfree(buf);
|
|
if (start == NULL)
|
|
return -ENOMEM;
|
|
|
|
device->rdesc = start;
|
|
device->rsize = size;
|
|
|
|
parser = vzalloc(sizeof(struct hid_parser));
|
|
if (!parser) {
|
|
ret = -ENOMEM;
|
|
goto alloc_err;
|
|
}
|
|
|
|
parser->device = device;
|
|
|
|
end = start + size;
|
|
|
|
device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
|
|
sizeof(struct hid_collection), GFP_KERNEL);
|
|
if (!device->collection) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
|
|
|
|
ret = -EINVAL;
|
|
while ((start = fetch_item(start, end, &item)) != NULL) {
|
|
|
|
if (item.format != HID_ITEM_FORMAT_SHORT) {
|
|
hid_err(device, "unexpected long global item\n");
|
|
goto err;
|
|
}
|
|
|
|
if (dispatch_type[item.type](parser, &item)) {
|
|
hid_err(device, "item %u %u %u %u parsing failed\n",
|
|
item.format, (unsigned)item.size,
|
|
(unsigned)item.type, (unsigned)item.tag);
|
|
goto err;
|
|
}
|
|
|
|
if (start == end) {
|
|
if (parser->collection_stack_ptr) {
|
|
hid_err(device, "unbalanced collection at end of report description\n");
|
|
goto err;
|
|
}
|
|
if (parser->local.delimiter_depth) {
|
|
hid_err(device, "unbalanced delimiter at end of report description\n");
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* fetch initial values in case the device's
|
|
* default multiplier isn't the recommended 1
|
|
*/
|
|
hid_setup_resolution_multiplier(device);
|
|
|
|
kfree(parser->collection_stack);
|
|
vfree(parser);
|
|
device->status |= HID_STAT_PARSED;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
hid_err(device, "item fetching failed at offset %d\n", (int)(end - start));
|
|
err:
|
|
kfree(parser->collection_stack);
|
|
alloc_err:
|
|
vfree(parser);
|
|
hid_close_report(device);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_open_report);
|
|
|
|
/*
|
|
* Convert a signed n-bit integer to signed 32-bit integer. Common
|
|
* cases are done through the compiler, the screwed things has to be
|
|
* done by hand.
|
|
*/
|
|
|
|
static s32 snto32(__u32 value, unsigned n)
|
|
{
|
|
switch (n) {
|
|
case 8: return ((__s8)value);
|
|
case 16: return ((__s16)value);
|
|
case 32: return ((__s32)value);
|
|
}
|
|
return value & (1 << (n - 1)) ? value | (~0U << n) : value;
|
|
}
|
|
|
|
s32 hid_snto32(__u32 value, unsigned n)
|
|
{
|
|
return snto32(value, n);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_snto32);
|
|
|
|
/*
|
|
* Convert a signed 32-bit integer to a signed n-bit integer.
|
|
*/
|
|
|
|
static u32 s32ton(__s32 value, unsigned n)
|
|
{
|
|
s32 a = value >> (n - 1);
|
|
if (a && a != -1)
|
|
return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
|
|
return value & ((1 << n) - 1);
|
|
}
|
|
|
|
/*
|
|
* Extract/implement a data field from/to a little endian report (bit array).
|
|
*
|
|
* Code sort-of follows HID spec:
|
|
* http://www.usb.org/developers/hidpage/HID1_11.pdf
|
|
*
|
|
* While the USB HID spec allows unlimited length bit fields in "report
|
|
* descriptors", most devices never use more than 16 bits.
|
|
* One model of UPS is claimed to report "LINEV" as a 32-bit field.
|
|
* Search linux-kernel and linux-usb-devel archives for "hid-core extract".
|
|
*/
|
|
|
|
static u32 __extract(u8 *report, unsigned offset, int n)
|
|
{
|
|
unsigned int idx = offset / 8;
|
|
unsigned int bit_nr = 0;
|
|
unsigned int bit_shift = offset % 8;
|
|
int bits_to_copy = 8 - bit_shift;
|
|
u32 value = 0;
|
|
u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
|
|
|
|
while (n > 0) {
|
|
value |= ((u32)report[idx] >> bit_shift) << bit_nr;
|
|
n -= bits_to_copy;
|
|
bit_nr += bits_to_copy;
|
|
bits_to_copy = 8;
|
|
bit_shift = 0;
|
|
idx++;
|
|
}
|
|
|
|
return value & mask;
|
|
}
|
|
|
|
u32 hid_field_extract(const struct hid_device *hid, u8 *report,
|
|
unsigned offset, unsigned n)
|
|
{
|
|
if (n > 32) {
|
|
hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
|
|
__func__, n, current->comm);
|
|
n = 32;
|
|
}
|
|
|
|
return __extract(report, offset, n);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_field_extract);
|
|
|
|
/*
|
|
* "implement" : set bits in a little endian bit stream.
|
|
* Same concepts as "extract" (see comments above).
|
|
* The data mangled in the bit stream remains in little endian
|
|
* order the whole time. It make more sense to talk about
|
|
* endianness of register values by considering a register
|
|
* a "cached" copy of the little endian bit stream.
|
|
*/
|
|
|
|
static void __implement(u8 *report, unsigned offset, int n, u32 value)
|
|
{
|
|
unsigned int idx = offset / 8;
|
|
unsigned int bit_shift = offset % 8;
|
|
int bits_to_set = 8 - bit_shift;
|
|
|
|
while (n - bits_to_set >= 0) {
|
|
report[idx] &= ~(0xff << bit_shift);
|
|
report[idx] |= value << bit_shift;
|
|
value >>= bits_to_set;
|
|
n -= bits_to_set;
|
|
bits_to_set = 8;
|
|
bit_shift = 0;
|
|
idx++;
|
|
}
|
|
|
|
/* last nibble */
|
|
if (n) {
|
|
u8 bit_mask = ((1U << n) - 1);
|
|
report[idx] &= ~(bit_mask << bit_shift);
|
|
report[idx] |= value << bit_shift;
|
|
}
|
|
}
|
|
|
|
static void implement(const struct hid_device *hid, u8 *report,
|
|
unsigned offset, unsigned n, u32 value)
|
|
{
|
|
if (unlikely(n > 32)) {
|
|
hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
|
|
__func__, n, current->comm);
|
|
n = 32;
|
|
} else if (n < 32) {
|
|
u32 m = (1U << n) - 1;
|
|
|
|
if (unlikely(value > m)) {
|
|
hid_warn(hid,
|
|
"%s() called with too large value %d (n: %d)! (%s)\n",
|
|
__func__, value, n, current->comm);
|
|
WARN_ON(1);
|
|
value &= m;
|
|
}
|
|
}
|
|
|
|
__implement(report, offset, n, value);
|
|
}
|
|
|
|
/*
|
|
* Search an array for a value.
|
|
*/
|
|
|
|
static int search(__s32 *array, __s32 value, unsigned n)
|
|
{
|
|
while (n--) {
|
|
if (*array++ == value)
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* hid_match_report - check if driver's raw_event should be called
|
|
*
|
|
* @hid: hid device
|
|
* @report_type: type to match against
|
|
*
|
|
* compare hid->driver->report_table->report_type to report->type
|
|
*/
|
|
static int hid_match_report(struct hid_device *hid, struct hid_report *report)
|
|
{
|
|
const struct hid_report_id *id = hid->driver->report_table;
|
|
|
|
if (!id) /* NULL means all */
|
|
return 1;
|
|
|
|
for (; id->report_type != HID_TERMINATOR; id++)
|
|
if (id->report_type == HID_ANY_ID ||
|
|
id->report_type == report->type)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hid_match_usage - check if driver's event should be called
|
|
*
|
|
* @hid: hid device
|
|
* @usage: usage to match against
|
|
*
|
|
* compare hid->driver->usage_table->usage_{type,code} to
|
|
* usage->usage_{type,code}
|
|
*/
|
|
static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
|
|
{
|
|
const struct hid_usage_id *id = hid->driver->usage_table;
|
|
|
|
if (!id) /* NULL means all */
|
|
return 1;
|
|
|
|
for (; id->usage_type != HID_ANY_ID - 1; id++)
|
|
if ((id->usage_hid == HID_ANY_ID ||
|
|
id->usage_hid == usage->hid) &&
|
|
(id->usage_type == HID_ANY_ID ||
|
|
id->usage_type == usage->type) &&
|
|
(id->usage_code == HID_ANY_ID ||
|
|
id->usage_code == usage->code))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void hid_process_event(struct hid_device *hid, struct hid_field *field,
|
|
struct hid_usage *usage, __s32 value, int interrupt)
|
|
{
|
|
struct hid_driver *hdrv = hid->driver;
|
|
int ret;
|
|
|
|
if (!list_empty(&hid->debug_list))
|
|
hid_dump_input(hid, usage, value);
|
|
|
|
if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
|
|
ret = hdrv->event(hid, field, usage, value);
|
|
if (ret != 0) {
|
|
if (ret < 0)
|
|
hid_err(hid, "%s's event failed with %d\n",
|
|
hdrv->name, ret);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (hid->claimed & HID_CLAIMED_INPUT)
|
|
hidinput_hid_event(hid, field, usage, value);
|
|
if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
|
|
hid->hiddev_hid_event(hid, field, usage, value);
|
|
}
|
|
|
|
/*
|
|
* Analyse a received field, and fetch the data from it. The field
|
|
* content is stored for next report processing (we do differential
|
|
* reporting to the layer).
|
|
*/
|
|
|
|
static void hid_input_field(struct hid_device *hid, struct hid_field *field,
|
|
__u8 *data, int interrupt)
|
|
{
|
|
unsigned n;
|
|
unsigned count = field->report_count;
|
|
unsigned offset = field->report_offset;
|
|
unsigned size = field->report_size;
|
|
__s32 min = field->logical_minimum;
|
|
__s32 max = field->logical_maximum;
|
|
__s32 *value;
|
|
|
|
value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
|
|
if (!value)
|
|
return;
|
|
|
|
for (n = 0; n < count; n++) {
|
|
|
|
value[n] = min < 0 ?
|
|
snto32(hid_field_extract(hid, data, offset + n * size,
|
|
size), size) :
|
|
hid_field_extract(hid, data, offset + n * size, size);
|
|
|
|
/* Ignore report if ErrorRollOver */
|
|
if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
|
|
value[n] >= min && value[n] <= max &&
|
|
value[n] - min < field->maxusage &&
|
|
field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
|
|
goto exit;
|
|
}
|
|
|
|
for (n = 0; n < count; n++) {
|
|
|
|
if (HID_MAIN_ITEM_VARIABLE & field->flags) {
|
|
hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
|
|
continue;
|
|
}
|
|
|
|
if (field->value[n] >= min && field->value[n] <= max
|
|
&& field->value[n] - min < field->maxusage
|
|
&& field->usage[field->value[n] - min].hid
|
|
&& search(value, field->value[n], count))
|
|
hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
|
|
|
|
if (value[n] >= min && value[n] <= max
|
|
&& value[n] - min < field->maxusage
|
|
&& field->usage[value[n] - min].hid
|
|
&& search(field->value, value[n], count))
|
|
hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
|
|
}
|
|
|
|
memcpy(field->value, value, count * sizeof(__s32));
|
|
exit:
|
|
kfree(value);
|
|
}
|
|
|
|
/*
|
|
* Output the field into the report.
|
|
*/
|
|
|
|
static void hid_output_field(const struct hid_device *hid,
|
|
struct hid_field *field, __u8 *data)
|
|
{
|
|
unsigned count = field->report_count;
|
|
unsigned offset = field->report_offset;
|
|
unsigned size = field->report_size;
|
|
unsigned n;
|
|
|
|
for (n = 0; n < count; n++) {
|
|
if (field->logical_minimum < 0) /* signed values */
|
|
implement(hid, data, offset + n * size, size,
|
|
s32ton(field->value[n], size));
|
|
else /* unsigned values */
|
|
implement(hid, data, offset + n * size, size,
|
|
field->value[n]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a report. 'data' has to be allocated using
|
|
* hid_alloc_report_buf() so that it has proper size.
|
|
*/
|
|
|
|
void hid_output_report(struct hid_report *report, __u8 *data)
|
|
{
|
|
unsigned n;
|
|
|
|
if (report->id > 0)
|
|
*data++ = report->id;
|
|
|
|
memset(data, 0, ((report->size - 1) >> 3) + 1);
|
|
for (n = 0; n < report->maxfield; n++)
|
|
hid_output_field(report->device, report->field[n], data);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_output_report);
|
|
|
|
/*
|
|
* Allocator for buffer that is going to be passed to hid_output_report()
|
|
*/
|
|
u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
|
|
{
|
|
/*
|
|
* 7 extra bytes are necessary to achieve proper functionality
|
|
* of implement() working on 8 byte chunks
|
|
*/
|
|
|
|
u32 len = hid_report_len(report) + 7;
|
|
|
|
return kmalloc(len, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
|
|
|
|
/*
|
|
* Set a field value. The report this field belongs to has to be
|
|
* created and transferred to the device, to set this value in the
|
|
* device.
|
|
*/
|
|
|
|
int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
|
|
{
|
|
unsigned size;
|
|
|
|
if (!field)
|
|
return -1;
|
|
|
|
size = field->report_size;
|
|
|
|
hid_dump_input(field->report->device, field->usage + offset, value);
|
|
|
|
if (offset >= field->report_count) {
|
|
hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
|
|
offset, field->report_count);
|
|
return -1;
|
|
}
|
|
if (field->logical_minimum < 0) {
|
|
if (value != snto32(s32ton(value, size), size)) {
|
|
hid_err(field->report->device, "value %d is out of range\n", value);
|
|
return -1;
|
|
}
|
|
}
|
|
field->value[offset] = value;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_set_field);
|
|
|
|
static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
|
|
const u8 *data)
|
|
{
|
|
struct hid_report *report;
|
|
unsigned int n = 0; /* Normally report number is 0 */
|
|
|
|
/* Device uses numbered reports, data[0] is report number */
|
|
if (report_enum->numbered)
|
|
n = *data;
|
|
|
|
report = report_enum->report_id_hash[n];
|
|
if (report == NULL)
|
|
dbg_hid("undefined report_id %u received\n", n);
|
|
|
|
return report;
|
|
}
|
|
|
|
/*
|
|
* Implement a generic .request() callback, using .raw_request()
|
|
* DO NOT USE in hid drivers directly, but through hid_hw_request instead.
|
|
*/
|
|
int __hid_request(struct hid_device *hid, struct hid_report *report,
|
|
int reqtype)
|
|
{
|
|
char *buf;
|
|
int ret;
|
|
u32 len;
|
|
|
|
buf = hid_alloc_report_buf(report, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
len = hid_report_len(report);
|
|
|
|
if (reqtype == HID_REQ_SET_REPORT)
|
|
hid_output_report(report, buf);
|
|
|
|
ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
|
|
report->type, reqtype);
|
|
if (ret < 0) {
|
|
dbg_hid("unable to complete request: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
if (reqtype == HID_REQ_GET_REPORT)
|
|
hid_input_report(hid, report->type, buf, ret, 0);
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__hid_request);
|
|
|
|
int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
|
|
int interrupt)
|
|
{
|
|
struct hid_report_enum *report_enum = hid->report_enum + type;
|
|
struct hid_report *report;
|
|
struct hid_driver *hdrv;
|
|
unsigned int a;
|
|
u32 rsize, csize = size;
|
|
u8 *cdata = data;
|
|
int ret = 0;
|
|
|
|
report = hid_get_report(report_enum, data);
|
|
if (!report)
|
|
goto out;
|
|
|
|
if (report_enum->numbered) {
|
|
cdata++;
|
|
csize--;
|
|
}
|
|
|
|
rsize = ((report->size - 1) >> 3) + 1;
|
|
|
|
if (rsize > HID_MAX_BUFFER_SIZE)
|
|
rsize = HID_MAX_BUFFER_SIZE;
|
|
|
|
if (csize < rsize) {
|
|
dbg_hid("report %d is too short, (%d < %d)\n", report->id,
|
|
csize, rsize);
|
|
memset(cdata + csize, 0, rsize - csize);
|
|
}
|
|
|
|
if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
|
|
hid->hiddev_report_event(hid, report);
|
|
if (hid->claimed & HID_CLAIMED_HIDRAW) {
|
|
ret = hidraw_report_event(hid, data, size);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
|
|
for (a = 0; a < report->maxfield; a++)
|
|
hid_input_field(hid, report->field[a], cdata, interrupt);
|
|
hdrv = hid->driver;
|
|
if (hdrv && hdrv->report)
|
|
hdrv->report(hid, report);
|
|
}
|
|
|
|
if (hid->claimed & HID_CLAIMED_INPUT)
|
|
hidinput_report_event(hid, report);
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_report_raw_event);
|
|
|
|
/**
|
|
* hid_input_report - report data from lower layer (usb, bt...)
|
|
*
|
|
* @hid: hid device
|
|
* @type: HID report type (HID_*_REPORT)
|
|
* @data: report contents
|
|
* @size: size of data parameter
|
|
* @interrupt: distinguish between interrupt and control transfers
|
|
*
|
|
* This is data entry for lower layers.
|
|
*/
|
|
int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
|
|
{
|
|
struct hid_report_enum *report_enum;
|
|
struct hid_driver *hdrv;
|
|
struct hid_report *report;
|
|
int ret = 0;
|
|
|
|
if (!hid)
|
|
return -ENODEV;
|
|
|
|
if (down_trylock(&hid->driver_input_lock))
|
|
return -EBUSY;
|
|
|
|
if (!hid->driver) {
|
|
ret = -ENODEV;
|
|
goto unlock;
|
|
}
|
|
report_enum = hid->report_enum + type;
|
|
hdrv = hid->driver;
|
|
|
|
if (!size) {
|
|
dbg_hid("empty report\n");
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Avoid unnecessary overhead if debugfs is disabled */
|
|
if (!list_empty(&hid->debug_list))
|
|
hid_dump_report(hid, type, data, size);
|
|
|
|
report = hid_get_report(report_enum, data);
|
|
|
|
if (!report) {
|
|
ret = -1;
|
|
goto unlock;
|
|
}
|
|
|
|
if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
|
|
ret = hdrv->raw_event(hid, report, data, size);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
}
|
|
|
|
ret = hid_report_raw_event(hid, type, data, size, interrupt);
|
|
|
|
unlock:
|
|
up(&hid->driver_input_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_input_report);
|
|
|
|
bool hid_match_one_id(const struct hid_device *hdev,
|
|
const struct hid_device_id *id)
|
|
{
|
|
return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
|
|
(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
|
|
(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
|
|
(id->product == HID_ANY_ID || id->product == hdev->product);
|
|
}
|
|
|
|
const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
|
|
const struct hid_device_id *id)
|
|
{
|
|
for (; id->bus; id++)
|
|
if (hid_match_one_id(hdev, id))
|
|
return id;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const struct hid_device_id hid_hiddev_list[] = {
|
|
{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
|
|
{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
|
|
{ }
|
|
};
|
|
|
|
static bool hid_hiddev(struct hid_device *hdev)
|
|
{
|
|
return !!hid_match_id(hdev, hid_hiddev_list);
|
|
}
|
|
|
|
|
|
static ssize_t
|
|
read_report_descriptor(struct file *filp, struct kobject *kobj,
|
|
struct bin_attribute *attr,
|
|
char *buf, loff_t off, size_t count)
|
|
{
|
|
struct device *dev = kobj_to_dev(kobj);
|
|
struct hid_device *hdev = to_hid_device(dev);
|
|
|
|
if (off >= hdev->rsize)
|
|
return 0;
|
|
|
|
if (off + count > hdev->rsize)
|
|
count = hdev->rsize - off;
|
|
|
|
memcpy(buf, hdev->rdesc + off, count);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t
|
|
show_country(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct hid_device *hdev = to_hid_device(dev);
|
|
|
|
return sprintf(buf, "%02x\n", hdev->country & 0xff);
|
|
}
|
|
|
|
static struct bin_attribute dev_bin_attr_report_desc = {
|
|
.attr = { .name = "report_descriptor", .mode = 0444 },
|
|
.read = read_report_descriptor,
|
|
.size = HID_MAX_DESCRIPTOR_SIZE,
|
|
};
|
|
|
|
static const struct device_attribute dev_attr_country = {
|
|
.attr = { .name = "country", .mode = 0444 },
|
|
.show = show_country,
|
|
};
|
|
|
|
int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
|
|
{
|
|
static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
|
|
"Joystick", "Gamepad", "Keyboard", "Keypad",
|
|
"Multi-Axis Controller"
|
|
};
|
|
const char *type, *bus;
|
|
char buf[64] = "";
|
|
unsigned int i;
|
|
int len;
|
|
int ret;
|
|
|
|
if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
|
|
connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
|
|
if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
|
|
connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
|
|
if (hdev->bus != BUS_USB)
|
|
connect_mask &= ~HID_CONNECT_HIDDEV;
|
|
if (hid_hiddev(hdev))
|
|
connect_mask |= HID_CONNECT_HIDDEV_FORCE;
|
|
|
|
if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
|
|
connect_mask & HID_CONNECT_HIDINPUT_FORCE))
|
|
hdev->claimed |= HID_CLAIMED_INPUT;
|
|
|
|
if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
|
|
!hdev->hiddev_connect(hdev,
|
|
connect_mask & HID_CONNECT_HIDDEV_FORCE))
|
|
hdev->claimed |= HID_CLAIMED_HIDDEV;
|
|
if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
|
|
hdev->claimed |= HID_CLAIMED_HIDRAW;
|
|
|
|
if (connect_mask & HID_CONNECT_DRIVER)
|
|
hdev->claimed |= HID_CLAIMED_DRIVER;
|
|
|
|
/* Drivers with the ->raw_event callback set are not required to connect
|
|
* to any other listener. */
|
|
if (!hdev->claimed && !hdev->driver->raw_event) {
|
|
hid_err(hdev, "device has no listeners, quitting\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if ((hdev->claimed & HID_CLAIMED_INPUT) &&
|
|
(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
|
|
hdev->ff_init(hdev);
|
|
|
|
len = 0;
|
|
if (hdev->claimed & HID_CLAIMED_INPUT)
|
|
len += sprintf(buf + len, "input");
|
|
if (hdev->claimed & HID_CLAIMED_HIDDEV)
|
|
len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
|
|
((struct hiddev *)hdev->hiddev)->minor);
|
|
if (hdev->claimed & HID_CLAIMED_HIDRAW)
|
|
len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
|
|
((struct hidraw *)hdev->hidraw)->minor);
|
|
|
|
type = "Device";
|
|
for (i = 0; i < hdev->maxcollection; i++) {
|
|
struct hid_collection *col = &hdev->collection[i];
|
|
if (col->type == HID_COLLECTION_APPLICATION &&
|
|
(col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
|
|
(col->usage & 0xffff) < ARRAY_SIZE(types)) {
|
|
type = types[col->usage & 0xffff];
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (hdev->bus) {
|
|
case BUS_USB:
|
|
bus = "USB";
|
|
break;
|
|
case BUS_BLUETOOTH:
|
|
bus = "BLUETOOTH";
|
|
break;
|
|
case BUS_I2C:
|
|
bus = "I2C";
|
|
break;
|
|
default:
|
|
bus = "<UNKNOWN>";
|
|
}
|
|
|
|
ret = device_create_file(&hdev->dev, &dev_attr_country);
|
|
if (ret)
|
|
hid_warn(hdev,
|
|
"can't create sysfs country code attribute err: %d\n", ret);
|
|
|
|
hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
|
|
buf, bus, hdev->version >> 8, hdev->version & 0xff,
|
|
type, hdev->name, hdev->phys);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_connect);
|
|
|
|
void hid_disconnect(struct hid_device *hdev)
|
|
{
|
|
device_remove_file(&hdev->dev, &dev_attr_country);
|
|
if (hdev->claimed & HID_CLAIMED_INPUT)
|
|
hidinput_disconnect(hdev);
|
|
if (hdev->claimed & HID_CLAIMED_HIDDEV)
|
|
hdev->hiddev_disconnect(hdev);
|
|
if (hdev->claimed & HID_CLAIMED_HIDRAW)
|
|
hidraw_disconnect(hdev);
|
|
hdev->claimed = 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_disconnect);
|
|
|
|
/**
|
|
* hid_hw_start - start underlying HW
|
|
* @hdev: hid device
|
|
* @connect_mask: which outputs to connect, see HID_CONNECT_*
|
|
*
|
|
* Call this in probe function *after* hid_parse. This will setup HW
|
|
* buffers and start the device (if not defeirred to device open).
|
|
* hid_hw_stop must be called if this was successful.
|
|
*/
|
|
int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
|
|
{
|
|
int error;
|
|
|
|
error = hdev->ll_driver->start(hdev);
|
|
if (error)
|
|
return error;
|
|
|
|
if (connect_mask) {
|
|
error = hid_connect(hdev, connect_mask);
|
|
if (error) {
|
|
hdev->ll_driver->stop(hdev);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_hw_start);
|
|
|
|
/**
|
|
* hid_hw_stop - stop underlying HW
|
|
* @hdev: hid device
|
|
*
|
|
* This is usually called from remove function or from probe when something
|
|
* failed and hid_hw_start was called already.
|
|
*/
|
|
void hid_hw_stop(struct hid_device *hdev)
|
|
{
|
|
hid_disconnect(hdev);
|
|
hdev->ll_driver->stop(hdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_hw_stop);
|
|
|
|
/**
|
|
* hid_hw_open - signal underlying HW to start delivering events
|
|
* @hdev: hid device
|
|
*
|
|
* Tell underlying HW to start delivering events from the device.
|
|
* This function should be called sometime after successful call
|
|
* to hid_hw_start().
|
|
*/
|
|
int hid_hw_open(struct hid_device *hdev)
|
|
{
|
|
int ret;
|
|
|
|
ret = mutex_lock_killable(&hdev->ll_open_lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!hdev->ll_open_count++) {
|
|
ret = hdev->ll_driver->open(hdev);
|
|
if (ret)
|
|
hdev->ll_open_count--;
|
|
}
|
|
|
|
mutex_unlock(&hdev->ll_open_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_hw_open);
|
|
|
|
/**
|
|
* hid_hw_close - signal underlaying HW to stop delivering events
|
|
*
|
|
* @hdev: hid device
|
|
*
|
|
* This function indicates that we are not interested in the events
|
|
* from this device anymore. Delivery of events may or may not stop,
|
|
* depending on the number of users still outstanding.
|
|
*/
|
|
void hid_hw_close(struct hid_device *hdev)
|
|
{
|
|
mutex_lock(&hdev->ll_open_lock);
|
|
if (!--hdev->ll_open_count)
|
|
hdev->ll_driver->close(hdev);
|
|
mutex_unlock(&hdev->ll_open_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_hw_close);
|
|
|
|
struct hid_dynid {
|
|
struct list_head list;
|
|
struct hid_device_id id;
|
|
};
|
|
|
|
/**
|
|
* store_new_id - add a new HID device ID to this driver and re-probe devices
|
|
* @driver: target device driver
|
|
* @buf: buffer for scanning device ID data
|
|
* @count: input size
|
|
*
|
|
* Adds a new dynamic hid device ID to this driver,
|
|
* and causes the driver to probe for all devices again.
|
|
*/
|
|
static ssize_t new_id_store(struct device_driver *drv, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct hid_driver *hdrv = to_hid_driver(drv);
|
|
struct hid_dynid *dynid;
|
|
__u32 bus, vendor, product;
|
|
unsigned long driver_data = 0;
|
|
int ret;
|
|
|
|
ret = sscanf(buf, "%x %x %x %lx",
|
|
&bus, &vendor, &product, &driver_data);
|
|
if (ret < 3)
|
|
return -EINVAL;
|
|
|
|
dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
|
|
if (!dynid)
|
|
return -ENOMEM;
|
|
|
|
dynid->id.bus = bus;
|
|
dynid->id.group = HID_GROUP_ANY;
|
|
dynid->id.vendor = vendor;
|
|
dynid->id.product = product;
|
|
dynid->id.driver_data = driver_data;
|
|
|
|
spin_lock(&hdrv->dyn_lock);
|
|
list_add_tail(&dynid->list, &hdrv->dyn_list);
|
|
spin_unlock(&hdrv->dyn_lock);
|
|
|
|
ret = driver_attach(&hdrv->driver);
|
|
|
|
return ret ? : count;
|
|
}
|
|
static DRIVER_ATTR_WO(new_id);
|
|
|
|
static struct attribute *hid_drv_attrs[] = {
|
|
&driver_attr_new_id.attr,
|
|
NULL,
|
|
};
|
|
ATTRIBUTE_GROUPS(hid_drv);
|
|
|
|
static void hid_free_dynids(struct hid_driver *hdrv)
|
|
{
|
|
struct hid_dynid *dynid, *n;
|
|
|
|
spin_lock(&hdrv->dyn_lock);
|
|
list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
|
|
list_del(&dynid->list);
|
|
kfree(dynid);
|
|
}
|
|
spin_unlock(&hdrv->dyn_lock);
|
|
}
|
|
|
|
const struct hid_device_id *hid_match_device(struct hid_device *hdev,
|
|
struct hid_driver *hdrv)
|
|
{
|
|
struct hid_dynid *dynid;
|
|
|
|
spin_lock(&hdrv->dyn_lock);
|
|
list_for_each_entry(dynid, &hdrv->dyn_list, list) {
|
|
if (hid_match_one_id(hdev, &dynid->id)) {
|
|
spin_unlock(&hdrv->dyn_lock);
|
|
return &dynid->id;
|
|
}
|
|
}
|
|
spin_unlock(&hdrv->dyn_lock);
|
|
|
|
return hid_match_id(hdev, hdrv->id_table);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_match_device);
|
|
|
|
static int hid_bus_match(struct device *dev, struct device_driver *drv)
|
|
{
|
|
struct hid_driver *hdrv = to_hid_driver(drv);
|
|
struct hid_device *hdev = to_hid_device(dev);
|
|
|
|
return hid_match_device(hdev, hdrv) != NULL;
|
|
}
|
|
|
|
/**
|
|
* hid_compare_device_paths - check if both devices share the same path
|
|
* @hdev_a: hid device
|
|
* @hdev_b: hid device
|
|
* @separator: char to use as separator
|
|
*
|
|
* Check if two devices share the same path up to the last occurrence of
|
|
* the separator char. Both paths must exist (i.e., zero-length paths
|
|
* don't match).
|
|
*/
|
|
bool hid_compare_device_paths(struct hid_device *hdev_a,
|
|
struct hid_device *hdev_b, char separator)
|
|
{
|
|
int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
|
|
int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
|
|
|
|
if (n1 != n2 || n1 <= 0 || n2 <= 0)
|
|
return false;
|
|
|
|
return !strncmp(hdev_a->phys, hdev_b->phys, n1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_compare_device_paths);
|
|
|
|
static int hid_device_probe(struct device *dev)
|
|
{
|
|
struct hid_driver *hdrv = to_hid_driver(dev->driver);
|
|
struct hid_device *hdev = to_hid_device(dev);
|
|
const struct hid_device_id *id;
|
|
int ret = 0;
|
|
|
|
if (down_interruptible(&hdev->driver_input_lock)) {
|
|
ret = -EINTR;
|
|
goto end;
|
|
}
|
|
hdev->io_started = false;
|
|
|
|
clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
|
|
|
|
if (!hdev->driver) {
|
|
id = hid_match_device(hdev, hdrv);
|
|
if (id == NULL) {
|
|
ret = -ENODEV;
|
|
goto unlock;
|
|
}
|
|
|
|
if (hdrv->match) {
|
|
if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
|
|
ret = -ENODEV;
|
|
goto unlock;
|
|
}
|
|
} else {
|
|
/*
|
|
* hid-generic implements .match(), so if
|
|
* hid_ignore_special_drivers is set, we can safely
|
|
* return.
|
|
*/
|
|
if (hid_ignore_special_drivers) {
|
|
ret = -ENODEV;
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
/* reset the quirks that has been previously set */
|
|
hdev->quirks = hid_lookup_quirk(hdev);
|
|
hdev->driver = hdrv;
|
|
if (hdrv->probe) {
|
|
ret = hdrv->probe(hdev, id);
|
|
} else { /* default probe */
|
|
ret = hid_open_report(hdev);
|
|
if (!ret)
|
|
ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
|
|
}
|
|
if (ret) {
|
|
hid_close_report(hdev);
|
|
hdev->driver = NULL;
|
|
}
|
|
}
|
|
unlock:
|
|
if (!hdev->io_started)
|
|
up(&hdev->driver_input_lock);
|
|
end:
|
|
return ret;
|
|
}
|
|
|
|
static int hid_device_remove(struct device *dev)
|
|
{
|
|
struct hid_device *hdev = to_hid_device(dev);
|
|
struct hid_driver *hdrv;
|
|
int ret = 0;
|
|
|
|
if (down_interruptible(&hdev->driver_input_lock)) {
|
|
ret = -EINTR;
|
|
goto end;
|
|
}
|
|
hdev->io_started = false;
|
|
|
|
hdrv = hdev->driver;
|
|
if (hdrv) {
|
|
if (hdrv->remove)
|
|
hdrv->remove(hdev);
|
|
else /* default remove */
|
|
hid_hw_stop(hdev);
|
|
hid_close_report(hdev);
|
|
hdev->driver = NULL;
|
|
}
|
|
|
|
if (!hdev->io_started)
|
|
up(&hdev->driver_input_lock);
|
|
end:
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
|
|
char *buf)
|
|
{
|
|
struct hid_device *hdev = container_of(dev, struct hid_device, dev);
|
|
|
|
return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
|
|
hdev->bus, hdev->group, hdev->vendor, hdev->product);
|
|
}
|
|
static DEVICE_ATTR_RO(modalias);
|
|
|
|
static struct attribute *hid_dev_attrs[] = {
|
|
&dev_attr_modalias.attr,
|
|
NULL,
|
|
};
|
|
static struct bin_attribute *hid_dev_bin_attrs[] = {
|
|
&dev_bin_attr_report_desc,
|
|
NULL
|
|
};
|
|
static const struct attribute_group hid_dev_group = {
|
|
.attrs = hid_dev_attrs,
|
|
.bin_attrs = hid_dev_bin_attrs,
|
|
};
|
|
__ATTRIBUTE_GROUPS(hid_dev);
|
|
|
|
static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
|
|
{
|
|
struct hid_device *hdev = to_hid_device(dev);
|
|
|
|
if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
|
|
hdev->bus, hdev->vendor, hdev->product))
|
|
return -ENOMEM;
|
|
|
|
if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
|
|
return -ENOMEM;
|
|
|
|
if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
|
|
return -ENOMEM;
|
|
|
|
if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
|
|
return -ENOMEM;
|
|
|
|
if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
|
|
hdev->bus, hdev->group, hdev->vendor, hdev->product))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct bus_type hid_bus_type = {
|
|
.name = "hid",
|
|
.dev_groups = hid_dev_groups,
|
|
.drv_groups = hid_drv_groups,
|
|
.match = hid_bus_match,
|
|
.probe = hid_device_probe,
|
|
.remove = hid_device_remove,
|
|
.uevent = hid_uevent,
|
|
};
|
|
EXPORT_SYMBOL(hid_bus_type);
|
|
|
|
int hid_add_device(struct hid_device *hdev)
|
|
{
|
|
static atomic_t id = ATOMIC_INIT(0);
|
|
int ret;
|
|
|
|
if (WARN_ON(hdev->status & HID_STAT_ADDED))
|
|
return -EBUSY;
|
|
|
|
hdev->quirks = hid_lookup_quirk(hdev);
|
|
|
|
/* we need to kill them here, otherwise they will stay allocated to
|
|
* wait for coming driver */
|
|
if (hid_ignore(hdev))
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* Check for the mandatory transport channel.
|
|
*/
|
|
if (!hdev->ll_driver->raw_request) {
|
|
hid_err(hdev, "transport driver missing .raw_request()\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Read the device report descriptor once and use as template
|
|
* for the driver-specific modifications.
|
|
*/
|
|
ret = hdev->ll_driver->parse(hdev);
|
|
if (ret)
|
|
return ret;
|
|
if (!hdev->dev_rdesc)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* Scan generic devices for group information
|
|
*/
|
|
if (hid_ignore_special_drivers) {
|
|
hdev->group = HID_GROUP_GENERIC;
|
|
} else if (!hdev->group &&
|
|
!(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
|
|
ret = hid_scan_report(hdev);
|
|
if (ret)
|
|
hid_warn(hdev, "bad device descriptor (%d)\n", ret);
|
|
}
|
|
|
|
/* XXX hack, any other cleaner solution after the driver core
|
|
* is converted to allow more than 20 bytes as the device name? */
|
|
dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
|
|
hdev->vendor, hdev->product, atomic_inc_return(&id));
|
|
|
|
hid_debug_register(hdev, dev_name(&hdev->dev));
|
|
ret = device_add(&hdev->dev);
|
|
if (!ret)
|
|
hdev->status |= HID_STAT_ADDED;
|
|
else
|
|
hid_debug_unregister(hdev);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_add_device);
|
|
|
|
/**
|
|
* hid_allocate_device - allocate new hid device descriptor
|
|
*
|
|
* Allocate and initialize hid device, so that hid_destroy_device might be
|
|
* used to free it.
|
|
*
|
|
* New hid_device pointer is returned on success, otherwise ERR_PTR encoded
|
|
* error value.
|
|
*/
|
|
struct hid_device *hid_allocate_device(void)
|
|
{
|
|
struct hid_device *hdev;
|
|
int ret = -ENOMEM;
|
|
|
|
hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
|
|
if (hdev == NULL)
|
|
return ERR_PTR(ret);
|
|
|
|
device_initialize(&hdev->dev);
|
|
hdev->dev.release = hid_device_release;
|
|
hdev->dev.bus = &hid_bus_type;
|
|
device_enable_async_suspend(&hdev->dev);
|
|
|
|
hid_close_report(hdev);
|
|
|
|
init_waitqueue_head(&hdev->debug_wait);
|
|
INIT_LIST_HEAD(&hdev->debug_list);
|
|
spin_lock_init(&hdev->debug_list_lock);
|
|
sema_init(&hdev->driver_input_lock, 1);
|
|
mutex_init(&hdev->ll_open_lock);
|
|
|
|
return hdev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_allocate_device);
|
|
|
|
static void hid_remove_device(struct hid_device *hdev)
|
|
{
|
|
if (hdev->status & HID_STAT_ADDED) {
|
|
device_del(&hdev->dev);
|
|
hid_debug_unregister(hdev);
|
|
hdev->status &= ~HID_STAT_ADDED;
|
|
}
|
|
kfree(hdev->dev_rdesc);
|
|
hdev->dev_rdesc = NULL;
|
|
hdev->dev_rsize = 0;
|
|
}
|
|
|
|
/**
|
|
* hid_destroy_device - free previously allocated device
|
|
*
|
|
* @hdev: hid device
|
|
*
|
|
* If you allocate hid_device through hid_allocate_device, you should ever
|
|
* free by this function.
|
|
*/
|
|
void hid_destroy_device(struct hid_device *hdev)
|
|
{
|
|
hid_remove_device(hdev);
|
|
put_device(&hdev->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_destroy_device);
|
|
|
|
|
|
static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
|
|
{
|
|
struct hid_driver *hdrv = data;
|
|
struct hid_device *hdev = to_hid_device(dev);
|
|
|
|
if (hdev->driver == hdrv &&
|
|
!hdrv->match(hdev, hid_ignore_special_drivers) &&
|
|
!test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
|
|
return device_reprobe(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __hid_bus_driver_added(struct device_driver *drv, void *data)
|
|
{
|
|
struct hid_driver *hdrv = to_hid_driver(drv);
|
|
|
|
if (hdrv->match) {
|
|
bus_for_each_dev(&hid_bus_type, NULL, hdrv,
|
|
__hid_bus_reprobe_drivers);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __bus_removed_driver(struct device_driver *drv, void *data)
|
|
{
|
|
return bus_rescan_devices(&hid_bus_type);
|
|
}
|
|
|
|
int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
|
|
const char *mod_name)
|
|
{
|
|
int ret;
|
|
|
|
hdrv->driver.name = hdrv->name;
|
|
hdrv->driver.bus = &hid_bus_type;
|
|
hdrv->driver.owner = owner;
|
|
hdrv->driver.mod_name = mod_name;
|
|
|
|
INIT_LIST_HEAD(&hdrv->dyn_list);
|
|
spin_lock_init(&hdrv->dyn_lock);
|
|
|
|
ret = driver_register(&hdrv->driver);
|
|
|
|
if (ret == 0)
|
|
bus_for_each_drv(&hid_bus_type, NULL, NULL,
|
|
__hid_bus_driver_added);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__hid_register_driver);
|
|
|
|
void hid_unregister_driver(struct hid_driver *hdrv)
|
|
{
|
|
driver_unregister(&hdrv->driver);
|
|
hid_free_dynids(hdrv);
|
|
|
|
bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
|
|
}
|
|
EXPORT_SYMBOL_GPL(hid_unregister_driver);
|
|
|
|
int hid_check_keys_pressed(struct hid_device *hid)
|
|
{
|
|
struct hid_input *hidinput;
|
|
int i;
|
|
|
|
if (!(hid->claimed & HID_CLAIMED_INPUT))
|
|
return 0;
|
|
|
|
list_for_each_entry(hidinput, &hid->inputs, list) {
|
|
for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
|
|
if (hidinput->input->key[i])
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
|
|
|
|
static int __init hid_init(void)
|
|
{
|
|
int ret;
|
|
|
|
if (hid_debug)
|
|
pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
|
|
"debugfs is now used for inspecting the device (report descriptor, reports)\n");
|
|
|
|
ret = bus_register(&hid_bus_type);
|
|
if (ret) {
|
|
pr_err("can't register hid bus\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = hidraw_init();
|
|
if (ret)
|
|
goto err_bus;
|
|
|
|
hid_debug_init();
|
|
|
|
return 0;
|
|
err_bus:
|
|
bus_unregister(&hid_bus_type);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static void __exit hid_exit(void)
|
|
{
|
|
hid_debug_exit();
|
|
hidraw_exit();
|
|
bus_unregister(&hid_bus_type);
|
|
hid_quirks_exit(HID_BUS_ANY);
|
|
}
|
|
|
|
module_init(hid_init);
|
|
module_exit(hid_exit);
|
|
|
|
MODULE_AUTHOR("Andreas Gal");
|
|
MODULE_AUTHOR("Vojtech Pavlik");
|
|
MODULE_AUTHOR("Jiri Kosina");
|
|
MODULE_LICENSE("GPL");
|