2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-20 03:24:03 +08:00
linux-next/arch/alpha/lib/ev6-stxncpy.S
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

399 lines
11 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0 */
/*
* arch/alpha/lib/ev6-stxncpy.S
* 21264 version contributed by Rick Gorton <rick.gorton@api-networks.com>
*
* Copy no more than COUNT bytes of the null-terminated string from
* SRC to DST.
*
* This is an internal routine used by strncpy, stpncpy, and strncat.
* As such, it uses special linkage conventions to make implementation
* of these public functions more efficient.
*
* On input:
* t9 = return address
* a0 = DST
* a1 = SRC
* a2 = COUNT
*
* Furthermore, COUNT may not be zero.
*
* On output:
* t0 = last word written
* t10 = bitmask (with one bit set) indicating the byte position of
* the end of the range specified by COUNT
* t12 = bitmask (with one bit set) indicating the last byte written
* a0 = unaligned address of the last *word* written
* a2 = the number of full words left in COUNT
*
* Furthermore, v0, a3-a5, t11, and $at are untouched.
*
* Much of the information about 21264 scheduling/coding comes from:
* Compiler Writer's Guide for the Alpha 21264
* abbreviated as 'CWG' in other comments here
* ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
* Scheduling notation:
* E - either cluster
* U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
* L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
* Try not to change the actual algorithm if possible for consistency.
*/
#include <asm/regdef.h>
.set noat
.set noreorder
.text
/* There is a problem with either gdb (as of 4.16) or gas (as of 2.7) that
doesn't like putting the entry point for a procedure somewhere in the
middle of the procedure descriptor. Work around this by putting the
aligned copy in its own procedure descriptor */
.ent stxncpy_aligned
.align 4
stxncpy_aligned:
.frame sp, 0, t9, 0
.prologue 0
/* On entry to this basic block:
t0 == the first destination word for masking back in
t1 == the first source word. */
/* Create the 1st output word and detect 0's in the 1st input word. */
lda t2, -1 # E : build a mask against false zero
mskqh t2, a1, t2 # U : detection in the src word (stall)
mskqh t1, a1, t3 # U :
ornot t1, t2, t2 # E : (stall)
mskql t0, a1, t0 # U : assemble the first output word
cmpbge zero, t2, t8 # E : bits set iff null found
or t0, t3, t0 # E : (stall)
beq a2, $a_eoc # U :
bne t8, $a_eos # U :
nop
nop
nop
/* On entry to this basic block:
t0 == a source word not containing a null. */
/*
* nops here to:
* separate store quads from load quads
* limit of 1 bcond/quad to permit training
*/
$a_loop:
stq_u t0, 0(a0) # L :
addq a0, 8, a0 # E :
subq a2, 1, a2 # E :
nop
ldq_u t0, 0(a1) # L :
addq a1, 8, a1 # E :
cmpbge zero, t0, t8 # E :
beq a2, $a_eoc # U :
beq t8, $a_loop # U :
nop
nop
nop
/* Take care of the final (partial) word store. At this point
the end-of-count bit is set in t8 iff it applies.
On entry to this basic block we have:
t0 == the source word containing the null
t8 == the cmpbge mask that found it. */
$a_eos:
negq t8, t12 # E : find low bit set
and t8, t12, t12 # E : (stall)
/* For the sake of the cache, don't read a destination word
if we're not going to need it. */
and t12, 0x80, t6 # E : (stall)
bne t6, 1f # U : (stall)
/* We're doing a partial word store and so need to combine
our source and original destination words. */
ldq_u t1, 0(a0) # L :
subq t12, 1, t6 # E :
or t12, t6, t8 # E : (stall)
zapnot t0, t8, t0 # U : clear src bytes > null (stall)
zap t1, t8, t1 # .. e1 : clear dst bytes <= null
or t0, t1, t0 # e1 : (stall)
nop
nop
1: stq_u t0, 0(a0) # L :
ret (t9) # L0 : Latency=3
nop
nop
/* Add the end-of-count bit to the eos detection bitmask. */
$a_eoc:
or t10, t8, t8 # E :
br $a_eos # L0 : Latency=3
nop
nop
.end stxncpy_aligned
.align 4
.ent __stxncpy
.globl __stxncpy
__stxncpy:
.frame sp, 0, t9, 0
.prologue 0
/* Are source and destination co-aligned? */
xor a0, a1, t1 # E :
and a0, 7, t0 # E : find dest misalignment
and t1, 7, t1 # E : (stall)
addq a2, t0, a2 # E : bias count by dest misalignment (stall)
subq a2, 1, a2 # E :
and a2, 7, t2 # E : (stall)
srl a2, 3, a2 # U : a2 = loop counter = (count - 1)/8 (stall)
addq zero, 1, t10 # E :
sll t10, t2, t10 # U : t10 = bitmask of last count byte
bne t1, $unaligned # U :
/* We are co-aligned; take care of a partial first word. */
ldq_u t1, 0(a1) # L : load first src word
addq a1, 8, a1 # E :
beq t0, stxncpy_aligned # U : avoid loading dest word if not needed
ldq_u t0, 0(a0) # L :
nop
nop
br stxncpy_aligned # .. e1 :
nop
nop
nop
/* The source and destination are not co-aligned. Align the destination
and cope. We have to be very careful about not reading too much and
causing a SEGV. */
.align 4
$u_head:
/* We know just enough now to be able to assemble the first
full source word. We can still find a zero at the end of it
that prevents us from outputting the whole thing.
On entry to this basic block:
t0 == the first dest word, unmasked
t1 == the shifted low bits of the first source word
t6 == bytemask that is -1 in dest word bytes */
ldq_u t2, 8(a1) # L : Latency=3 load second src word
addq a1, 8, a1 # E :
mskql t0, a0, t0 # U : mask trailing garbage in dst
extqh t2, a1, t4 # U : (3 cycle stall on t2)
or t1, t4, t1 # E : first aligned src word complete (stall)
mskqh t1, a0, t1 # U : mask leading garbage in src (stall)
or t0, t1, t0 # E : first output word complete (stall)
or t0, t6, t6 # E : mask original data for zero test (stall)
cmpbge zero, t6, t8 # E :
beq a2, $u_eocfin # U :
lda t6, -1 # E :
nop
bne t8, $u_final # U :
mskql t6, a1, t6 # U : mask out bits already seen
stq_u t0, 0(a0) # L : store first output word
or t6, t2, t2 # E : (stall)
cmpbge zero, t2, t8 # E : find nulls in second partial
addq a0, 8, a0 # E :
subq a2, 1, a2 # E :
bne t8, $u_late_head_exit # U :
/* Finally, we've got all the stupid leading edge cases taken care
of and we can set up to enter the main loop. */
extql t2, a1, t1 # U : position hi-bits of lo word
beq a2, $u_eoc # U :
ldq_u t2, 8(a1) # L : read next high-order source word
addq a1, 8, a1 # E :
extqh t2, a1, t0 # U : position lo-bits of hi word (stall)
cmpbge zero, t2, t8 # E :
nop
bne t8, $u_eos # U :
/* Unaligned copy main loop. In order to avoid reading too much,
the loop is structured to detect zeros in aligned source words.
This has, unfortunately, effectively pulled half of a loop
iteration out into the head and half into the tail, but it does
prevent nastiness from accumulating in the very thing we want
to run as fast as possible.
On entry to this basic block:
t0 == the shifted low-order bits from the current source word
t1 == the shifted high-order bits from the previous source word
t2 == the unshifted current source word
We further know that t2 does not contain a null terminator. */
.align 4
$u_loop:
or t0, t1, t0 # E : current dst word now complete
subq a2, 1, a2 # E : decrement word count
extql t2, a1, t1 # U : extract low bits for next time
addq a0, 8, a0 # E :
stq_u t0, -8(a0) # U : save the current word
beq a2, $u_eoc # U :
ldq_u t2, 8(a1) # U : Latency=3 load high word for next time
addq a1, 8, a1 # E :
extqh t2, a1, t0 # U : extract low bits (2 cycle stall)
cmpbge zero, t2, t8 # E : test new word for eos
nop
beq t8, $u_loop # U :
/* We've found a zero somewhere in the source word we just read.
If it resides in the lower half, we have one (probably partial)
word to write out, and if it resides in the upper half, we
have one full and one partial word left to write out.
On entry to this basic block:
t0 == the shifted low-order bits from the current source word
t1 == the shifted high-order bits from the previous source word
t2 == the unshifted current source word. */
$u_eos:
or t0, t1, t0 # E : first (partial) source word complete
nop
cmpbge zero, t0, t8 # E : is the null in this first bit? (stall)
bne t8, $u_final # U : (stall)
stq_u t0, 0(a0) # L : the null was in the high-order bits
addq a0, 8, a0 # E :
subq a2, 1, a2 # E :
nop
$u_late_head_exit:
extql t2, a1, t0 # U :
cmpbge zero, t0, t8 # E :
or t8, t10, t6 # E : (stall)
cmoveq a2, t6, t8 # E : Latency=2, extra map slot (stall)
/* Take care of a final (probably partial) result word.
On entry to this basic block:
t0 == assembled source word
t8 == cmpbge mask that found the null. */
$u_final:
negq t8, t6 # E : isolate low bit set
and t6, t8, t12 # E : (stall)
and t12, 0x80, t6 # E : avoid dest word load if we can (stall)
bne t6, 1f # U : (stall)
ldq_u t1, 0(a0) # L :
subq t12, 1, t6 # E :
or t6, t12, t8 # E : (stall)
zapnot t0, t8, t0 # U : kill source bytes > null
zap t1, t8, t1 # U : kill dest bytes <= null
or t0, t1, t0 # E : (stall)
nop
nop
1: stq_u t0, 0(a0) # L :
ret (t9) # L0 : Latency=3
/* Got to end-of-count before end of string.
On entry to this basic block:
t1 == the shifted high-order bits from the previous source word */
$u_eoc:
and a1, 7, t6 # E : avoid final load if possible
sll t10, t6, t6 # U : (stall)
and t6, 0xff, t6 # E : (stall)
bne t6, 1f # U : (stall)
ldq_u t2, 8(a1) # L : load final src word
nop
extqh t2, a1, t0 # U : extract low bits for last word (stall)
or t1, t0, t1 # E : (stall)
1: cmpbge zero, t1, t8 # E :
mov t1, t0 # E :
$u_eocfin: # end-of-count, final word
or t10, t8, t8 # E :
br $u_final # L0 : Latency=3
/* Unaligned copy entry point. */
.align 4
$unaligned:
ldq_u t1, 0(a1) # L : load first source word
and a0, 7, t4 # E : find dest misalignment
and a1, 7, t5 # E : find src misalignment
/* Conditionally load the first destination word and a bytemask
with 0xff indicating that the destination byte is sacrosanct. */
mov zero, t0 # E :
mov zero, t6 # E :
beq t4, 1f # U :
ldq_u t0, 0(a0) # L :
lda t6, -1 # E :
mskql t6, a0, t6 # U :
nop
nop
subq a1, t4, a1 # E : sub dest misalignment from src addr
/* If source misalignment is larger than dest misalignment, we need
extra startup checks to avoid SEGV. */
1: cmplt t4, t5, t12 # E :
extql t1, a1, t1 # U : shift src into place
lda t2, -1 # E : for creating masks later
beq t12, $u_head # U : (stall)
extql t2, a1, t2 # U :
cmpbge zero, t1, t8 # E : is there a zero?
andnot t2, t6, t2 # E : dest mask for a single word copy
or t8, t10, t5 # E : test for end-of-count too
cmpbge zero, t2, t3 # E :
cmoveq a2, t5, t8 # E : Latency=2, extra map slot
nop # E : keep with cmoveq
andnot t8, t3, t8 # E : (stall)
beq t8, $u_head # U :
/* At this point we've found a zero in the first partial word of
the source. We need to isolate the valid source data and mask
it into the original destination data. (Incidentally, we know
that we'll need at least one byte of that original dest word.) */
ldq_u t0, 0(a0) # L :
negq t8, t6 # E : build bitmask of bytes <= zero
mskqh t1, t4, t1 # U :
and t6, t8, t12 # E :
subq t12, 1, t6 # E : (stall)
or t6, t12, t8 # E : (stall)
zapnot t2, t8, t2 # U : prepare source word; mirror changes (stall)
zapnot t1, t8, t1 # U : to source validity mask
andnot t0, t2, t0 # E : zero place for source to reside
or t0, t1, t0 # E : and put it there (stall both t0, t1)
stq_u t0, 0(a0) # L : (stall)
ret (t9) # L0 : Latency=3
nop
nop
nop
.end __stxncpy