mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-04 03:33:58 +08:00
f30cfacad1
The new macro set has a consistent namespace and uses C99 initializers instead of the grufty C89 ones. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Link: https://lkml.kernel.org/r/20200320131510.700250889@linutronix.de
562 lines
15 KiB
C
562 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Cryptographic API.
|
|
*
|
|
* Support for VIA PadLock hardware crypto engine.
|
|
*
|
|
* Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
|
|
*/
|
|
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/padlock.h>
|
|
#include <crypto/sha.h>
|
|
#include <linux/err.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/fpu/api.h>
|
|
|
|
struct padlock_sha_desc {
|
|
struct shash_desc fallback;
|
|
};
|
|
|
|
struct padlock_sha_ctx {
|
|
struct crypto_shash *fallback;
|
|
};
|
|
|
|
static int padlock_sha_init(struct shash_desc *desc)
|
|
{
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
|
|
|
|
dctx->fallback.tfm = ctx->fallback;
|
|
return crypto_shash_init(&dctx->fallback);
|
|
}
|
|
|
|
static int padlock_sha_update(struct shash_desc *desc,
|
|
const u8 *data, unsigned int length)
|
|
{
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
|
|
return crypto_shash_update(&dctx->fallback, data, length);
|
|
}
|
|
|
|
static int padlock_sha_export(struct shash_desc *desc, void *out)
|
|
{
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
|
|
return crypto_shash_export(&dctx->fallback, out);
|
|
}
|
|
|
|
static int padlock_sha_import(struct shash_desc *desc, const void *in)
|
|
{
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
|
|
|
|
dctx->fallback.tfm = ctx->fallback;
|
|
return crypto_shash_import(&dctx->fallback, in);
|
|
}
|
|
|
|
static inline void padlock_output_block(uint32_t *src,
|
|
uint32_t *dst, size_t count)
|
|
{
|
|
while (count--)
|
|
*dst++ = swab32(*src++);
|
|
}
|
|
|
|
static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
|
|
unsigned int count, u8 *out)
|
|
{
|
|
/* We can't store directly to *out as it may be unaligned. */
|
|
/* BTW Don't reduce the buffer size below 128 Bytes!
|
|
* PadLock microcode needs it that big. */
|
|
char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
|
|
((aligned(STACK_ALIGN)));
|
|
char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
struct sha1_state state;
|
|
unsigned int space;
|
|
unsigned int leftover;
|
|
int err;
|
|
|
|
err = crypto_shash_export(&dctx->fallback, &state);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (state.count + count > ULONG_MAX)
|
|
return crypto_shash_finup(&dctx->fallback, in, count, out);
|
|
|
|
leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
|
|
space = SHA1_BLOCK_SIZE - leftover;
|
|
if (space) {
|
|
if (count > space) {
|
|
err = crypto_shash_update(&dctx->fallback, in, space) ?:
|
|
crypto_shash_export(&dctx->fallback, &state);
|
|
if (err)
|
|
goto out;
|
|
count -= space;
|
|
in += space;
|
|
} else {
|
|
memcpy(state.buffer + leftover, in, count);
|
|
in = state.buffer;
|
|
count += leftover;
|
|
state.count &= ~(SHA1_BLOCK_SIZE - 1);
|
|
}
|
|
}
|
|
|
|
memcpy(result, &state.state, SHA1_DIGEST_SIZE);
|
|
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
|
|
: \
|
|
: "c"((unsigned long)state.count + count), \
|
|
"a"((unsigned long)state.count), \
|
|
"S"(in), "D"(result));
|
|
|
|
padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
u8 buf[4];
|
|
|
|
return padlock_sha1_finup(desc, buf, 0, out);
|
|
}
|
|
|
|
static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
|
|
unsigned int count, u8 *out)
|
|
{
|
|
/* We can't store directly to *out as it may be unaligned. */
|
|
/* BTW Don't reduce the buffer size below 128 Bytes!
|
|
* PadLock microcode needs it that big. */
|
|
char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
|
|
((aligned(STACK_ALIGN)));
|
|
char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
|
|
struct sha256_state state;
|
|
unsigned int space;
|
|
unsigned int leftover;
|
|
int err;
|
|
|
|
err = crypto_shash_export(&dctx->fallback, &state);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (state.count + count > ULONG_MAX)
|
|
return crypto_shash_finup(&dctx->fallback, in, count, out);
|
|
|
|
leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
|
|
space = SHA256_BLOCK_SIZE - leftover;
|
|
if (space) {
|
|
if (count > space) {
|
|
err = crypto_shash_update(&dctx->fallback, in, space) ?:
|
|
crypto_shash_export(&dctx->fallback, &state);
|
|
if (err)
|
|
goto out;
|
|
count -= space;
|
|
in += space;
|
|
} else {
|
|
memcpy(state.buf + leftover, in, count);
|
|
in = state.buf;
|
|
count += leftover;
|
|
state.count &= ~(SHA1_BLOCK_SIZE - 1);
|
|
}
|
|
}
|
|
|
|
memcpy(result, &state.state, SHA256_DIGEST_SIZE);
|
|
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
|
|
: \
|
|
: "c"((unsigned long)state.count + count), \
|
|
"a"((unsigned long)state.count), \
|
|
"S"(in), "D"(result));
|
|
|
|
padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
|
|
{
|
|
u8 buf[4];
|
|
|
|
return padlock_sha256_finup(desc, buf, 0, out);
|
|
}
|
|
|
|
static int padlock_init_tfm(struct crypto_shash *hash)
|
|
{
|
|
const char *fallback_driver_name = crypto_shash_alg_name(hash);
|
|
struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
|
|
struct crypto_shash *fallback_tfm;
|
|
|
|
/* Allocate a fallback and abort if it failed. */
|
|
fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
|
|
CRYPTO_ALG_NEED_FALLBACK);
|
|
if (IS_ERR(fallback_tfm)) {
|
|
printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
|
|
fallback_driver_name);
|
|
return PTR_ERR(fallback_tfm);
|
|
}
|
|
|
|
ctx->fallback = fallback_tfm;
|
|
hash->descsize += crypto_shash_descsize(fallback_tfm);
|
|
return 0;
|
|
}
|
|
|
|
static void padlock_exit_tfm(struct crypto_shash *hash)
|
|
{
|
|
struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
|
|
|
|
crypto_free_shash(ctx->fallback);
|
|
}
|
|
|
|
static struct shash_alg sha1_alg = {
|
|
.digestsize = SHA1_DIGEST_SIZE,
|
|
.init = padlock_sha_init,
|
|
.update = padlock_sha_update,
|
|
.finup = padlock_sha1_finup,
|
|
.final = padlock_sha1_final,
|
|
.export = padlock_sha_export,
|
|
.import = padlock_sha_import,
|
|
.init_tfm = padlock_init_tfm,
|
|
.exit_tfm = padlock_exit_tfm,
|
|
.descsize = sizeof(struct padlock_sha_desc),
|
|
.statesize = sizeof(struct sha1_state),
|
|
.base = {
|
|
.cra_name = "sha1",
|
|
.cra_driver_name = "sha1-padlock",
|
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct padlock_sha_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
};
|
|
|
|
static struct shash_alg sha256_alg = {
|
|
.digestsize = SHA256_DIGEST_SIZE,
|
|
.init = padlock_sha_init,
|
|
.update = padlock_sha_update,
|
|
.finup = padlock_sha256_finup,
|
|
.final = padlock_sha256_final,
|
|
.export = padlock_sha_export,
|
|
.import = padlock_sha_import,
|
|
.init_tfm = padlock_init_tfm,
|
|
.exit_tfm = padlock_exit_tfm,
|
|
.descsize = sizeof(struct padlock_sha_desc),
|
|
.statesize = sizeof(struct sha256_state),
|
|
.base = {
|
|
.cra_name = "sha256",
|
|
.cra_driver_name = "sha256-padlock",
|
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
|
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
|
|
.cra_blocksize = SHA256_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct padlock_sha_ctx),
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
};
|
|
|
|
/* Add two shash_alg instance for hardware-implemented *
|
|
* multiple-parts hash supported by VIA Nano Processor.*/
|
|
static int padlock_sha1_init_nano(struct shash_desc *desc)
|
|
{
|
|
struct sha1_state *sctx = shash_desc_ctx(desc);
|
|
|
|
*sctx = (struct sha1_state){
|
|
.state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha1_update_nano(struct shash_desc *desc,
|
|
const u8 *data, unsigned int len)
|
|
{
|
|
struct sha1_state *sctx = shash_desc_ctx(desc);
|
|
unsigned int partial, done;
|
|
const u8 *src;
|
|
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
|
|
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
|
|
((aligned(STACK_ALIGN)));
|
|
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
|
|
partial = sctx->count & 0x3f;
|
|
sctx->count += len;
|
|
done = 0;
|
|
src = data;
|
|
memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
|
|
|
|
if ((partial + len) >= SHA1_BLOCK_SIZE) {
|
|
|
|
/* Append the bytes in state's buffer to a block to handle */
|
|
if (partial) {
|
|
done = -partial;
|
|
memcpy(sctx->buffer + partial, data,
|
|
done + SHA1_BLOCK_SIZE);
|
|
src = sctx->buffer;
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
|
|
: "+S"(src), "+D"(dst) \
|
|
: "a"((long)-1), "c"((unsigned long)1));
|
|
done += SHA1_BLOCK_SIZE;
|
|
src = data + done;
|
|
}
|
|
|
|
/* Process the left bytes from the input data */
|
|
if (len - done >= SHA1_BLOCK_SIZE) {
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
|
|
: "+S"(src), "+D"(dst)
|
|
: "a"((long)-1),
|
|
"c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
|
|
done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
|
|
src = data + done;
|
|
}
|
|
partial = 0;
|
|
}
|
|
memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
|
|
memcpy(sctx->buffer + partial, src, len - done);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
|
|
unsigned int partial, padlen;
|
|
__be64 bits;
|
|
static const u8 padding[64] = { 0x80, };
|
|
|
|
bits = cpu_to_be64(state->count << 3);
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
partial = state->count & 0x3f;
|
|
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
|
|
padlock_sha1_update_nano(desc, padding, padlen);
|
|
|
|
/* Append length field bytes */
|
|
padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
|
|
|
|
/* Swap to output */
|
|
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha256_init_nano(struct shash_desc *desc)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
|
|
*sctx = (struct sha256_state){
|
|
.state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
|
|
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
|
|
unsigned int len)
|
|
{
|
|
struct sha256_state *sctx = shash_desc_ctx(desc);
|
|
unsigned int partial, done;
|
|
const u8 *src;
|
|
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
|
|
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
|
|
((aligned(STACK_ALIGN)));
|
|
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
|
|
|
|
partial = sctx->count & 0x3f;
|
|
sctx->count += len;
|
|
done = 0;
|
|
src = data;
|
|
memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
|
|
|
|
if ((partial + len) >= SHA256_BLOCK_SIZE) {
|
|
|
|
/* Append the bytes in state's buffer to a block to handle */
|
|
if (partial) {
|
|
done = -partial;
|
|
memcpy(sctx->buf + partial, data,
|
|
done + SHA256_BLOCK_SIZE);
|
|
src = sctx->buf;
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
|
|
: "+S"(src), "+D"(dst)
|
|
: "a"((long)-1), "c"((unsigned long)1));
|
|
done += SHA256_BLOCK_SIZE;
|
|
src = data + done;
|
|
}
|
|
|
|
/* Process the left bytes from input data*/
|
|
if (len - done >= SHA256_BLOCK_SIZE) {
|
|
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
|
|
: "+S"(src), "+D"(dst)
|
|
: "a"((long)-1),
|
|
"c"((unsigned long)((len - done) / 64)));
|
|
done += ((len - done) - (len - done) % 64);
|
|
src = data + done;
|
|
}
|
|
partial = 0;
|
|
}
|
|
memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
|
|
memcpy(sctx->buf + partial, src, len - done);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
|
|
{
|
|
struct sha256_state *state =
|
|
(struct sha256_state *)shash_desc_ctx(desc);
|
|
unsigned int partial, padlen;
|
|
__be64 bits;
|
|
static const u8 padding[64] = { 0x80, };
|
|
|
|
bits = cpu_to_be64(state->count << 3);
|
|
|
|
/* Pad out to 56 mod 64 */
|
|
partial = state->count & 0x3f;
|
|
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
|
|
padlock_sha256_update_nano(desc, padding, padlen);
|
|
|
|
/* Append length field bytes */
|
|
padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
|
|
|
|
/* Swap to output */
|
|
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha_export_nano(struct shash_desc *desc,
|
|
void *out)
|
|
{
|
|
int statesize = crypto_shash_statesize(desc->tfm);
|
|
void *sctx = shash_desc_ctx(desc);
|
|
|
|
memcpy(out, sctx, statesize);
|
|
return 0;
|
|
}
|
|
|
|
static int padlock_sha_import_nano(struct shash_desc *desc,
|
|
const void *in)
|
|
{
|
|
int statesize = crypto_shash_statesize(desc->tfm);
|
|
void *sctx = shash_desc_ctx(desc);
|
|
|
|
memcpy(sctx, in, statesize);
|
|
return 0;
|
|
}
|
|
|
|
static struct shash_alg sha1_alg_nano = {
|
|
.digestsize = SHA1_DIGEST_SIZE,
|
|
.init = padlock_sha1_init_nano,
|
|
.update = padlock_sha1_update_nano,
|
|
.final = padlock_sha1_final_nano,
|
|
.export = padlock_sha_export_nano,
|
|
.import = padlock_sha_import_nano,
|
|
.descsize = sizeof(struct sha1_state),
|
|
.statesize = sizeof(struct sha1_state),
|
|
.base = {
|
|
.cra_name = "sha1",
|
|
.cra_driver_name = "sha1-padlock-nano",
|
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
|
.cra_blocksize = SHA1_BLOCK_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
};
|
|
|
|
static struct shash_alg sha256_alg_nano = {
|
|
.digestsize = SHA256_DIGEST_SIZE,
|
|
.init = padlock_sha256_init_nano,
|
|
.update = padlock_sha256_update_nano,
|
|
.final = padlock_sha256_final_nano,
|
|
.export = padlock_sha_export_nano,
|
|
.import = padlock_sha_import_nano,
|
|
.descsize = sizeof(struct sha256_state),
|
|
.statesize = sizeof(struct sha256_state),
|
|
.base = {
|
|
.cra_name = "sha256",
|
|
.cra_driver_name = "sha256-padlock-nano",
|
|
.cra_priority = PADLOCK_CRA_PRIORITY,
|
|
.cra_blocksize = SHA256_BLOCK_SIZE,
|
|
.cra_module = THIS_MODULE,
|
|
}
|
|
};
|
|
|
|
static const struct x86_cpu_id padlock_sha_ids[] = {
|
|
X86_MATCH_FEATURE(X86_FEATURE_PHE, NULL),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
|
|
|
|
static int __init padlock_init(void)
|
|
{
|
|
int rc = -ENODEV;
|
|
struct cpuinfo_x86 *c = &cpu_data(0);
|
|
struct shash_alg *sha1;
|
|
struct shash_alg *sha256;
|
|
|
|
if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
|
|
return -ENODEV;
|
|
|
|
/* Register the newly added algorithm module if on *
|
|
* VIA Nano processor, or else just do as before */
|
|
if (c->x86_model < 0x0f) {
|
|
sha1 = &sha1_alg;
|
|
sha256 = &sha256_alg;
|
|
} else {
|
|
sha1 = &sha1_alg_nano;
|
|
sha256 = &sha256_alg_nano;
|
|
}
|
|
|
|
rc = crypto_register_shash(sha1);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = crypto_register_shash(sha256);
|
|
if (rc)
|
|
goto out_unreg1;
|
|
|
|
printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
|
|
|
|
return 0;
|
|
|
|
out_unreg1:
|
|
crypto_unregister_shash(sha1);
|
|
|
|
out:
|
|
printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
|
|
return rc;
|
|
}
|
|
|
|
static void __exit padlock_fini(void)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(0);
|
|
|
|
if (c->x86_model >= 0x0f) {
|
|
crypto_unregister_shash(&sha1_alg_nano);
|
|
crypto_unregister_shash(&sha256_alg_nano);
|
|
} else {
|
|
crypto_unregister_shash(&sha1_alg);
|
|
crypto_unregister_shash(&sha256_alg);
|
|
}
|
|
}
|
|
|
|
module_init(padlock_init);
|
|
module_exit(padlock_fini);
|
|
|
|
MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Michal Ludvig");
|
|
|
|
MODULE_ALIAS_CRYPTO("sha1-all");
|
|
MODULE_ALIAS_CRYPTO("sha256-all");
|
|
MODULE_ALIAS_CRYPTO("sha1-padlock");
|
|
MODULE_ALIAS_CRYPTO("sha256-padlock");
|