mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-30 08:04:13 +08:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
485 lines
12 KiB
C
485 lines
12 KiB
C
/*
|
|
* lib/prio_tree.c - priority search tree
|
|
*
|
|
* Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
|
|
*
|
|
* This file is released under the GPL v2.
|
|
*
|
|
* Based on the radix priority search tree proposed by Edward M. McCreight
|
|
* SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
|
|
*
|
|
* 02Feb2004 Initial version
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/prio_tree.h>
|
|
|
|
/*
|
|
* A clever mix of heap and radix trees forms a radix priority search tree (PST)
|
|
* which is useful for storing intervals, e.g, we can consider a vma as a closed
|
|
* interval of file pages [offset_begin, offset_end], and store all vmas that
|
|
* map a file in a PST. Then, using the PST, we can answer a stabbing query,
|
|
* i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
|
|
* given input interval X (a set of consecutive file pages), in "O(log n + m)"
|
|
* time where 'log n' is the height of the PST, and 'm' is the number of stored
|
|
* intervals (vmas) that overlap (map) with the input interval X (the set of
|
|
* consecutive file pages).
|
|
*
|
|
* In our implementation, we store closed intervals of the form [radix_index,
|
|
* heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
|
|
* is designed for storing intervals with unique radix indices, i.e., each
|
|
* interval have different radix_index. However, this limitation can be easily
|
|
* overcome by using the size, i.e., heap_index - radix_index, as part of the
|
|
* index, so we index the tree using [(radix_index,size), heap_index].
|
|
*
|
|
* When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
|
|
* machine, the maximum height of a PST can be 64. We can use a balanced version
|
|
* of the priority search tree to optimize the tree height, but the balanced
|
|
* tree proposed by McCreight is too complex and memory-hungry for our purpose.
|
|
*/
|
|
|
|
/*
|
|
* The following macros are used for implementing prio_tree for i_mmap
|
|
*/
|
|
|
|
#define RADIX_INDEX(vma) ((vma)->vm_pgoff)
|
|
#define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
|
|
/* avoid overflow */
|
|
#define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
|
|
|
|
|
|
static void get_index(const struct prio_tree_root *root,
|
|
const struct prio_tree_node *node,
|
|
unsigned long *radix, unsigned long *heap)
|
|
{
|
|
if (root->raw) {
|
|
struct vm_area_struct *vma = prio_tree_entry(
|
|
node, struct vm_area_struct, shared.prio_tree_node);
|
|
|
|
*radix = RADIX_INDEX(vma);
|
|
*heap = HEAP_INDEX(vma);
|
|
}
|
|
else {
|
|
*radix = node->start;
|
|
*heap = node->last;
|
|
}
|
|
}
|
|
|
|
static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
|
|
|
|
void __init prio_tree_init(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
|
|
index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
|
|
index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
|
|
}
|
|
|
|
/*
|
|
* Maximum heap_index that can be stored in a PST with index_bits bits
|
|
*/
|
|
static inline unsigned long prio_tree_maxindex(unsigned int bits)
|
|
{
|
|
return index_bits_to_maxindex[bits - 1];
|
|
}
|
|
|
|
/*
|
|
* Extend a priority search tree so that it can store a node with heap_index
|
|
* max_heap_index. In the worst case, this algorithm takes O((log n)^2).
|
|
* However, this function is used rarely and the common case performance is
|
|
* not bad.
|
|
*/
|
|
static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
|
|
struct prio_tree_node *node, unsigned long max_heap_index)
|
|
{
|
|
struct prio_tree_node *first = NULL, *prev, *last = NULL;
|
|
|
|
if (max_heap_index > prio_tree_maxindex(root->index_bits))
|
|
root->index_bits++;
|
|
|
|
while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
|
|
root->index_bits++;
|
|
|
|
if (prio_tree_empty(root))
|
|
continue;
|
|
|
|
if (first == NULL) {
|
|
first = root->prio_tree_node;
|
|
prio_tree_remove(root, root->prio_tree_node);
|
|
INIT_PRIO_TREE_NODE(first);
|
|
last = first;
|
|
} else {
|
|
prev = last;
|
|
last = root->prio_tree_node;
|
|
prio_tree_remove(root, root->prio_tree_node);
|
|
INIT_PRIO_TREE_NODE(last);
|
|
prev->left = last;
|
|
last->parent = prev;
|
|
}
|
|
}
|
|
|
|
INIT_PRIO_TREE_NODE(node);
|
|
|
|
if (first) {
|
|
node->left = first;
|
|
first->parent = node;
|
|
} else
|
|
last = node;
|
|
|
|
if (!prio_tree_empty(root)) {
|
|
last->left = root->prio_tree_node;
|
|
last->left->parent = last;
|
|
}
|
|
|
|
root->prio_tree_node = node;
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
* Replace a prio_tree_node with a new node and return the old node
|
|
*/
|
|
struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
|
|
struct prio_tree_node *old, struct prio_tree_node *node)
|
|
{
|
|
INIT_PRIO_TREE_NODE(node);
|
|
|
|
if (prio_tree_root(old)) {
|
|
BUG_ON(root->prio_tree_node != old);
|
|
/*
|
|
* We can reduce root->index_bits here. However, it is complex
|
|
* and does not help much to improve performance (IMO).
|
|
*/
|
|
node->parent = node;
|
|
root->prio_tree_node = node;
|
|
} else {
|
|
node->parent = old->parent;
|
|
if (old->parent->left == old)
|
|
old->parent->left = node;
|
|
else
|
|
old->parent->right = node;
|
|
}
|
|
|
|
if (!prio_tree_left_empty(old)) {
|
|
node->left = old->left;
|
|
old->left->parent = node;
|
|
}
|
|
|
|
if (!prio_tree_right_empty(old)) {
|
|
node->right = old->right;
|
|
old->right->parent = node;
|
|
}
|
|
|
|
return old;
|
|
}
|
|
|
|
/*
|
|
* Insert a prio_tree_node @node into a radix priority search tree @root. The
|
|
* algorithm typically takes O(log n) time where 'log n' is the number of bits
|
|
* required to represent the maximum heap_index. In the worst case, the algo
|
|
* can take O((log n)^2) - check prio_tree_expand.
|
|
*
|
|
* If a prior node with same radix_index and heap_index is already found in
|
|
* the tree, then returns the address of the prior node. Otherwise, inserts
|
|
* @node into the tree and returns @node.
|
|
*/
|
|
struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
|
|
struct prio_tree_node *node)
|
|
{
|
|
struct prio_tree_node *cur, *res = node;
|
|
unsigned long radix_index, heap_index;
|
|
unsigned long r_index, h_index, index, mask;
|
|
int size_flag = 0;
|
|
|
|
get_index(root, node, &radix_index, &heap_index);
|
|
|
|
if (prio_tree_empty(root) ||
|
|
heap_index > prio_tree_maxindex(root->index_bits))
|
|
return prio_tree_expand(root, node, heap_index);
|
|
|
|
cur = root->prio_tree_node;
|
|
mask = 1UL << (root->index_bits - 1);
|
|
|
|
while (mask) {
|
|
get_index(root, cur, &r_index, &h_index);
|
|
|
|
if (r_index == radix_index && h_index == heap_index)
|
|
return cur;
|
|
|
|
if (h_index < heap_index ||
|
|
(h_index == heap_index && r_index > radix_index)) {
|
|
struct prio_tree_node *tmp = node;
|
|
node = prio_tree_replace(root, cur, node);
|
|
cur = tmp;
|
|
/* swap indices */
|
|
index = r_index;
|
|
r_index = radix_index;
|
|
radix_index = index;
|
|
index = h_index;
|
|
h_index = heap_index;
|
|
heap_index = index;
|
|
}
|
|
|
|
if (size_flag)
|
|
index = heap_index - radix_index;
|
|
else
|
|
index = radix_index;
|
|
|
|
if (index & mask) {
|
|
if (prio_tree_right_empty(cur)) {
|
|
INIT_PRIO_TREE_NODE(node);
|
|
cur->right = node;
|
|
node->parent = cur;
|
|
return res;
|
|
} else
|
|
cur = cur->right;
|
|
} else {
|
|
if (prio_tree_left_empty(cur)) {
|
|
INIT_PRIO_TREE_NODE(node);
|
|
cur->left = node;
|
|
node->parent = cur;
|
|
return res;
|
|
} else
|
|
cur = cur->left;
|
|
}
|
|
|
|
mask >>= 1;
|
|
|
|
if (!mask) {
|
|
mask = 1UL << (BITS_PER_LONG - 1);
|
|
size_flag = 1;
|
|
}
|
|
}
|
|
/* Should not reach here */
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Remove a prio_tree_node @node from a radix priority search tree @root. The
|
|
* algorithm takes O(log n) time where 'log n' is the number of bits required
|
|
* to represent the maximum heap_index.
|
|
*/
|
|
void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
|
|
{
|
|
struct prio_tree_node *cur;
|
|
unsigned long r_index, h_index_right, h_index_left;
|
|
|
|
cur = node;
|
|
|
|
while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
|
|
if (!prio_tree_left_empty(cur))
|
|
get_index(root, cur->left, &r_index, &h_index_left);
|
|
else {
|
|
cur = cur->right;
|
|
continue;
|
|
}
|
|
|
|
if (!prio_tree_right_empty(cur))
|
|
get_index(root, cur->right, &r_index, &h_index_right);
|
|
else {
|
|
cur = cur->left;
|
|
continue;
|
|
}
|
|
|
|
/* both h_index_left and h_index_right cannot be 0 */
|
|
if (h_index_left >= h_index_right)
|
|
cur = cur->left;
|
|
else
|
|
cur = cur->right;
|
|
}
|
|
|
|
if (prio_tree_root(cur)) {
|
|
BUG_ON(root->prio_tree_node != cur);
|
|
__INIT_PRIO_TREE_ROOT(root, root->raw);
|
|
return;
|
|
}
|
|
|
|
if (cur->parent->right == cur)
|
|
cur->parent->right = cur->parent;
|
|
else
|
|
cur->parent->left = cur->parent;
|
|
|
|
while (cur != node)
|
|
cur = prio_tree_replace(root, cur->parent, cur);
|
|
}
|
|
|
|
/*
|
|
* Following functions help to enumerate all prio_tree_nodes in the tree that
|
|
* overlap with the input interval X [radix_index, heap_index]. The enumeration
|
|
* takes O(log n + m) time where 'log n' is the height of the tree (which is
|
|
* proportional to # of bits required to represent the maximum heap_index) and
|
|
* 'm' is the number of prio_tree_nodes that overlap the interval X.
|
|
*/
|
|
|
|
static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
|
|
unsigned long *r_index, unsigned long *h_index)
|
|
{
|
|
if (prio_tree_left_empty(iter->cur))
|
|
return NULL;
|
|
|
|
get_index(iter->root, iter->cur->left, r_index, h_index);
|
|
|
|
if (iter->r_index <= *h_index) {
|
|
iter->cur = iter->cur->left;
|
|
iter->mask >>= 1;
|
|
if (iter->mask) {
|
|
if (iter->size_level)
|
|
iter->size_level++;
|
|
} else {
|
|
if (iter->size_level) {
|
|
BUG_ON(!prio_tree_left_empty(iter->cur));
|
|
BUG_ON(!prio_tree_right_empty(iter->cur));
|
|
iter->size_level++;
|
|
iter->mask = ULONG_MAX;
|
|
} else {
|
|
iter->size_level = 1;
|
|
iter->mask = 1UL << (BITS_PER_LONG - 1);
|
|
}
|
|
}
|
|
return iter->cur;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
|
|
unsigned long *r_index, unsigned long *h_index)
|
|
{
|
|
unsigned long value;
|
|
|
|
if (prio_tree_right_empty(iter->cur))
|
|
return NULL;
|
|
|
|
if (iter->size_level)
|
|
value = iter->value;
|
|
else
|
|
value = iter->value | iter->mask;
|
|
|
|
if (iter->h_index < value)
|
|
return NULL;
|
|
|
|
get_index(iter->root, iter->cur->right, r_index, h_index);
|
|
|
|
if (iter->r_index <= *h_index) {
|
|
iter->cur = iter->cur->right;
|
|
iter->mask >>= 1;
|
|
iter->value = value;
|
|
if (iter->mask) {
|
|
if (iter->size_level)
|
|
iter->size_level++;
|
|
} else {
|
|
if (iter->size_level) {
|
|
BUG_ON(!prio_tree_left_empty(iter->cur));
|
|
BUG_ON(!prio_tree_right_empty(iter->cur));
|
|
iter->size_level++;
|
|
iter->mask = ULONG_MAX;
|
|
} else {
|
|
iter->size_level = 1;
|
|
iter->mask = 1UL << (BITS_PER_LONG - 1);
|
|
}
|
|
}
|
|
return iter->cur;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
|
|
{
|
|
iter->cur = iter->cur->parent;
|
|
if (iter->mask == ULONG_MAX)
|
|
iter->mask = 1UL;
|
|
else if (iter->size_level == 1)
|
|
iter->mask = 1UL;
|
|
else
|
|
iter->mask <<= 1;
|
|
if (iter->size_level)
|
|
iter->size_level--;
|
|
if (!iter->size_level && (iter->value & iter->mask))
|
|
iter->value ^= iter->mask;
|
|
return iter->cur;
|
|
}
|
|
|
|
static inline int overlap(struct prio_tree_iter *iter,
|
|
unsigned long r_index, unsigned long h_index)
|
|
{
|
|
return iter->h_index >= r_index && iter->r_index <= h_index;
|
|
}
|
|
|
|
/*
|
|
* prio_tree_first:
|
|
*
|
|
* Get the first prio_tree_node that overlaps with the interval [radix_index,
|
|
* heap_index]. Note that always radix_index <= heap_index. We do a pre-order
|
|
* traversal of the tree.
|
|
*/
|
|
static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
|
|
{
|
|
struct prio_tree_root *root;
|
|
unsigned long r_index, h_index;
|
|
|
|
INIT_PRIO_TREE_ITER(iter);
|
|
|
|
root = iter->root;
|
|
if (prio_tree_empty(root))
|
|
return NULL;
|
|
|
|
get_index(root, root->prio_tree_node, &r_index, &h_index);
|
|
|
|
if (iter->r_index > h_index)
|
|
return NULL;
|
|
|
|
iter->mask = 1UL << (root->index_bits - 1);
|
|
iter->cur = root->prio_tree_node;
|
|
|
|
while (1) {
|
|
if (overlap(iter, r_index, h_index))
|
|
return iter->cur;
|
|
|
|
if (prio_tree_left(iter, &r_index, &h_index))
|
|
continue;
|
|
|
|
if (prio_tree_right(iter, &r_index, &h_index))
|
|
continue;
|
|
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* prio_tree_next:
|
|
*
|
|
* Get the next prio_tree_node that overlaps with the input interval in iter
|
|
*/
|
|
struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
|
|
{
|
|
unsigned long r_index, h_index;
|
|
|
|
if (iter->cur == NULL)
|
|
return prio_tree_first(iter);
|
|
|
|
repeat:
|
|
while (prio_tree_left(iter, &r_index, &h_index))
|
|
if (overlap(iter, r_index, h_index))
|
|
return iter->cur;
|
|
|
|
while (!prio_tree_right(iter, &r_index, &h_index)) {
|
|
while (!prio_tree_root(iter->cur) &&
|
|
iter->cur->parent->right == iter->cur)
|
|
prio_tree_parent(iter);
|
|
|
|
if (prio_tree_root(iter->cur))
|
|
return NULL;
|
|
|
|
prio_tree_parent(iter);
|
|
}
|
|
|
|
if (overlap(iter, r_index, h_index))
|
|
return iter->cur;
|
|
|
|
goto repeat;
|
|
}
|