mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-11 07:04:04 +08:00
0c0abbc580
Signed-off-by: Ralf Baechle <ralf@linux-mips.org> The Au1000 ethernet driver references plenty of CONFIG_* symbols. Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
2264 lines
57 KiB
C
2264 lines
57 KiB
C
/*
|
|
*
|
|
* Alchemy Au1x00 ethernet driver
|
|
*
|
|
* Copyright 2001,2002,2003 MontaVista Software Inc.
|
|
* Copyright 2002 TimeSys Corp.
|
|
* Added ethtool/mii-tool support,
|
|
* Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
|
|
* Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
|
|
* or riemer@riemer-nt.de: fixed the link beat detection with
|
|
* ioctls (SIOCGMIIPHY)
|
|
* Author: MontaVista Software, Inc.
|
|
* ppopov@mvista.com or source@mvista.com
|
|
*
|
|
* ########################################################################
|
|
*
|
|
* This program is free software; you can distribute it and/or modify it
|
|
* under the terms of the GNU General Public License (Version 2) as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
|
|
*
|
|
* ########################################################################
|
|
*
|
|
*
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/string.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/mipsregs.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/io.h>
|
|
#include <asm/processor.h>
|
|
|
|
#include <asm/mach-au1x00/au1000.h>
|
|
#include <asm/cpu.h>
|
|
#include "au1000_eth.h"
|
|
|
|
#ifdef AU1000_ETH_DEBUG
|
|
static int au1000_debug = 5;
|
|
#else
|
|
static int au1000_debug = 3;
|
|
#endif
|
|
|
|
#define DRV_NAME "au1000eth"
|
|
#define DRV_VERSION "1.5"
|
|
#define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>"
|
|
#define DRV_DESC "Au1xxx on-chip Ethernet driver"
|
|
|
|
MODULE_AUTHOR(DRV_AUTHOR);
|
|
MODULE_DESCRIPTION(DRV_DESC);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
// prototypes
|
|
static void hard_stop(struct net_device *);
|
|
static void enable_rx_tx(struct net_device *dev);
|
|
static struct net_device * au1000_probe(u32 ioaddr, int irq, int port_num);
|
|
static int au1000_init(struct net_device *);
|
|
static int au1000_open(struct net_device *);
|
|
static int au1000_close(struct net_device *);
|
|
static int au1000_tx(struct sk_buff *, struct net_device *);
|
|
static int au1000_rx(struct net_device *);
|
|
static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *);
|
|
static void au1000_tx_timeout(struct net_device *);
|
|
static int au1000_set_config(struct net_device *dev, struct ifmap *map);
|
|
static void set_rx_mode(struct net_device *);
|
|
static struct net_device_stats *au1000_get_stats(struct net_device *);
|
|
static inline void update_tx_stats(struct net_device *, u32, u32);
|
|
static inline void update_rx_stats(struct net_device *, u32);
|
|
static void au1000_timer(unsigned long);
|
|
static int au1000_ioctl(struct net_device *, struct ifreq *, int);
|
|
static int mdio_read(struct net_device *, int, int);
|
|
static void mdio_write(struct net_device *, int, int, u16);
|
|
static void dump_mii(struct net_device *dev, int phy_id);
|
|
|
|
// externs
|
|
extern void ack_rise_edge_irq(unsigned int);
|
|
extern int get_ethernet_addr(char *ethernet_addr);
|
|
extern void str2eaddr(unsigned char *ea, unsigned char *str);
|
|
extern char * __init prom_getcmdline(void);
|
|
|
|
/*
|
|
* Theory of operation
|
|
*
|
|
* The Au1000 MACs use a simple rx and tx descriptor ring scheme.
|
|
* There are four receive and four transmit descriptors. These
|
|
* descriptors are not in memory; rather, they are just a set of
|
|
* hardware registers.
|
|
*
|
|
* Since the Au1000 has a coherent data cache, the receive and
|
|
* transmit buffers are allocated from the KSEG0 segment. The
|
|
* hardware registers, however, are still mapped at KSEG1 to
|
|
* make sure there's no out-of-order writes, and that all writes
|
|
* complete immediately.
|
|
*/
|
|
|
|
/* These addresses are only used if yamon doesn't tell us what
|
|
* the mac address is, and the mac address is not passed on the
|
|
* command line.
|
|
*/
|
|
static unsigned char au1000_mac_addr[6] __devinitdata = {
|
|
0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
|
|
};
|
|
|
|
#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
|
|
#define RUN_AT(x) (jiffies + (x))
|
|
|
|
// For reading/writing 32-bit words from/to DMA memory
|
|
#define cpu_to_dma32 cpu_to_be32
|
|
#define dma32_to_cpu be32_to_cpu
|
|
|
|
struct au1000_private *au_macs[NUM_ETH_INTERFACES];
|
|
|
|
/* FIXME
|
|
* All of the PHY code really should be detached from the MAC
|
|
* code.
|
|
*/
|
|
|
|
/* Default advertise */
|
|
#define GENMII_DEFAULT_ADVERTISE \
|
|
ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
|
|
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
|
|
ADVERTISED_Autoneg
|
|
|
|
#define GENMII_DEFAULT_FEATURES \
|
|
SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
|
|
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
|
|
SUPPORTED_Autoneg
|
|
|
|
int bcm_5201_init(struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 data;
|
|
|
|
/* Stop auto-negotiation */
|
|
data = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
|
|
|
|
/* Set advertisement to 10/100 and Half/Full duplex
|
|
* (full capabilities) */
|
|
data = mdio_read(dev, phy_addr, MII_ANADV);
|
|
data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
|
|
mdio_write(dev, phy_addr, MII_ANADV, data);
|
|
|
|
/* Restart auto-negotiation */
|
|
data = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
|
|
mdio_write(dev, phy_addr, MII_CONTROL, data);
|
|
|
|
if (au1000_debug > 4)
|
|
dump_mii(dev, phy_addr);
|
|
return 0;
|
|
}
|
|
|
|
int bcm_5201_reset(struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 mii_control, timeout;
|
|
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
|
|
mdelay(1);
|
|
for (timeout = 100; timeout > 0; --timeout) {
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
if ((mii_control & MII_CNTL_RESET) == 0)
|
|
break;
|
|
mdelay(1);
|
|
}
|
|
if (mii_control & MII_CNTL_RESET) {
|
|
printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
|
|
{
|
|
u16 mii_data;
|
|
struct au1000_private *aup;
|
|
|
|
if (!dev) {
|
|
printk(KERN_ERR "bcm_5201_status error: NULL dev\n");
|
|
return -1;
|
|
}
|
|
aup = (struct au1000_private *) dev->priv;
|
|
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
|
|
if (mii_data & MII_STAT_LINK) {
|
|
*link = 1;
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
|
|
if (mii_data & MII_AUX_100) {
|
|
if (mii_data & MII_AUX_FDX) {
|
|
*speed = IF_PORT_100BASEFX;
|
|
dev->if_port = IF_PORT_100BASEFX;
|
|
}
|
|
else {
|
|
*speed = IF_PORT_100BASETX;
|
|
dev->if_port = IF_PORT_100BASETX;
|
|
}
|
|
}
|
|
else {
|
|
*speed = IF_PORT_10BASET;
|
|
dev->if_port = IF_PORT_10BASET;
|
|
}
|
|
|
|
}
|
|
else {
|
|
*link = 0;
|
|
*speed = 0;
|
|
dev->if_port = IF_PORT_UNKNOWN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int lsi_80227_init(struct net_device *dev, int phy_addr)
|
|
{
|
|
if (au1000_debug > 4)
|
|
printk("lsi_80227_init\n");
|
|
|
|
/* restart auto-negotiation */
|
|
mdio_write(dev, phy_addr, MII_CONTROL,
|
|
MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); // | MII_CNTL_FDX);
|
|
mdelay(1);
|
|
|
|
/* set up LEDs to correct display */
|
|
#ifdef CONFIG_MIPS_MTX1
|
|
mdio_write(dev, phy_addr, 17, 0xff80);
|
|
#else
|
|
mdio_write(dev, phy_addr, 17, 0xffc0);
|
|
#endif
|
|
|
|
if (au1000_debug > 4)
|
|
dump_mii(dev, phy_addr);
|
|
return 0;
|
|
}
|
|
|
|
int lsi_80227_reset(struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 mii_control, timeout;
|
|
|
|
if (au1000_debug > 4) {
|
|
printk("lsi_80227_reset\n");
|
|
dump_mii(dev, phy_addr);
|
|
}
|
|
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
|
|
mdelay(1);
|
|
for (timeout = 100; timeout > 0; --timeout) {
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
if ((mii_control & MII_CNTL_RESET) == 0)
|
|
break;
|
|
mdelay(1);
|
|
}
|
|
if (mii_control & MII_CNTL_RESET) {
|
|
printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
|
|
{
|
|
u16 mii_data;
|
|
struct au1000_private *aup;
|
|
|
|
if (!dev) {
|
|
printk(KERN_ERR "lsi_80227_status error: NULL dev\n");
|
|
return -1;
|
|
}
|
|
aup = (struct au1000_private *) dev->priv;
|
|
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
|
|
if (mii_data & MII_STAT_LINK) {
|
|
*link = 1;
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_PHY_STAT);
|
|
if (mii_data & MII_LSI_PHY_STAT_SPD) {
|
|
if (mii_data & MII_LSI_PHY_STAT_FDX) {
|
|
*speed = IF_PORT_100BASEFX;
|
|
dev->if_port = IF_PORT_100BASEFX;
|
|
}
|
|
else {
|
|
*speed = IF_PORT_100BASETX;
|
|
dev->if_port = IF_PORT_100BASETX;
|
|
}
|
|
}
|
|
else {
|
|
*speed = IF_PORT_10BASET;
|
|
dev->if_port = IF_PORT_10BASET;
|
|
}
|
|
|
|
}
|
|
else {
|
|
*link = 0;
|
|
*speed = 0;
|
|
dev->if_port = IF_PORT_UNKNOWN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int am79c901_init(struct net_device *dev, int phy_addr)
|
|
{
|
|
printk("am79c901_init\n");
|
|
return 0;
|
|
}
|
|
|
|
int am79c901_reset(struct net_device *dev, int phy_addr)
|
|
{
|
|
printk("am79c901_reset\n");
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int am79c874_init(struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 data;
|
|
|
|
/* 79c874 has quit resembled bit assignments to BCM5201 */
|
|
if (au1000_debug > 4)
|
|
printk("am79c847_init\n");
|
|
|
|
/* Stop auto-negotiation */
|
|
data = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
|
|
|
|
/* Set advertisement to 10/100 and Half/Full duplex
|
|
* (full capabilities) */
|
|
data = mdio_read(dev, phy_addr, MII_ANADV);
|
|
data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
|
|
mdio_write(dev, phy_addr, MII_ANADV, data);
|
|
|
|
/* Restart auto-negotiation */
|
|
data = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
|
|
|
|
mdio_write(dev, phy_addr, MII_CONTROL, data);
|
|
|
|
if (au1000_debug > 4) dump_mii(dev, phy_addr);
|
|
return 0;
|
|
}
|
|
|
|
int am79c874_reset(struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 mii_control, timeout;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("am79c874_reset\n");
|
|
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
|
|
mdelay(1);
|
|
for (timeout = 100; timeout > 0; --timeout) {
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
if ((mii_control & MII_CNTL_RESET) == 0)
|
|
break;
|
|
mdelay(1);
|
|
}
|
|
if (mii_control & MII_CNTL_RESET) {
|
|
printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
am79c874_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
|
|
{
|
|
u16 mii_data;
|
|
struct au1000_private *aup;
|
|
|
|
// printk("am79c874_status\n");
|
|
if (!dev) {
|
|
printk(KERN_ERR "am79c874_status error: NULL dev\n");
|
|
return -1;
|
|
}
|
|
|
|
aup = (struct au1000_private *) dev->priv;
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
|
|
|
|
if (mii_data & MII_STAT_LINK) {
|
|
*link = 1;
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_AMD_PHY_STAT);
|
|
if (mii_data & MII_AMD_PHY_STAT_SPD) {
|
|
if (mii_data & MII_AMD_PHY_STAT_FDX) {
|
|
*speed = IF_PORT_100BASEFX;
|
|
dev->if_port = IF_PORT_100BASEFX;
|
|
}
|
|
else {
|
|
*speed = IF_PORT_100BASETX;
|
|
dev->if_port = IF_PORT_100BASETX;
|
|
}
|
|
}
|
|
else {
|
|
*speed = IF_PORT_10BASET;
|
|
dev->if_port = IF_PORT_10BASET;
|
|
}
|
|
|
|
}
|
|
else {
|
|
*link = 0;
|
|
*speed = 0;
|
|
dev->if_port = IF_PORT_UNKNOWN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int lxt971a_init(struct net_device *dev, int phy_addr)
|
|
{
|
|
if (au1000_debug > 4)
|
|
printk("lxt971a_init\n");
|
|
|
|
/* restart auto-negotiation */
|
|
mdio_write(dev, phy_addr, MII_CONTROL,
|
|
MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO | MII_CNTL_FDX);
|
|
|
|
/* set up LEDs to correct display */
|
|
mdio_write(dev, phy_addr, 20, 0x0422);
|
|
|
|
if (au1000_debug > 4)
|
|
dump_mii(dev, phy_addr);
|
|
return 0;
|
|
}
|
|
|
|
int lxt971a_reset(struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 mii_control, timeout;
|
|
|
|
if (au1000_debug > 4) {
|
|
printk("lxt971a_reset\n");
|
|
dump_mii(dev, phy_addr);
|
|
}
|
|
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
|
|
mdelay(1);
|
|
for (timeout = 100; timeout > 0; --timeout) {
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
if ((mii_control & MII_CNTL_RESET) == 0)
|
|
break;
|
|
mdelay(1);
|
|
}
|
|
if (mii_control & MII_CNTL_RESET) {
|
|
printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
lxt971a_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
|
|
{
|
|
u16 mii_data;
|
|
struct au1000_private *aup;
|
|
|
|
if (!dev) {
|
|
printk(KERN_ERR "lxt971a_status error: NULL dev\n");
|
|
return -1;
|
|
}
|
|
aup = (struct au1000_private *) dev->priv;
|
|
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
|
|
if (mii_data & MII_STAT_LINK) {
|
|
*link = 1;
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_INTEL_PHY_STAT);
|
|
if (mii_data & MII_INTEL_PHY_STAT_SPD) {
|
|
if (mii_data & MII_INTEL_PHY_STAT_FDX) {
|
|
*speed = IF_PORT_100BASEFX;
|
|
dev->if_port = IF_PORT_100BASEFX;
|
|
}
|
|
else {
|
|
*speed = IF_PORT_100BASETX;
|
|
dev->if_port = IF_PORT_100BASETX;
|
|
}
|
|
}
|
|
else {
|
|
*speed = IF_PORT_10BASET;
|
|
dev->if_port = IF_PORT_10BASET;
|
|
}
|
|
|
|
}
|
|
else {
|
|
*link = 0;
|
|
*speed = 0;
|
|
dev->if_port = IF_PORT_UNKNOWN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int ks8995m_init(struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 data;
|
|
|
|
// printk("ks8995m_init\n");
|
|
/* Stop auto-negotiation */
|
|
data = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
|
|
|
|
/* Set advertisement to 10/100 and Half/Full duplex
|
|
* (full capabilities) */
|
|
data = mdio_read(dev, phy_addr, MII_ANADV);
|
|
data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
|
|
mdio_write(dev, phy_addr, MII_ANADV, data);
|
|
|
|
/* Restart auto-negotiation */
|
|
data = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
|
|
mdio_write(dev, phy_addr, MII_CONTROL, data);
|
|
|
|
if (au1000_debug > 4) dump_mii(dev, phy_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ks8995m_reset(struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 mii_control, timeout;
|
|
|
|
// printk("ks8995m_reset\n");
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
|
|
mdelay(1);
|
|
for (timeout = 100; timeout > 0; --timeout) {
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
if ((mii_control & MII_CNTL_RESET) == 0)
|
|
break;
|
|
mdelay(1);
|
|
}
|
|
if (mii_control & MII_CNTL_RESET) {
|
|
printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int ks8995m_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
|
|
{
|
|
u16 mii_data;
|
|
struct au1000_private *aup;
|
|
|
|
if (!dev) {
|
|
printk(KERN_ERR "ks8995m_status error: NULL dev\n");
|
|
return -1;
|
|
}
|
|
aup = (struct au1000_private *) dev->priv;
|
|
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
|
|
if (mii_data & MII_STAT_LINK) {
|
|
*link = 1;
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
|
|
if (mii_data & MII_AUX_100) {
|
|
if (mii_data & MII_AUX_FDX) {
|
|
*speed = IF_PORT_100BASEFX;
|
|
dev->if_port = IF_PORT_100BASEFX;
|
|
}
|
|
else {
|
|
*speed = IF_PORT_100BASETX;
|
|
dev->if_port = IF_PORT_100BASETX;
|
|
}
|
|
}
|
|
else {
|
|
*speed = IF_PORT_10BASET;
|
|
dev->if_port = IF_PORT_10BASET;
|
|
}
|
|
|
|
}
|
|
else {
|
|
*link = 0;
|
|
*speed = 0;
|
|
dev->if_port = IF_PORT_UNKNOWN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
smsc_83C185_init (struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 data;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("smsc_83C185_init\n");
|
|
|
|
/* Stop auto-negotiation */
|
|
data = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
|
|
|
|
/* Set advertisement to 10/100 and Half/Full duplex
|
|
* (full capabilities) */
|
|
data = mdio_read(dev, phy_addr, MII_ANADV);
|
|
data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
|
|
mdio_write(dev, phy_addr, MII_ANADV, data);
|
|
|
|
/* Restart auto-negotiation */
|
|
data = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
|
|
|
|
mdio_write(dev, phy_addr, MII_CONTROL, data);
|
|
|
|
if (au1000_debug > 4) dump_mii(dev, phy_addr);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
smsc_83C185_reset (struct net_device *dev, int phy_addr)
|
|
{
|
|
s16 mii_control, timeout;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("smsc_83C185_reset\n");
|
|
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
|
|
mdelay(1);
|
|
for (timeout = 100; timeout > 0; --timeout) {
|
|
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
|
|
if ((mii_control & MII_CNTL_RESET) == 0)
|
|
break;
|
|
mdelay(1);
|
|
}
|
|
if (mii_control & MII_CNTL_RESET) {
|
|
printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
smsc_83C185_status (struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
|
|
{
|
|
u16 mii_data;
|
|
struct au1000_private *aup;
|
|
|
|
if (!dev) {
|
|
printk(KERN_ERR "smsc_83C185_status error: NULL dev\n");
|
|
return -1;
|
|
}
|
|
|
|
aup = (struct au1000_private *) dev->priv;
|
|
mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
|
|
|
|
if (mii_data & MII_STAT_LINK) {
|
|
*link = 1;
|
|
mii_data = mdio_read(dev, aup->phy_addr, 0x1f);
|
|
if (mii_data & (1<<3)) {
|
|
if (mii_data & (1<<4)) {
|
|
*speed = IF_PORT_100BASEFX;
|
|
dev->if_port = IF_PORT_100BASEFX;
|
|
}
|
|
else {
|
|
*speed = IF_PORT_100BASETX;
|
|
dev->if_port = IF_PORT_100BASETX;
|
|
}
|
|
}
|
|
else {
|
|
*speed = IF_PORT_10BASET;
|
|
dev->if_port = IF_PORT_10BASET;
|
|
}
|
|
}
|
|
else {
|
|
*link = 0;
|
|
*speed = 0;
|
|
dev->if_port = IF_PORT_UNKNOWN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_MIPS_BOSPORUS
|
|
int stub_init(struct net_device *dev, int phy_addr)
|
|
{
|
|
//printk("PHY stub_init\n");
|
|
return 0;
|
|
}
|
|
|
|
int stub_reset(struct net_device *dev, int phy_addr)
|
|
{
|
|
//printk("PHY stub_reset\n");
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
stub_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
|
|
{
|
|
//printk("PHY stub_status\n");
|
|
*link = 1;
|
|
/* hmmm, revisit */
|
|
*speed = IF_PORT_100BASEFX;
|
|
dev->if_port = IF_PORT_100BASEFX;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
struct phy_ops bcm_5201_ops = {
|
|
bcm_5201_init,
|
|
bcm_5201_reset,
|
|
bcm_5201_status,
|
|
};
|
|
|
|
struct phy_ops am79c874_ops = {
|
|
am79c874_init,
|
|
am79c874_reset,
|
|
am79c874_status,
|
|
};
|
|
|
|
struct phy_ops am79c901_ops = {
|
|
am79c901_init,
|
|
am79c901_reset,
|
|
am79c901_status,
|
|
};
|
|
|
|
struct phy_ops lsi_80227_ops = {
|
|
lsi_80227_init,
|
|
lsi_80227_reset,
|
|
lsi_80227_status,
|
|
};
|
|
|
|
struct phy_ops lxt971a_ops = {
|
|
lxt971a_init,
|
|
lxt971a_reset,
|
|
lxt971a_status,
|
|
};
|
|
|
|
struct phy_ops ks8995m_ops = {
|
|
ks8995m_init,
|
|
ks8995m_reset,
|
|
ks8995m_status,
|
|
};
|
|
|
|
struct phy_ops smsc_83C185_ops = {
|
|
smsc_83C185_init,
|
|
smsc_83C185_reset,
|
|
smsc_83C185_status,
|
|
};
|
|
|
|
#ifdef CONFIG_MIPS_BOSPORUS
|
|
struct phy_ops stub_ops = {
|
|
stub_init,
|
|
stub_reset,
|
|
stub_status,
|
|
};
|
|
#endif
|
|
|
|
static struct mii_chip_info {
|
|
const char * name;
|
|
u16 phy_id0;
|
|
u16 phy_id1;
|
|
struct phy_ops *phy_ops;
|
|
int dual_phy;
|
|
} mii_chip_table[] = {
|
|
{"Broadcom BCM5201 10/100 BaseT PHY",0x0040,0x6212, &bcm_5201_ops,0},
|
|
{"Broadcom BCM5221 10/100 BaseT PHY",0x0040,0x61e4, &bcm_5201_ops,0},
|
|
{"Broadcom BCM5222 10/100 BaseT PHY",0x0040,0x6322, &bcm_5201_ops,1},
|
|
{"NS DP83847 PHY", 0x2000, 0x5c30, &bcm_5201_ops ,0},
|
|
{"AMD 79C901 HomePNA PHY",0x0000,0x35c8, &am79c901_ops,0},
|
|
{"AMD 79C874 10/100 BaseT PHY",0x0022,0x561b, &am79c874_ops,0},
|
|
{"LSI 80227 10/100 BaseT PHY",0x0016,0xf840, &lsi_80227_ops,0},
|
|
{"Intel LXT971A Dual Speed PHY",0x0013,0x78e2, &lxt971a_ops,0},
|
|
{"Kendin KS8995M 10/100 BaseT PHY",0x0022,0x1450, &ks8995m_ops,0},
|
|
{"SMSC LAN83C185 10/100 BaseT PHY",0x0007,0xc0a3, &smsc_83C185_ops,0},
|
|
#ifdef CONFIG_MIPS_BOSPORUS
|
|
{"Stub", 0x1234, 0x5678, &stub_ops },
|
|
#endif
|
|
{0,},
|
|
};
|
|
|
|
static int mdio_read(struct net_device *dev, int phy_id, int reg)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
volatile u32 *mii_control_reg;
|
|
volatile u32 *mii_data_reg;
|
|
u32 timedout = 20;
|
|
u32 mii_control;
|
|
|
|
#ifdef CONFIG_BCM5222_DUAL_PHY
|
|
/* First time we probe, it's for the mac0 phy.
|
|
* Since we haven't determined yet that we have a dual phy,
|
|
* aup->mii->mii_control_reg won't be setup and we'll
|
|
* default to the else statement.
|
|
* By the time we probe for the mac1 phy, the mii_control_reg
|
|
* will be setup to be the address of the mac0 phy control since
|
|
* both phys are controlled through mac0.
|
|
*/
|
|
if (aup->mii && aup->mii->mii_control_reg) {
|
|
mii_control_reg = aup->mii->mii_control_reg;
|
|
mii_data_reg = aup->mii->mii_data_reg;
|
|
}
|
|
else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
|
|
/* assume both phys are controlled through mac0 */
|
|
mii_control_reg = au_macs[0]->mii->mii_control_reg;
|
|
mii_data_reg = au_macs[0]->mii->mii_data_reg;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* default control and data reg addresses */
|
|
mii_control_reg = &aup->mac->mii_control;
|
|
mii_data_reg = &aup->mac->mii_data;
|
|
}
|
|
|
|
while (*mii_control_reg & MAC_MII_BUSY) {
|
|
mdelay(1);
|
|
if (--timedout == 0) {
|
|
printk(KERN_ERR "%s: read_MII busy timeout!!\n",
|
|
dev->name);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
mii_control = MAC_SET_MII_SELECT_REG(reg) |
|
|
MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ;
|
|
|
|
*mii_control_reg = mii_control;
|
|
|
|
timedout = 20;
|
|
while (*mii_control_reg & MAC_MII_BUSY) {
|
|
mdelay(1);
|
|
if (--timedout == 0) {
|
|
printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
|
|
dev->name);
|
|
return -1;
|
|
}
|
|
}
|
|
return (int)*mii_data_reg;
|
|
}
|
|
|
|
static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
volatile u32 *mii_control_reg;
|
|
volatile u32 *mii_data_reg;
|
|
u32 timedout = 20;
|
|
u32 mii_control;
|
|
|
|
#ifdef CONFIG_BCM5222_DUAL_PHY
|
|
if (aup->mii && aup->mii->mii_control_reg) {
|
|
mii_control_reg = aup->mii->mii_control_reg;
|
|
mii_data_reg = aup->mii->mii_data_reg;
|
|
}
|
|
else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
|
|
/* assume both phys are controlled through mac0 */
|
|
mii_control_reg = au_macs[0]->mii->mii_control_reg;
|
|
mii_data_reg = au_macs[0]->mii->mii_data_reg;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* default control and data reg addresses */
|
|
mii_control_reg = &aup->mac->mii_control;
|
|
mii_data_reg = &aup->mac->mii_data;
|
|
}
|
|
|
|
while (*mii_control_reg & MAC_MII_BUSY) {
|
|
mdelay(1);
|
|
if (--timedout == 0) {
|
|
printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
|
|
dev->name);
|
|
return;
|
|
}
|
|
}
|
|
|
|
mii_control = MAC_SET_MII_SELECT_REG(reg) |
|
|
MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE;
|
|
|
|
*mii_data_reg = value;
|
|
*mii_control_reg = mii_control;
|
|
}
|
|
|
|
|
|
static void dump_mii(struct net_device *dev, int phy_id)
|
|
{
|
|
int i, val;
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
if ((val = mdio_read(dev, phy_id, i)) >= 0)
|
|
printk("%s: MII Reg %d=%x\n", dev->name, i, val);
|
|
}
|
|
for (i = 16; i < 25; i++) {
|
|
if ((val = mdio_read(dev, phy_id, i)) >= 0)
|
|
printk("%s: MII Reg %d=%x\n", dev->name, i, val);
|
|
}
|
|
}
|
|
|
|
static int mii_probe (struct net_device * dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
int phy_addr;
|
|
#ifdef CONFIG_MIPS_BOSPORUS
|
|
int phy_found=0;
|
|
#endif
|
|
|
|
/* search for total of 32 possible mii phy addresses */
|
|
for (phy_addr = 0; phy_addr < 32; phy_addr++) {
|
|
u16 mii_status;
|
|
u16 phy_id0, phy_id1;
|
|
int i;
|
|
|
|
#ifdef CONFIG_BCM5222_DUAL_PHY
|
|
/* Mask the already found phy, try next one */
|
|
if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
|
|
if (au_macs[0]->phy_addr == phy_addr)
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
mii_status = mdio_read(dev, phy_addr, MII_STATUS);
|
|
if (mii_status == 0xffff || mii_status == 0x0000)
|
|
/* the mii is not accessable, try next one */
|
|
continue;
|
|
|
|
phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0);
|
|
phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1);
|
|
|
|
/* search our mii table for the current mii */
|
|
for (i = 0; mii_chip_table[i].phy_id1; i++) {
|
|
if (phy_id0 == mii_chip_table[i].phy_id0 &&
|
|
phy_id1 == mii_chip_table[i].phy_id1) {
|
|
struct mii_phy * mii_phy = aup->mii;
|
|
|
|
printk(KERN_INFO "%s: %s at phy address %d\n",
|
|
dev->name, mii_chip_table[i].name,
|
|
phy_addr);
|
|
#ifdef CONFIG_MIPS_BOSPORUS
|
|
phy_found = 1;
|
|
#endif
|
|
mii_phy->chip_info = mii_chip_table+i;
|
|
aup->phy_addr = phy_addr;
|
|
aup->want_autoneg = 1;
|
|
aup->phy_ops = mii_chip_table[i].phy_ops;
|
|
aup->phy_ops->phy_init(dev,phy_addr);
|
|
|
|
// Check for dual-phy and then store required
|
|
// values and set indicators. We need to do
|
|
// this now since mdio_{read,write} need the
|
|
// control and data register addresses.
|
|
#ifdef CONFIG_BCM5222_DUAL_PHY
|
|
if ( mii_chip_table[i].dual_phy) {
|
|
|
|
/* assume both phys are controlled
|
|
* through MAC0. Board specific? */
|
|
|
|
/* sanity check */
|
|
if (!au_macs[0] || !au_macs[0]->mii)
|
|
return -1;
|
|
aup->mii->mii_control_reg = (u32 *)
|
|
&au_macs[0]->mac->mii_control;
|
|
aup->mii->mii_data_reg = (u32 *)
|
|
&au_macs[0]->mac->mii_data;
|
|
}
|
|
#endif
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
found:
|
|
|
|
#ifdef CONFIG_MIPS_BOSPORUS
|
|
/* This is a workaround for the Micrel/Kendin 5 port switch
|
|
The second MAC doesn't see a PHY connected... so we need to
|
|
trick it into thinking we have one.
|
|
|
|
If this kernel is run on another Au1500 development board
|
|
the stub will be found as well as the actual PHY. However,
|
|
the last found PHY will be used... usually at Addr 31 (Db1500).
|
|
*/
|
|
if ( (!phy_found) )
|
|
{
|
|
u16 phy_id0, phy_id1;
|
|
int i;
|
|
|
|
phy_id0 = 0x1234;
|
|
phy_id1 = 0x5678;
|
|
|
|
/* search our mii table for the current mii */
|
|
for (i = 0; mii_chip_table[i].phy_id1; i++) {
|
|
if (phy_id0 == mii_chip_table[i].phy_id0 &&
|
|
phy_id1 == mii_chip_table[i].phy_id1) {
|
|
struct mii_phy * mii_phy;
|
|
|
|
printk(KERN_INFO "%s: %s at phy address %d\n",
|
|
dev->name, mii_chip_table[i].name,
|
|
phy_addr);
|
|
mii_phy = kmalloc(sizeof(struct mii_phy),
|
|
GFP_KERNEL);
|
|
if (mii_phy) {
|
|
mii_phy->chip_info = mii_chip_table+i;
|
|
aup->phy_addr = phy_addr;
|
|
mii_phy->next = aup->mii;
|
|
aup->phy_ops =
|
|
mii_chip_table[i].phy_ops;
|
|
aup->mii = mii_phy;
|
|
aup->phy_ops->phy_init(dev,phy_addr);
|
|
} else {
|
|
printk(KERN_ERR "%s: out of memory\n",
|
|
dev->name);
|
|
return -1;
|
|
}
|
|
mii_phy->chip_info = mii_chip_table+i;
|
|
aup->phy_addr = phy_addr;
|
|
aup->phy_ops = mii_chip_table[i].phy_ops;
|
|
aup->phy_ops->phy_init(dev,phy_addr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (aup->mac_id == 0) {
|
|
/* the Bosporus phy responds to addresses 0-5 but
|
|
* 5 is the correct one.
|
|
*/
|
|
aup->phy_addr = 5;
|
|
}
|
|
#endif
|
|
|
|
if (aup->mii->chip_info == NULL) {
|
|
printk(KERN_ERR "%s: Au1x No known MII transceivers found!\n",
|
|
dev->name);
|
|
return -1;
|
|
}
|
|
|
|
printk(KERN_INFO "%s: Using %s as default\n",
|
|
dev->name, aup->mii->chip_info->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Buffer allocation/deallocation routines. The buffer descriptor returned
|
|
* has the virtual and dma address of a buffer suitable for
|
|
* both, receive and transmit operations.
|
|
*/
|
|
static db_dest_t *GetFreeDB(struct au1000_private *aup)
|
|
{
|
|
db_dest_t *pDB;
|
|
pDB = aup->pDBfree;
|
|
|
|
if (pDB) {
|
|
aup->pDBfree = pDB->pnext;
|
|
}
|
|
return pDB;
|
|
}
|
|
|
|
void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB)
|
|
{
|
|
db_dest_t *pDBfree = aup->pDBfree;
|
|
if (pDBfree)
|
|
pDBfree->pnext = pDB;
|
|
aup->pDBfree = pDB;
|
|
}
|
|
|
|
static void enable_rx_tx(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
|
|
|
|
aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
|
|
au_sync_delay(10);
|
|
}
|
|
|
|
static void hard_stop(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk(KERN_INFO "%s: hard stop\n", dev->name);
|
|
|
|
aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
|
|
au_sync_delay(10);
|
|
}
|
|
|
|
|
|
static void reset_mac(struct net_device *dev)
|
|
{
|
|
int i;
|
|
u32 flags;
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk(KERN_INFO "%s: reset mac, aup %x\n",
|
|
dev->name, (unsigned)aup);
|
|
|
|
spin_lock_irqsave(&aup->lock, flags);
|
|
if (aup->timer.function == &au1000_timer) {/* check if timer initted */
|
|
del_timer(&aup->timer);
|
|
}
|
|
|
|
hard_stop(dev);
|
|
#ifdef CONFIG_BCM5222_DUAL_PHY
|
|
if (aup->mac_id != 0) {
|
|
#endif
|
|
/* If BCM5222, we can't leave MAC0 in reset because then
|
|
* we can't access the dual phy for ETH1 */
|
|
*aup->enable = MAC_EN_CLOCK_ENABLE;
|
|
au_sync_delay(2);
|
|
*aup->enable = 0;
|
|
au_sync_delay(2);
|
|
#ifdef CONFIG_BCM5222_DUAL_PHY
|
|
}
|
|
#endif
|
|
aup->tx_full = 0;
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
/* reset control bits */
|
|
aup->rx_dma_ring[i]->buff_stat &= ~0xf;
|
|
}
|
|
for (i = 0; i < NUM_TX_DMA; i++) {
|
|
/* reset control bits */
|
|
aup->tx_dma_ring[i]->buff_stat &= ~0xf;
|
|
}
|
|
spin_unlock_irqrestore(&aup->lock, flags);
|
|
}
|
|
|
|
|
|
/*
|
|
* Setup the receive and transmit "rings". These pointers are the addresses
|
|
* of the rx and tx MAC DMA registers so they are fixed by the hardware --
|
|
* these are not descriptors sitting in memory.
|
|
*/
|
|
static void
|
|
setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
aup->rx_dma_ring[i] =
|
|
(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
|
|
}
|
|
for (i = 0; i < NUM_TX_DMA; i++) {
|
|
aup->tx_dma_ring[i] =
|
|
(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
|
|
}
|
|
}
|
|
|
|
static struct {
|
|
int port;
|
|
u32 base_addr;
|
|
u32 macen_addr;
|
|
int irq;
|
|
struct net_device *dev;
|
|
} iflist[2];
|
|
|
|
static int num_ifs;
|
|
|
|
/*
|
|
* Setup the base address and interupt of the Au1xxx ethernet macs
|
|
* based on cpu type and whether the interface is enabled in sys_pinfunc
|
|
* register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0.
|
|
*/
|
|
static int __init au1000_init_module(void)
|
|
{
|
|
struct cpuinfo_mips *c = ¤t_cpu_data;
|
|
int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4);
|
|
struct net_device *dev;
|
|
int i, found_one = 0;
|
|
|
|
switch (c->cputype) {
|
|
#ifdef CONFIG_SOC_AU1000
|
|
case CPU_AU1000:
|
|
num_ifs = 2 - ni;
|
|
iflist[0].base_addr = AU1000_ETH0_BASE;
|
|
iflist[1].base_addr = AU1000_ETH1_BASE;
|
|
iflist[0].macen_addr = AU1000_MAC0_ENABLE;
|
|
iflist[1].macen_addr = AU1000_MAC1_ENABLE;
|
|
iflist[0].irq = AU1000_MAC0_DMA_INT;
|
|
iflist[1].irq = AU1000_MAC1_DMA_INT;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_SOC_AU1100
|
|
case CPU_AU1100:
|
|
num_ifs = 1 - ni;
|
|
iflist[0].base_addr = AU1100_ETH0_BASE;
|
|
iflist[0].macen_addr = AU1100_MAC0_ENABLE;
|
|
iflist[0].irq = AU1100_MAC0_DMA_INT;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_SOC_AU1500
|
|
case CPU_AU1500:
|
|
num_ifs = 2 - ni;
|
|
iflist[0].base_addr = AU1500_ETH0_BASE;
|
|
iflist[1].base_addr = AU1500_ETH1_BASE;
|
|
iflist[0].macen_addr = AU1500_MAC0_ENABLE;
|
|
iflist[1].macen_addr = AU1500_MAC1_ENABLE;
|
|
iflist[0].irq = AU1500_MAC0_DMA_INT;
|
|
iflist[1].irq = AU1500_MAC1_DMA_INT;
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_SOC_AU1550
|
|
case CPU_AU1550:
|
|
num_ifs = 2 - ni;
|
|
iflist[0].base_addr = AU1550_ETH0_BASE;
|
|
iflist[1].base_addr = AU1550_ETH1_BASE;
|
|
iflist[0].macen_addr = AU1550_MAC0_ENABLE;
|
|
iflist[1].macen_addr = AU1550_MAC1_ENABLE;
|
|
iflist[0].irq = AU1550_MAC0_DMA_INT;
|
|
iflist[1].irq = AU1550_MAC1_DMA_INT;
|
|
break;
|
|
#endif
|
|
default:
|
|
num_ifs = 0;
|
|
}
|
|
for(i = 0; i < num_ifs; i++) {
|
|
dev = au1000_probe(iflist[i].base_addr, iflist[i].irq, i);
|
|
iflist[i].dev = dev;
|
|
if (dev)
|
|
found_one++;
|
|
}
|
|
if (!found_one)
|
|
return -ENODEV;
|
|
return 0;
|
|
}
|
|
|
|
static int au1000_setup_aneg(struct net_device *dev, u32 advertise)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
u16 ctl, adv;
|
|
|
|
/* Setup standard advertise */
|
|
adv = mdio_read(dev, aup->phy_addr, MII_ADVERTISE);
|
|
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
|
|
if (advertise & ADVERTISED_10baseT_Half)
|
|
adv |= ADVERTISE_10HALF;
|
|
if (advertise & ADVERTISED_10baseT_Full)
|
|
adv |= ADVERTISE_10FULL;
|
|
if (advertise & ADVERTISED_100baseT_Half)
|
|
adv |= ADVERTISE_100HALF;
|
|
if (advertise & ADVERTISED_100baseT_Full)
|
|
adv |= ADVERTISE_100FULL;
|
|
mdio_write(dev, aup->phy_addr, MII_ADVERTISE, adv);
|
|
|
|
/* Start/Restart aneg */
|
|
ctl = mdio_read(dev, aup->phy_addr, MII_BMCR);
|
|
ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
|
|
mdio_write(dev, aup->phy_addr, MII_BMCR, ctl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int au1000_setup_forced(struct net_device *dev, int speed, int fd)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
u16 ctl;
|
|
|
|
ctl = mdio_read(dev, aup->phy_addr, MII_BMCR);
|
|
ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_ANENABLE);
|
|
|
|
/* First reset the PHY */
|
|
mdio_write(dev, aup->phy_addr, MII_BMCR, ctl | BMCR_RESET);
|
|
|
|
/* Select speed & duplex */
|
|
switch (speed) {
|
|
case SPEED_10:
|
|
break;
|
|
case SPEED_100:
|
|
ctl |= BMCR_SPEED100;
|
|
break;
|
|
case SPEED_1000:
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (fd == DUPLEX_FULL)
|
|
ctl |= BMCR_FULLDPLX;
|
|
mdio_write(dev, aup->phy_addr, MII_BMCR, ctl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
au1000_start_link(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
u32 advertise;
|
|
int autoneg;
|
|
int forced_speed;
|
|
int forced_duplex;
|
|
|
|
/* Default advertise */
|
|
advertise = GENMII_DEFAULT_ADVERTISE;
|
|
autoneg = aup->want_autoneg;
|
|
forced_speed = SPEED_100;
|
|
forced_duplex = DUPLEX_FULL;
|
|
|
|
/* Setup link parameters */
|
|
if (cmd) {
|
|
if (cmd->autoneg == AUTONEG_ENABLE) {
|
|
advertise = cmd->advertising;
|
|
autoneg = 1;
|
|
} else {
|
|
autoneg = 0;
|
|
|
|
forced_speed = cmd->speed;
|
|
forced_duplex = cmd->duplex;
|
|
}
|
|
}
|
|
|
|
/* Configure PHY & start aneg */
|
|
aup->want_autoneg = autoneg;
|
|
if (autoneg)
|
|
au1000_setup_aneg(dev, advertise);
|
|
else
|
|
au1000_setup_forced(dev, forced_speed, forced_duplex);
|
|
mod_timer(&aup->timer, jiffies + HZ);
|
|
}
|
|
|
|
static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
u16 link, speed;
|
|
|
|
cmd->supported = GENMII_DEFAULT_FEATURES;
|
|
cmd->advertising = GENMII_DEFAULT_ADVERTISE;
|
|
cmd->port = PORT_MII;
|
|
cmd->transceiver = XCVR_EXTERNAL;
|
|
cmd->phy_address = aup->phy_addr;
|
|
spin_lock_irq(&aup->lock);
|
|
cmd->autoneg = aup->want_autoneg;
|
|
aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
|
|
if ((speed == IF_PORT_100BASETX) || (speed == IF_PORT_100BASEFX))
|
|
cmd->speed = SPEED_100;
|
|
else if (speed == IF_PORT_10BASET)
|
|
cmd->speed = SPEED_10;
|
|
if (link && (dev->if_port == IF_PORT_100BASEFX))
|
|
cmd->duplex = DUPLEX_FULL;
|
|
else
|
|
cmd->duplex = DUPLEX_HALF;
|
|
spin_unlock_irq(&aup->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
unsigned long features = GENMII_DEFAULT_FEATURES;
|
|
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
|
|
return -EINVAL;
|
|
if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
|
|
return -EINVAL;
|
|
if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL)
|
|
return -EINVAL;
|
|
if (cmd->autoneg == AUTONEG_DISABLE)
|
|
switch (cmd->speed) {
|
|
case SPEED_10:
|
|
if (cmd->duplex == DUPLEX_HALF &&
|
|
(features & SUPPORTED_10baseT_Half) == 0)
|
|
return -EINVAL;
|
|
if (cmd->duplex == DUPLEX_FULL &&
|
|
(features & SUPPORTED_10baseT_Full) == 0)
|
|
return -EINVAL;
|
|
break;
|
|
case SPEED_100:
|
|
if (cmd->duplex == DUPLEX_HALF &&
|
|
(features & SUPPORTED_100baseT_Half) == 0)
|
|
return -EINVAL;
|
|
if (cmd->duplex == DUPLEX_FULL &&
|
|
(features & SUPPORTED_100baseT_Full) == 0)
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
else if ((features & SUPPORTED_Autoneg) == 0)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irq(&aup->lock);
|
|
au1000_start_link(dev, cmd);
|
|
spin_unlock_irq(&aup->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int au1000_nway_reset(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
|
|
if (!aup->want_autoneg)
|
|
return -EINVAL;
|
|
spin_lock_irq(&aup->lock);
|
|
au1000_start_link(dev, NULL);
|
|
spin_unlock_irq(&aup->lock);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
|
|
strcpy(info->driver, DRV_NAME);
|
|
strcpy(info->version, DRV_VERSION);
|
|
info->fw_version[0] = '\0';
|
|
sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id);
|
|
info->regdump_len = 0;
|
|
}
|
|
|
|
static u32 au1000_get_link(struct net_device *dev)
|
|
{
|
|
return netif_carrier_ok(dev);
|
|
}
|
|
|
|
static struct ethtool_ops au1000_ethtool_ops = {
|
|
.get_settings = au1000_get_settings,
|
|
.set_settings = au1000_set_settings,
|
|
.get_drvinfo = au1000_get_drvinfo,
|
|
.nway_reset = au1000_nway_reset,
|
|
.get_link = au1000_get_link
|
|
};
|
|
|
|
static struct net_device *
|
|
au1000_probe(u32 ioaddr, int irq, int port_num)
|
|
{
|
|
static unsigned version_printed = 0;
|
|
struct au1000_private *aup = NULL;
|
|
struct net_device *dev = NULL;
|
|
db_dest_t *pDB, *pDBfree;
|
|
char *pmac, *argptr;
|
|
char ethaddr[6];
|
|
int i, err;
|
|
|
|
if (!request_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE, "Au1x00 ENET"))
|
|
return NULL;
|
|
|
|
if (version_printed++ == 0)
|
|
printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
|
|
|
|
dev = alloc_etherdev(sizeof(struct au1000_private));
|
|
if (!dev) {
|
|
printk (KERN_ERR "au1000 eth: alloc_etherdev failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
if ((err = register_netdev(dev))) {
|
|
printk(KERN_ERR "Au1x_eth Cannot register net device err %d\n",
|
|
err);
|
|
free_netdev(dev);
|
|
return NULL;
|
|
}
|
|
|
|
printk("%s: Au1x Ethernet found at 0x%x, irq %d\n",
|
|
dev->name, ioaddr, irq);
|
|
|
|
aup = dev->priv;
|
|
|
|
/* Allocate the data buffers */
|
|
/* Snooping works fine with eth on all au1xxx */
|
|
aup->vaddr = (u32)dma_alloc_noncoherent(NULL,
|
|
MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS),
|
|
&aup->dma_addr,
|
|
0);
|
|
if (!aup->vaddr) {
|
|
free_netdev(dev);
|
|
release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE);
|
|
return NULL;
|
|
}
|
|
|
|
/* aup->mac is the base address of the MAC's registers */
|
|
aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr);
|
|
/* Setup some variables for quick register address access */
|
|
if (ioaddr == iflist[0].base_addr)
|
|
{
|
|
/* check env variables first */
|
|
if (!get_ethernet_addr(ethaddr)) {
|
|
memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr));
|
|
} else {
|
|
/* Check command line */
|
|
argptr = prom_getcmdline();
|
|
if ((pmac = strstr(argptr, "ethaddr=")) == NULL) {
|
|
printk(KERN_INFO "%s: No mac address found\n",
|
|
dev->name);
|
|
/* use the hard coded mac addresses */
|
|
} else {
|
|
str2eaddr(ethaddr, pmac + strlen("ethaddr="));
|
|
memcpy(au1000_mac_addr, ethaddr,
|
|
sizeof(au1000_mac_addr));
|
|
}
|
|
}
|
|
aup->enable = (volatile u32 *)
|
|
((unsigned long)iflist[0].macen_addr);
|
|
memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
|
|
setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
|
|
aup->mac_id = 0;
|
|
au_macs[0] = aup;
|
|
}
|
|
else
|
|
if (ioaddr == iflist[1].base_addr)
|
|
{
|
|
aup->enable = (volatile u32 *)
|
|
((unsigned long)iflist[1].macen_addr);
|
|
memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
|
|
dev->dev_addr[4] += 0x10;
|
|
setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
|
|
aup->mac_id = 1;
|
|
au_macs[1] = aup;
|
|
}
|
|
else
|
|
{
|
|
printk(KERN_ERR "%s: bad ioaddr\n", dev->name);
|
|
}
|
|
|
|
/* bring the device out of reset, otherwise probing the mii
|
|
* will hang */
|
|
*aup->enable = MAC_EN_CLOCK_ENABLE;
|
|
au_sync_delay(2);
|
|
*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |
|
|
MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
|
|
au_sync_delay(2);
|
|
|
|
aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL);
|
|
if (!aup->mii) {
|
|
printk(KERN_ERR "%s: out of memory\n", dev->name);
|
|
goto err_out;
|
|
}
|
|
aup->mii->next = NULL;
|
|
aup->mii->chip_info = NULL;
|
|
aup->mii->status = 0;
|
|
aup->mii->mii_control_reg = 0;
|
|
aup->mii->mii_data_reg = 0;
|
|
|
|
if (mii_probe(dev) != 0) {
|
|
goto err_out;
|
|
}
|
|
|
|
pDBfree = NULL;
|
|
/* setup the data buffer descriptors and attach a buffer to each one */
|
|
pDB = aup->db;
|
|
for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
|
|
pDB->pnext = pDBfree;
|
|
pDBfree = pDB;
|
|
pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
|
|
pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
|
|
pDB++;
|
|
}
|
|
aup->pDBfree = pDBfree;
|
|
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
pDB = GetFreeDB(aup);
|
|
if (!pDB) {
|
|
goto err_out;
|
|
}
|
|
aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
|
|
aup->rx_db_inuse[i] = pDB;
|
|
}
|
|
for (i = 0; i < NUM_TX_DMA; i++) {
|
|
pDB = GetFreeDB(aup);
|
|
if (!pDB) {
|
|
goto err_out;
|
|
}
|
|
aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
|
|
aup->tx_dma_ring[i]->len = 0;
|
|
aup->tx_db_inuse[i] = pDB;
|
|
}
|
|
|
|
spin_lock_init(&aup->lock);
|
|
dev->base_addr = ioaddr;
|
|
dev->irq = irq;
|
|
dev->open = au1000_open;
|
|
dev->hard_start_xmit = au1000_tx;
|
|
dev->stop = au1000_close;
|
|
dev->get_stats = au1000_get_stats;
|
|
dev->set_multicast_list = &set_rx_mode;
|
|
dev->do_ioctl = &au1000_ioctl;
|
|
SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
|
|
dev->set_config = &au1000_set_config;
|
|
dev->tx_timeout = au1000_tx_timeout;
|
|
dev->watchdog_timeo = ETH_TX_TIMEOUT;
|
|
|
|
/*
|
|
* The boot code uses the ethernet controller, so reset it to start
|
|
* fresh. au1000_init() expects that the device is in reset state.
|
|
*/
|
|
reset_mac(dev);
|
|
|
|
return dev;
|
|
|
|
err_out:
|
|
/* here we should have a valid dev plus aup-> register addresses
|
|
* so we can reset the mac properly.*/
|
|
reset_mac(dev);
|
|
kfree(aup->mii);
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
if (aup->rx_db_inuse[i])
|
|
ReleaseDB(aup, aup->rx_db_inuse[i]);
|
|
}
|
|
for (i = 0; i < NUM_TX_DMA; i++) {
|
|
if (aup->tx_db_inuse[i])
|
|
ReleaseDB(aup, aup->tx_db_inuse[i]);
|
|
}
|
|
dma_free_noncoherent(NULL,
|
|
MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS),
|
|
(void *)aup->vaddr,
|
|
aup->dma_addr);
|
|
unregister_netdev(dev);
|
|
free_netdev(dev);
|
|
release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize the interface.
|
|
*
|
|
* When the device powers up, the clocks are disabled and the
|
|
* mac is in reset state. When the interface is closed, we
|
|
* do the same -- reset the device and disable the clocks to
|
|
* conserve power. Thus, whenever au1000_init() is called,
|
|
* the device should already be in reset state.
|
|
*/
|
|
static int au1000_init(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
u32 flags;
|
|
int i;
|
|
u32 control;
|
|
u16 link, speed;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: au1000_init\n", dev->name);
|
|
|
|
spin_lock_irqsave(&aup->lock, flags);
|
|
|
|
/* bring the device out of reset */
|
|
*aup->enable = MAC_EN_CLOCK_ENABLE;
|
|
au_sync_delay(2);
|
|
*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |
|
|
MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
|
|
au_sync_delay(20);
|
|
|
|
aup->mac->control = 0;
|
|
aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
|
|
aup->tx_tail = aup->tx_head;
|
|
aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
|
|
|
|
aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4];
|
|
aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
|
|
dev->dev_addr[1]<<8 | dev->dev_addr[0];
|
|
|
|
for (i = 0; i < NUM_RX_DMA; i++) {
|
|
aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
|
|
}
|
|
au_sync();
|
|
|
|
aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
|
|
control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE;
|
|
#ifndef CONFIG_CPU_LITTLE_ENDIAN
|
|
control |= MAC_BIG_ENDIAN;
|
|
#endif
|
|
if (link && (dev->if_port == IF_PORT_100BASEFX)) {
|
|
control |= MAC_FULL_DUPLEX;
|
|
}
|
|
|
|
aup->mac->control = control;
|
|
aup->mac->vlan1_tag = 0x8100; /* activate vlan support */
|
|
au_sync();
|
|
|
|
spin_unlock_irqrestore(&aup->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
static void au1000_timer(unsigned long data)
|
|
{
|
|
struct net_device *dev = (struct net_device *)data;
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
unsigned char if_port;
|
|
u16 link, speed;
|
|
|
|
if (!dev) {
|
|
/* fatal error, don't restart the timer */
|
|
printk(KERN_ERR "au1000_timer error: NULL dev\n");
|
|
return;
|
|
}
|
|
|
|
if_port = dev->if_port;
|
|
if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) {
|
|
if (link) {
|
|
if (!netif_carrier_ok(dev)) {
|
|
netif_carrier_on(dev);
|
|
printk(KERN_INFO "%s: link up\n", dev->name);
|
|
}
|
|
}
|
|
else {
|
|
if (netif_carrier_ok(dev)) {
|
|
netif_carrier_off(dev);
|
|
dev->if_port = 0;
|
|
printk(KERN_INFO "%s: link down\n", dev->name);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (link && (dev->if_port != if_port) &&
|
|
(dev->if_port != IF_PORT_UNKNOWN)) {
|
|
hard_stop(dev);
|
|
if (dev->if_port == IF_PORT_100BASEFX) {
|
|
printk(KERN_INFO "%s: going to full duplex\n",
|
|
dev->name);
|
|
aup->mac->control |= MAC_FULL_DUPLEX;
|
|
au_sync_delay(1);
|
|
}
|
|
else {
|
|
aup->mac->control &= ~MAC_FULL_DUPLEX;
|
|
au_sync_delay(1);
|
|
}
|
|
enable_rx_tx(dev);
|
|
}
|
|
|
|
aup->timer.expires = RUN_AT((1*HZ));
|
|
aup->timer.data = (unsigned long)dev;
|
|
aup->timer.function = &au1000_timer; /* timer handler */
|
|
add_timer(&aup->timer);
|
|
|
|
}
|
|
|
|
static int au1000_open(struct net_device *dev)
|
|
{
|
|
int retval;
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: open: dev=%p\n", dev->name, dev);
|
|
|
|
if ((retval = au1000_init(dev))) {
|
|
printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
|
|
free_irq(dev->irq, dev);
|
|
return retval;
|
|
}
|
|
netif_start_queue(dev);
|
|
|
|
if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
|
|
dev->name, dev))) {
|
|
printk(KERN_ERR "%s: unable to get IRQ %d\n",
|
|
dev->name, dev->irq);
|
|
return retval;
|
|
}
|
|
|
|
init_timer(&aup->timer); /* used in ioctl() */
|
|
aup->timer.expires = RUN_AT((3*HZ));
|
|
aup->timer.data = (unsigned long)dev;
|
|
aup->timer.function = &au1000_timer; /* timer handler */
|
|
add_timer(&aup->timer);
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: open: Initialization done.\n", dev->name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int au1000_close(struct net_device *dev)
|
|
{
|
|
u32 flags;
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: close: dev=%p\n", dev->name, dev);
|
|
|
|
reset_mac(dev);
|
|
|
|
spin_lock_irqsave(&aup->lock, flags);
|
|
|
|
/* stop the device */
|
|
netif_stop_queue(dev);
|
|
|
|
/* disable the interrupt */
|
|
free_irq(dev->irq, dev);
|
|
spin_unlock_irqrestore(&aup->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit au1000_cleanup_module(void)
|
|
{
|
|
int i, j;
|
|
struct net_device *dev;
|
|
struct au1000_private *aup;
|
|
|
|
for (i = 0; i < num_ifs; i++) {
|
|
dev = iflist[i].dev;
|
|
if (dev) {
|
|
aup = (struct au1000_private *) dev->priv;
|
|
unregister_netdev(dev);
|
|
kfree(aup->mii);
|
|
for (j = 0; j < NUM_RX_DMA; j++) {
|
|
if (aup->rx_db_inuse[j])
|
|
ReleaseDB(aup, aup->rx_db_inuse[j]);
|
|
}
|
|
for (j = 0; j < NUM_TX_DMA; j++) {
|
|
if (aup->tx_db_inuse[j])
|
|
ReleaseDB(aup, aup->tx_db_inuse[j]);
|
|
}
|
|
dma_free_noncoherent(NULL,
|
|
MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS),
|
|
(void *)aup->vaddr,
|
|
aup->dma_addr);
|
|
free_netdev(dev);
|
|
release_mem_region(CPHYSADDR(iflist[i].base_addr), MAC_IOSIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static inline void
|
|
update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
struct net_device_stats *ps = &aup->stats;
|
|
|
|
ps->tx_packets++;
|
|
ps->tx_bytes += pkt_len;
|
|
|
|
if (status & TX_FRAME_ABORTED) {
|
|
if (dev->if_port == IF_PORT_100BASEFX) {
|
|
if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
|
|
/* any other tx errors are only valid
|
|
* in half duplex mode */
|
|
ps->tx_errors++;
|
|
ps->tx_aborted_errors++;
|
|
}
|
|
}
|
|
else {
|
|
ps->tx_errors++;
|
|
ps->tx_aborted_errors++;
|
|
if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
|
|
ps->tx_carrier_errors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Called from the interrupt service routine to acknowledge
|
|
* the TX DONE bits. This is a must if the irq is setup as
|
|
* edge triggered.
|
|
*/
|
|
static void au1000_tx_ack(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
volatile tx_dma_t *ptxd;
|
|
|
|
ptxd = aup->tx_dma_ring[aup->tx_tail];
|
|
|
|
while (ptxd->buff_stat & TX_T_DONE) {
|
|
update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff);
|
|
ptxd->buff_stat &= ~TX_T_DONE;
|
|
ptxd->len = 0;
|
|
au_sync();
|
|
|
|
aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
|
|
ptxd = aup->tx_dma_ring[aup->tx_tail];
|
|
|
|
if (aup->tx_full) {
|
|
aup->tx_full = 0;
|
|
netif_wake_queue(dev);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Au1000 transmit routine.
|
|
*/
|
|
static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
volatile tx_dma_t *ptxd;
|
|
u32 buff_stat;
|
|
db_dest_t *pDB;
|
|
int i;
|
|
|
|
if (au1000_debug > 5)
|
|
printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
|
|
dev->name, (unsigned)aup, skb->len,
|
|
skb->data, aup->tx_head);
|
|
|
|
ptxd = aup->tx_dma_ring[aup->tx_head];
|
|
buff_stat = ptxd->buff_stat;
|
|
if (buff_stat & TX_DMA_ENABLE) {
|
|
/* We've wrapped around and the transmitter is still busy */
|
|
netif_stop_queue(dev);
|
|
aup->tx_full = 1;
|
|
return 1;
|
|
}
|
|
else if (buff_stat & TX_T_DONE) {
|
|
update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff);
|
|
ptxd->len = 0;
|
|
}
|
|
|
|
if (aup->tx_full) {
|
|
aup->tx_full = 0;
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
pDB = aup->tx_db_inuse[aup->tx_head];
|
|
memcpy((void *)pDB->vaddr, skb->data, skb->len);
|
|
if (skb->len < ETH_ZLEN) {
|
|
for (i=skb->len; i<ETH_ZLEN; i++) {
|
|
((char *)pDB->vaddr)[i] = 0;
|
|
}
|
|
ptxd->len = ETH_ZLEN;
|
|
}
|
|
else
|
|
ptxd->len = skb->len;
|
|
|
|
ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
|
|
au_sync();
|
|
dev_kfree_skb(skb);
|
|
aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
|
|
dev->trans_start = jiffies;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline void update_rx_stats(struct net_device *dev, u32 status)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
struct net_device_stats *ps = &aup->stats;
|
|
|
|
ps->rx_packets++;
|
|
if (status & RX_MCAST_FRAME)
|
|
ps->multicast++;
|
|
|
|
if (status & RX_ERROR) {
|
|
ps->rx_errors++;
|
|
if (status & RX_MISSED_FRAME)
|
|
ps->rx_missed_errors++;
|
|
if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR))
|
|
ps->rx_length_errors++;
|
|
if (status & RX_CRC_ERROR)
|
|
ps->rx_crc_errors++;
|
|
if (status & RX_COLL)
|
|
ps->collisions++;
|
|
}
|
|
else
|
|
ps->rx_bytes += status & RX_FRAME_LEN_MASK;
|
|
|
|
}
|
|
|
|
/*
|
|
* Au1000 receive routine.
|
|
*/
|
|
static int au1000_rx(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
struct sk_buff *skb;
|
|
volatile rx_dma_t *prxd;
|
|
u32 buff_stat, status;
|
|
db_dest_t *pDB;
|
|
u32 frmlen;
|
|
|
|
if (au1000_debug > 5)
|
|
printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head);
|
|
|
|
prxd = aup->rx_dma_ring[aup->rx_head];
|
|
buff_stat = prxd->buff_stat;
|
|
while (buff_stat & RX_T_DONE) {
|
|
status = prxd->status;
|
|
pDB = aup->rx_db_inuse[aup->rx_head];
|
|
update_rx_stats(dev, status);
|
|
if (!(status & RX_ERROR)) {
|
|
|
|
/* good frame */
|
|
frmlen = (status & RX_FRAME_LEN_MASK);
|
|
frmlen -= 4; /* Remove FCS */
|
|
skb = dev_alloc_skb(frmlen + 2);
|
|
if (skb == NULL) {
|
|
printk(KERN_ERR
|
|
"%s: Memory squeeze, dropping packet.\n",
|
|
dev->name);
|
|
aup->stats.rx_dropped++;
|
|
continue;
|
|
}
|
|
skb->dev = dev;
|
|
skb_reserve(skb, 2); /* 16 byte IP header align */
|
|
eth_copy_and_sum(skb,
|
|
(unsigned char *)pDB->vaddr, frmlen, 0);
|
|
skb_put(skb, frmlen);
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
netif_rx(skb); /* pass the packet to upper layers */
|
|
}
|
|
else {
|
|
if (au1000_debug > 4) {
|
|
if (status & RX_MISSED_FRAME)
|
|
printk("rx miss\n");
|
|
if (status & RX_WDOG_TIMER)
|
|
printk("rx wdog\n");
|
|
if (status & RX_RUNT)
|
|
printk("rx runt\n");
|
|
if (status & RX_OVERLEN)
|
|
printk("rx overlen\n");
|
|
if (status & RX_COLL)
|
|
printk("rx coll\n");
|
|
if (status & RX_MII_ERROR)
|
|
printk("rx mii error\n");
|
|
if (status & RX_CRC_ERROR)
|
|
printk("rx crc error\n");
|
|
if (status & RX_LEN_ERROR)
|
|
printk("rx len error\n");
|
|
if (status & RX_U_CNTRL_FRAME)
|
|
printk("rx u control frame\n");
|
|
if (status & RX_MISSED_FRAME)
|
|
printk("rx miss\n");
|
|
}
|
|
}
|
|
prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
|
|
aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
|
|
au_sync();
|
|
|
|
/* next descriptor */
|
|
prxd = aup->rx_dma_ring[aup->rx_head];
|
|
buff_stat = prxd->buff_stat;
|
|
dev->last_rx = jiffies;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Au1000 interrupt service routine.
|
|
*/
|
|
static irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct net_device *dev = (struct net_device *) dev_id;
|
|
|
|
if (dev == NULL) {
|
|
printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
|
|
return IRQ_RETVAL(1);
|
|
}
|
|
|
|
/* Handle RX interrupts first to minimize chance of overrun */
|
|
|
|
au1000_rx(dev);
|
|
au1000_tx_ack(dev);
|
|
return IRQ_RETVAL(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* The Tx ring has been full longer than the watchdog timeout
|
|
* value. The transmitter must be hung?
|
|
*/
|
|
static void au1000_tx_timeout(struct net_device *dev)
|
|
{
|
|
printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev);
|
|
reset_mac(dev);
|
|
au1000_init(dev);
|
|
dev->trans_start = jiffies;
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
|
|
static unsigned const ethernet_polynomial = 0x04c11db7U;
|
|
static inline u32 ether_crc(int length, unsigned char *data)
|
|
{
|
|
int crc = -1;
|
|
|
|
while(--length >= 0) {
|
|
unsigned char current_octet = *data++;
|
|
int bit;
|
|
for (bit = 0; bit < 8; bit++, current_octet >>= 1)
|
|
crc = (crc << 1) ^
|
|
((crc < 0) ^ (current_octet & 1) ?
|
|
ethernet_polynomial : 0);
|
|
}
|
|
return crc;
|
|
}
|
|
|
|
static void set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
|
|
|
|
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
|
|
aup->mac->control |= MAC_PROMISCUOUS;
|
|
printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
|
|
} else if ((dev->flags & IFF_ALLMULTI) ||
|
|
dev->mc_count > MULTICAST_FILTER_LIMIT) {
|
|
aup->mac->control |= MAC_PASS_ALL_MULTI;
|
|
aup->mac->control &= ~MAC_PROMISCUOUS;
|
|
printk(KERN_INFO "%s: Pass all multicast\n", dev->name);
|
|
} else {
|
|
int i;
|
|
struct dev_mc_list *mclist;
|
|
u32 mc_filter[2]; /* Multicast hash filter */
|
|
|
|
mc_filter[1] = mc_filter[0] = 0;
|
|
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
|
|
i++, mclist = mclist->next) {
|
|
set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,
|
|
(long *)mc_filter);
|
|
}
|
|
aup->mac->multi_hash_high = mc_filter[1];
|
|
aup->mac->multi_hash_low = mc_filter[0];
|
|
aup->mac->control &= ~MAC_PROMISCUOUS;
|
|
aup->mac->control |= MAC_HASH_MODE;
|
|
}
|
|
}
|
|
|
|
|
|
static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *)dev->priv;
|
|
u16 *data = (u16 *)&rq->ifr_ifru;
|
|
|
|
switch(cmd) {
|
|
case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */
|
|
case SIOCGMIIPHY:
|
|
if (!netif_running(dev)) return -EINVAL;
|
|
data[0] = aup->phy_addr;
|
|
case SIOCDEVPRIVATE+1: /* Read the specified MII register. */
|
|
case SIOCGMIIREG:
|
|
data[3] = mdio_read(dev, data[0], data[1]);
|
|
return 0;
|
|
case SIOCDEVPRIVATE+2: /* Write the specified MII register */
|
|
case SIOCSMIIREG:
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
mdio_write(dev, data[0], data[1],data[2]);
|
|
return 0;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
static int au1000_set_config(struct net_device *dev, struct ifmap *map)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
u16 control;
|
|
|
|
if (au1000_debug > 4) {
|
|
printk("%s: set_config called: dev->if_port %d map->port %x\n",
|
|
dev->name, dev->if_port, map->port);
|
|
}
|
|
|
|
switch(map->port){
|
|
case IF_PORT_UNKNOWN: /* use auto here */
|
|
printk(KERN_INFO "%s: config phy for aneg\n",
|
|
dev->name);
|
|
dev->if_port = map->port;
|
|
/* Link Down: the timer will bring it up */
|
|
netif_carrier_off(dev);
|
|
|
|
/* read current control */
|
|
control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
|
|
control &= ~(MII_CNTL_FDX | MII_CNTL_F100);
|
|
|
|
/* enable auto negotiation and reset the negotiation */
|
|
mdio_write(dev, aup->phy_addr, MII_CONTROL,
|
|
control | MII_CNTL_AUTO |
|
|
MII_CNTL_RST_AUTO);
|
|
|
|
break;
|
|
|
|
case IF_PORT_10BASET: /* 10BaseT */
|
|
printk(KERN_INFO "%s: config phy for 10BaseT\n",
|
|
dev->name);
|
|
dev->if_port = map->port;
|
|
|
|
/* Link Down: the timer will bring it up */
|
|
netif_carrier_off(dev);
|
|
|
|
/* set Speed to 10Mbps, Half Duplex */
|
|
control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
|
|
control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO |
|
|
MII_CNTL_FDX);
|
|
|
|
/* disable auto negotiation and force 10M/HD mode*/
|
|
mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
|
|
break;
|
|
|
|
case IF_PORT_100BASET: /* 100BaseT */
|
|
case IF_PORT_100BASETX: /* 100BaseTx */
|
|
printk(KERN_INFO "%s: config phy for 100BaseTX\n",
|
|
dev->name);
|
|
dev->if_port = map->port;
|
|
|
|
/* Link Down: the timer will bring it up */
|
|
netif_carrier_off(dev);
|
|
|
|
/* set Speed to 100Mbps, Half Duplex */
|
|
/* disable auto negotiation and enable 100MBit Mode */
|
|
control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
|
|
control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX);
|
|
control |= MII_CNTL_F100;
|
|
mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
|
|
break;
|
|
|
|
case IF_PORT_100BASEFX: /* 100BaseFx */
|
|
printk(KERN_INFO "%s: config phy for 100BaseFX\n",
|
|
dev->name);
|
|
dev->if_port = map->port;
|
|
|
|
/* Link Down: the timer will bring it up */
|
|
netif_carrier_off(dev);
|
|
|
|
/* set Speed to 100Mbps, Full Duplex */
|
|
/* disable auto negotiation and enable 100MBit Mode */
|
|
control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
|
|
control &= ~MII_CNTL_AUTO;
|
|
control |= MII_CNTL_F100 | MII_CNTL_FDX;
|
|
mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
|
|
break;
|
|
case IF_PORT_10BASE2: /* 10Base2 */
|
|
case IF_PORT_AUI: /* AUI */
|
|
/* These Modes are not supported (are they?)*/
|
|
printk(KERN_ERR "%s: 10Base2/AUI not supported",
|
|
dev->name);
|
|
return -EOPNOTSUPP;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_ERR "%s: Invalid media selected",
|
|
dev->name);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct net_device_stats *au1000_get_stats(struct net_device *dev)
|
|
{
|
|
struct au1000_private *aup = (struct au1000_private *) dev->priv;
|
|
|
|
if (au1000_debug > 4)
|
|
printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev);
|
|
|
|
if (netif_device_present(dev)) {
|
|
return &aup->stats;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
module_init(au1000_init_module);
|
|
module_exit(au1000_cleanup_module);
|