2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 20:53:53 +08:00
linux-next/include/linux/crush/crush.h
Ilya Dryomov f18650ace3 crush: apply chooseleaf_tries to firstn mode too
Parameterize the attempts for the _firstn choose method, and apply the
rule-specified tries count to firstn mode as well.  Note that we have
slightly different behavior here than with indep:

 If the firstn value is not specified for firstn, we pass through the
 normal attempt count.  This maintains compatibility with legacy behavior.
 Note that this is usually *not* actually N^2 work, though, because of the
 descend_once tunable.  However, descend_once is unfortunately *not* the
 same thing as 1 chooseleaf try because it is only checked on a reject but
 not on a collision.  Sigh.

 In contrast, for indep, if tries is not specified we default to 1
 recursive attempt, because that is simply more sane, and we have the
 option to do so.  The descend_once tunable has no effect for indep.

Reflects ceph.git commit 64aeded50d80942d66a5ec7b604ff2fcbf5d7b63.

Signed-off-by: Ilya Dryomov <ilya.dryomov@inktank.com>
Reviewed-by: Sage Weil <sage@inktank.com>
2013-12-31 20:32:22 +02:00

192 lines
5.3 KiB
C

#ifndef CEPH_CRUSH_CRUSH_H
#define CEPH_CRUSH_CRUSH_H
#include <linux/types.h>
/*
* CRUSH is a pseudo-random data distribution algorithm that
* efficiently distributes input values (typically, data objects)
* across a heterogeneous, structured storage cluster.
*
* The algorithm was originally described in detail in this paper
* (although the algorithm has evolved somewhat since then):
*
* http://www.ssrc.ucsc.edu/Papers/weil-sc06.pdf
*
* LGPL2
*/
#define CRUSH_MAGIC 0x00010000ul /* for detecting algorithm revisions */
#define CRUSH_MAX_DEPTH 10 /* max crush hierarchy depth */
#define CRUSH_ITEM_UNDEF 0x7ffffffe /* undefined result (internal use only) */
#define CRUSH_ITEM_NONE 0x7fffffff /* no result */
/*
* CRUSH uses user-defined "rules" to describe how inputs should be
* mapped to devices. A rule consists of sequence of steps to perform
* to generate the set of output devices.
*/
struct crush_rule_step {
__u32 op;
__s32 arg1;
__s32 arg2;
};
/* step op codes */
enum {
CRUSH_RULE_NOOP = 0,
CRUSH_RULE_TAKE = 1, /* arg1 = value to start with */
CRUSH_RULE_CHOOSE_FIRSTN = 2, /* arg1 = num items to pick */
/* arg2 = type */
CRUSH_RULE_CHOOSE_INDEP = 3, /* same */
CRUSH_RULE_EMIT = 4, /* no args */
CRUSH_RULE_CHOOSE_LEAF_FIRSTN = 6,
CRUSH_RULE_CHOOSE_LEAF_INDEP = 7,
CRUSH_RULE_SET_CHOOSE_LEAF_TRIES = 9,
};
/*
* for specifying choose num (arg1) relative to the max parameter
* passed to do_rule
*/
#define CRUSH_CHOOSE_N 0
#define CRUSH_CHOOSE_N_MINUS(x) (-(x))
/*
* The rule mask is used to describe what the rule is intended for.
* Given a ruleset and size of output set, we search through the
* rule list for a matching rule_mask.
*/
struct crush_rule_mask {
__u8 ruleset;
__u8 type;
__u8 min_size;
__u8 max_size;
};
struct crush_rule {
__u32 len;
struct crush_rule_mask mask;
struct crush_rule_step steps[0];
};
#define crush_rule_size(len) (sizeof(struct crush_rule) + \
(len)*sizeof(struct crush_rule_step))
/*
* A bucket is a named container of other items (either devices or
* other buckets). Items within a bucket are chosen using one of a
* few different algorithms. The table summarizes how the speed of
* each option measures up against mapping stability when items are
* added or removed.
*
* Bucket Alg Speed Additions Removals
* ------------------------------------------------
* uniform O(1) poor poor
* list O(n) optimal poor
* tree O(log n) good good
* straw O(n) optimal optimal
*/
enum {
CRUSH_BUCKET_UNIFORM = 1,
CRUSH_BUCKET_LIST = 2,
CRUSH_BUCKET_TREE = 3,
CRUSH_BUCKET_STRAW = 4
};
extern const char *crush_bucket_alg_name(int alg);
struct crush_bucket {
__s32 id; /* this'll be negative */
__u16 type; /* non-zero; type=0 is reserved for devices */
__u8 alg; /* one of CRUSH_BUCKET_* */
__u8 hash; /* which hash function to use, CRUSH_HASH_* */
__u32 weight; /* 16-bit fixed point */
__u32 size; /* num items */
__s32 *items;
/*
* cached random permutation: used for uniform bucket and for
* the linear search fallback for the other bucket types.
*/
__u32 perm_x; /* @x for which *perm is defined */
__u32 perm_n; /* num elements of *perm that are permuted/defined */
__u32 *perm;
};
struct crush_bucket_uniform {
struct crush_bucket h;
__u32 item_weight; /* 16-bit fixed point; all items equally weighted */
};
struct crush_bucket_list {
struct crush_bucket h;
__u32 *item_weights; /* 16-bit fixed point */
__u32 *sum_weights; /* 16-bit fixed point. element i is sum
of weights 0..i, inclusive */
};
struct crush_bucket_tree {
struct crush_bucket h; /* note: h.size is _tree_ size, not number of
actual items */
__u8 num_nodes;
__u32 *node_weights;
};
struct crush_bucket_straw {
struct crush_bucket h;
__u32 *item_weights; /* 16-bit fixed point */
__u32 *straws; /* 16-bit fixed point */
};
/*
* CRUSH map includes all buckets, rules, etc.
*/
struct crush_map {
struct crush_bucket **buckets;
struct crush_rule **rules;
__s32 max_buckets;
__u32 max_rules;
__s32 max_devices;
/* choose local retries before re-descent */
__u32 choose_local_tries;
/* choose local attempts using a fallback permutation before
* re-descent */
__u32 choose_local_fallback_tries;
/* choose attempts before giving up */
__u32 choose_total_tries;
/* attempt chooseleaf inner descent once for firstn mode; on
* reject retry outer descent. Note that this does *not*
* apply to a collision: in that case we will retry as we used
* to. */
__u32 chooseleaf_descend_once;
};
/* crush.c */
extern int crush_get_bucket_item_weight(const struct crush_bucket *b, int pos);
extern void crush_destroy_bucket_uniform(struct crush_bucket_uniform *b);
extern void crush_destroy_bucket_list(struct crush_bucket_list *b);
extern void crush_destroy_bucket_tree(struct crush_bucket_tree *b);
extern void crush_destroy_bucket_straw(struct crush_bucket_straw *b);
extern void crush_destroy_bucket(struct crush_bucket *b);
extern void crush_destroy_rule(struct crush_rule *r);
extern void crush_destroy(struct crush_map *map);
static inline int crush_calc_tree_node(int i)
{
return ((i+1) << 1)-1;
}
#endif