2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 22:24:09 +08:00
linux-next/arch/x86/power/hibernate_64.c
Andy Lutomirski f34902c5c6 x86/hibernate/64: Mask off CR3's PCID bits in the saved CR3
Jiri reported a resume-from-hibernation failure triggered by PCID.
The root cause appears to be rather odd.  The hibernation asm
restores a CR3 value that comes from the image header.  If the image
kernel has PCID on, it's entirely reasonable for this CR3 value to
have one of the low 12 bits set.  The restore code restores it with
CR4.PCIDE=0, which means that those low 12 bits are accepted by the
CPU but are either ignored or interpreted as a caching mode.  This
is odd, but still works.  We blow up later when the image kernel
restores CR4, though, since changing CR4.PCIDE with CR3[11:0] != 0
is illegal.  Boom!

FWIW, it's entirely unclear to me what's supposed to happen if a PAE
kernel restores a non-PAE image or vice versa.  Ditto for LA57.

Reported-by: Jiri Kosina <jikos@kernel.org>
Tested-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 660da7c922 ("x86/mm: Enable CR4.PCIDE on supported systems")
Link: http://lkml.kernel.org/r/18ca57090651a6341e97083883f9e814c4f14684.1504847163.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13 09:52:37 +02:00

350 lines
8.7 KiB
C

/*
* Hibernation support for x86-64
*
* Distribute under GPLv2
*
* Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
* Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
* Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
*/
#include <linux/gfp.h>
#include <linux/smp.h>
#include <linux/suspend.h>
#include <linux/scatterlist.h>
#include <linux/kdebug.h>
#include <crypto/hash.h>
#include <asm/e820/api.h>
#include <asm/init.h>
#include <asm/proto.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mtrr.h>
#include <asm/sections.h>
#include <asm/suspend.h>
#include <asm/tlbflush.h>
/* Defined in hibernate_asm_64.S */
extern asmlinkage __visible int restore_image(void);
/*
* Address to jump to in the last phase of restore in order to get to the image
* kernel's text (this value is passed in the image header).
*/
unsigned long restore_jump_address __visible;
unsigned long jump_address_phys;
/*
* Value of the cr3 register from before the hibernation (this value is passed
* in the image header).
*/
unsigned long restore_cr3 __visible;
unsigned long temp_level4_pgt __visible;
unsigned long relocated_restore_code __visible;
static int set_up_temporary_text_mapping(pgd_t *pgd)
{
pmd_t *pmd;
pud_t *pud;
p4d_t *p4d;
/*
* The new mapping only has to cover the page containing the image
* kernel's entry point (jump_address_phys), because the switch over to
* it is carried out by relocated code running from a page allocated
* specifically for this purpose and covered by the identity mapping, so
* the temporary kernel text mapping is only needed for the final jump.
* Moreover, in that mapping the virtual address of the image kernel's
* entry point must be the same as its virtual address in the image
* kernel (restore_jump_address), so the image kernel's
* restore_registers() code doesn't find itself in a different area of
* the virtual address space after switching over to the original page
* tables used by the image kernel.
*/
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
p4d = (p4d_t *)get_safe_page(GFP_ATOMIC);
if (!p4d)
return -ENOMEM;
}
pud = (pud_t *)get_safe_page(GFP_ATOMIC);
if (!pud)
return -ENOMEM;
pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
if (!pmd)
return -ENOMEM;
set_pmd(pmd + pmd_index(restore_jump_address),
__pmd((jump_address_phys & PMD_MASK) | __PAGE_KERNEL_LARGE_EXEC));
set_pud(pud + pud_index(restore_jump_address),
__pud(__pa(pmd) | _KERNPG_TABLE));
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
set_p4d(p4d + p4d_index(restore_jump_address), __p4d(__pa(pud) | _KERNPG_TABLE));
set_pgd(pgd + pgd_index(restore_jump_address), __pgd(__pa(p4d) | _KERNPG_TABLE));
} else {
/* No p4d for 4-level paging: point the pgd to the pud page table */
set_pgd(pgd + pgd_index(restore_jump_address), __pgd(__pa(pud) | _KERNPG_TABLE));
}
return 0;
}
static void *alloc_pgt_page(void *context)
{
return (void *)get_safe_page(GFP_ATOMIC);
}
static int set_up_temporary_mappings(void)
{
struct x86_mapping_info info = {
.alloc_pgt_page = alloc_pgt_page,
.page_flag = __PAGE_KERNEL_LARGE_EXEC,
.offset = __PAGE_OFFSET,
};
unsigned long mstart, mend;
pgd_t *pgd;
int result;
int i;
pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
if (!pgd)
return -ENOMEM;
/* Prepare a temporary mapping for the kernel text */
result = set_up_temporary_text_mapping(pgd);
if (result)
return result;
/* Set up the direct mapping from scratch */
for (i = 0; i < nr_pfn_mapped; i++) {
mstart = pfn_mapped[i].start << PAGE_SHIFT;
mend = pfn_mapped[i].end << PAGE_SHIFT;
result = kernel_ident_mapping_init(&info, pgd, mstart, mend);
if (result)
return result;
}
temp_level4_pgt = __pa(pgd);
return 0;
}
static int relocate_restore_code(void)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
relocated_restore_code = get_safe_page(GFP_ATOMIC);
if (!relocated_restore_code)
return -ENOMEM;
memcpy((void *)relocated_restore_code, core_restore_code, PAGE_SIZE);
/* Make the page containing the relocated code executable */
pgd = (pgd_t *)__va(read_cr3_pa()) +
pgd_index(relocated_restore_code);
p4d = p4d_offset(pgd, relocated_restore_code);
if (p4d_large(*p4d)) {
set_p4d(p4d, __p4d(p4d_val(*p4d) & ~_PAGE_NX));
goto out;
}
pud = pud_offset(p4d, relocated_restore_code);
if (pud_large(*pud)) {
set_pud(pud, __pud(pud_val(*pud) & ~_PAGE_NX));
goto out;
}
pmd = pmd_offset(pud, relocated_restore_code);
if (pmd_large(*pmd)) {
set_pmd(pmd, __pmd(pmd_val(*pmd) & ~_PAGE_NX));
goto out;
}
pte = pte_offset_kernel(pmd, relocated_restore_code);
set_pte(pte, __pte(pte_val(*pte) & ~_PAGE_NX));
out:
__flush_tlb_all();
return 0;
}
int swsusp_arch_resume(void)
{
int error;
/* We have got enough memory and from now on we cannot recover */
error = set_up_temporary_mappings();
if (error)
return error;
error = relocate_restore_code();
if (error)
return error;
restore_image();
return 0;
}
/*
* pfn_is_nosave - check if given pfn is in the 'nosave' section
*/
int pfn_is_nosave(unsigned long pfn)
{
unsigned long nosave_begin_pfn = __pa_symbol(&__nosave_begin) >> PAGE_SHIFT;
unsigned long nosave_end_pfn = PAGE_ALIGN(__pa_symbol(&__nosave_end)) >> PAGE_SHIFT;
return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
}
#define MD5_DIGEST_SIZE 16
struct restore_data_record {
unsigned long jump_address;
unsigned long jump_address_phys;
unsigned long cr3;
unsigned long magic;
u8 e820_digest[MD5_DIGEST_SIZE];
};
#define RESTORE_MAGIC 0x23456789ABCDEF01UL
#if IS_BUILTIN(CONFIG_CRYPTO_MD5)
/**
* get_e820_md5 - calculate md5 according to given e820 table
*
* @table: the e820 table to be calculated
* @buf: the md5 result to be stored to
*/
static int get_e820_md5(struct e820_table *table, void *buf)
{
struct scatterlist sg;
struct crypto_ahash *tfm;
int size;
int ret = 0;
tfm = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm))
return -ENOMEM;
{
AHASH_REQUEST_ON_STACK(req, tfm);
size = offsetof(struct e820_table, entries) + sizeof(struct e820_entry) * table->nr_entries;
ahash_request_set_tfm(req, tfm);
sg_init_one(&sg, (u8 *)table, size);
ahash_request_set_callback(req, 0, NULL, NULL);
ahash_request_set_crypt(req, &sg, buf, size);
if (crypto_ahash_digest(req))
ret = -EINVAL;
ahash_request_zero(req);
}
crypto_free_ahash(tfm);
return ret;
}
static void hibernation_e820_save(void *buf)
{
get_e820_md5(e820_table_firmware, buf);
}
static bool hibernation_e820_mismatch(void *buf)
{
int ret;
u8 result[MD5_DIGEST_SIZE];
memset(result, 0, MD5_DIGEST_SIZE);
/* If there is no digest in suspend kernel, let it go. */
if (!memcmp(result, buf, MD5_DIGEST_SIZE))
return false;
ret = get_e820_md5(e820_table_firmware, result);
if (ret)
return true;
return memcmp(result, buf, MD5_DIGEST_SIZE) ? true : false;
}
#else
static void hibernation_e820_save(void *buf)
{
}
static bool hibernation_e820_mismatch(void *buf)
{
/* If md5 is not builtin for restore kernel, let it go. */
return false;
}
#endif
/**
* arch_hibernation_header_save - populate the architecture specific part
* of a hibernation image header
* @addr: address to save the data at
*/
int arch_hibernation_header_save(void *addr, unsigned int max_size)
{
struct restore_data_record *rdr = addr;
if (max_size < sizeof(struct restore_data_record))
return -EOVERFLOW;
rdr->jump_address = (unsigned long)restore_registers;
rdr->jump_address_phys = __pa_symbol(restore_registers);
/*
* The restore code fixes up CR3 and CR4 in the following sequence:
*
* [in hibernation asm]
* 1. CR3 <= temporary page tables
* 2. CR4 <= mmu_cr4_features (from the kernel that restores us)
* 3. CR3 <= rdr->cr3
* 4. CR4 <= mmu_cr4_features (from us, i.e. the image kernel)
* [in restore_processor_state()]
* 5. CR4 <= saved CR4
* 6. CR3 <= saved CR3
*
* Our mmu_cr4_features has CR4.PCIDE=0, and toggling
* CR4.PCIDE while CR3's PCID bits are nonzero is illegal, so
* rdr->cr3 needs to point to valid page tables but must not
* have any of the PCID bits set.
*/
rdr->cr3 = restore_cr3 & ~CR3_PCID_MASK;
rdr->magic = RESTORE_MAGIC;
hibernation_e820_save(rdr->e820_digest);
return 0;
}
/**
* arch_hibernation_header_restore - read the architecture specific data
* from the hibernation image header
* @addr: address to read the data from
*/
int arch_hibernation_header_restore(void *addr)
{
struct restore_data_record *rdr = addr;
restore_jump_address = rdr->jump_address;
jump_address_phys = rdr->jump_address_phys;
restore_cr3 = rdr->cr3;
if (rdr->magic != RESTORE_MAGIC) {
pr_crit("Unrecognized hibernate image header format!\n");
return -EINVAL;
}
if (hibernation_e820_mismatch(rdr->e820_digest)) {
pr_crit("Hibernate inconsistent memory map detected!\n");
return -ENODEV;
}
return 0;
}