mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 15:44:01 +08:00
33477d84c2
Per Section 8.4.7.1.3 of ACPI 6.2, the platform provides performance feedback via set of performance counters. To determine the actual performance level delivered over time, OSPM may read a set of performance counters from the Reference Performance Counter Register and the Delivered Performance Counter Register. OSPM calculates the delivered performance over a given time period by taking a beginning and ending snapshot of both the reference and delivered performance counters, and calculating: delivered_perf = reference_perf X (delta of delivered_perf counter / delta of reference_perf counter). Implement the above and hook this up to the cpufreq->get method. Signed-off-by: George Cherian <george.cherian@cavium.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Prashanth Prakash <pprakash@codeaurora.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
437 lines
11 KiB
C
437 lines
11 KiB
C
/*
|
|
* CPPC (Collaborative Processor Performance Control) driver for
|
|
* interfacing with the CPUfreq layer and governors. See
|
|
* cppc_acpi.c for CPPC specific methods.
|
|
*
|
|
* (C) Copyright 2014, 2015 Linaro Ltd.
|
|
* Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; version 2
|
|
* of the License.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/time.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/unaligned.h>
|
|
|
|
#include <acpi/cppc_acpi.h>
|
|
|
|
/* Minimum struct length needed for the DMI processor entry we want */
|
|
#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
|
|
|
|
/* Offest in the DMI processor structure for the max frequency */
|
|
#define DMI_PROCESSOR_MAX_SPEED 0x14
|
|
|
|
/*
|
|
* These structs contain information parsed from per CPU
|
|
* ACPI _CPC structures.
|
|
* e.g. For each CPU the highest, lowest supported
|
|
* performance capabilities, desired performance level
|
|
* requested etc.
|
|
*/
|
|
static struct cppc_cpudata **all_cpu_data;
|
|
|
|
/* Callback function used to retrieve the max frequency from DMI */
|
|
static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
|
|
{
|
|
const u8 *dmi_data = (const u8 *)dm;
|
|
u16 *mhz = (u16 *)private;
|
|
|
|
if (dm->type == DMI_ENTRY_PROCESSOR &&
|
|
dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
|
|
u16 val = (u16)get_unaligned((const u16 *)
|
|
(dmi_data + DMI_PROCESSOR_MAX_SPEED));
|
|
*mhz = val > *mhz ? val : *mhz;
|
|
}
|
|
}
|
|
|
|
/* Look up the max frequency in DMI */
|
|
static u64 cppc_get_dmi_max_khz(void)
|
|
{
|
|
u16 mhz = 0;
|
|
|
|
dmi_walk(cppc_find_dmi_mhz, &mhz);
|
|
|
|
/*
|
|
* Real stupid fallback value, just in case there is no
|
|
* actual value set.
|
|
*/
|
|
mhz = mhz ? mhz : 1;
|
|
|
|
return (1000 * mhz);
|
|
}
|
|
|
|
/*
|
|
* If CPPC lowest_freq and nominal_freq registers are exposed then we can
|
|
* use them to convert perf to freq and vice versa
|
|
*
|
|
* If the perf/freq point lies between Nominal and Lowest, we can treat
|
|
* (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
|
|
* and extrapolate the rest
|
|
* For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
|
|
*/
|
|
static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
|
|
unsigned int perf)
|
|
{
|
|
static u64 max_khz;
|
|
struct cppc_perf_caps *caps = &cpu->perf_caps;
|
|
u64 mul, div;
|
|
|
|
if (caps->lowest_freq && caps->nominal_freq) {
|
|
if (perf >= caps->nominal_perf) {
|
|
mul = caps->nominal_freq;
|
|
div = caps->nominal_perf;
|
|
} else {
|
|
mul = caps->nominal_freq - caps->lowest_freq;
|
|
div = caps->nominal_perf - caps->lowest_perf;
|
|
}
|
|
} else {
|
|
if (!max_khz)
|
|
max_khz = cppc_get_dmi_max_khz();
|
|
mul = max_khz;
|
|
div = cpu->perf_caps.highest_perf;
|
|
}
|
|
return (u64)perf * mul / div;
|
|
}
|
|
|
|
static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
|
|
unsigned int freq)
|
|
{
|
|
static u64 max_khz;
|
|
struct cppc_perf_caps *caps = &cpu->perf_caps;
|
|
u64 mul, div;
|
|
|
|
if (caps->lowest_freq && caps->nominal_freq) {
|
|
if (freq >= caps->nominal_freq) {
|
|
mul = caps->nominal_perf;
|
|
div = caps->nominal_freq;
|
|
} else {
|
|
mul = caps->lowest_perf;
|
|
div = caps->lowest_freq;
|
|
}
|
|
} else {
|
|
if (!max_khz)
|
|
max_khz = cppc_get_dmi_max_khz();
|
|
mul = cpu->perf_caps.highest_perf;
|
|
div = max_khz;
|
|
}
|
|
|
|
return (u64)freq * mul / div;
|
|
}
|
|
|
|
static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
|
|
unsigned int target_freq,
|
|
unsigned int relation)
|
|
{
|
|
struct cppc_cpudata *cpu;
|
|
struct cpufreq_freqs freqs;
|
|
u32 desired_perf;
|
|
int ret = 0;
|
|
|
|
cpu = all_cpu_data[policy->cpu];
|
|
|
|
desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
|
|
/* Return if it is exactly the same perf */
|
|
if (desired_perf == cpu->perf_ctrls.desired_perf)
|
|
return ret;
|
|
|
|
cpu->perf_ctrls.desired_perf = desired_perf;
|
|
freqs.old = policy->cur;
|
|
freqs.new = target_freq;
|
|
|
|
cpufreq_freq_transition_begin(policy, &freqs);
|
|
ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
|
|
cpufreq_freq_transition_end(policy, &freqs, ret != 0);
|
|
|
|
if (ret)
|
|
pr_debug("Failed to set target on CPU:%d. ret:%d\n",
|
|
cpu->cpu, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cppc_verify_policy(struct cpufreq_policy *policy)
|
|
{
|
|
cpufreq_verify_within_cpu_limits(policy);
|
|
return 0;
|
|
}
|
|
|
|
static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
|
|
{
|
|
int cpu_num = policy->cpu;
|
|
struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
|
|
int ret;
|
|
|
|
cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
|
|
|
|
ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
|
|
if (ret)
|
|
pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
|
|
cpu->perf_caps.lowest_perf, cpu_num, ret);
|
|
}
|
|
|
|
/*
|
|
* The PCC subspace describes the rate at which platform can accept commands
|
|
* on the shared PCC channel (including READs which do not count towards freq
|
|
* trasition requests), so ideally we need to use the PCC values as a fallback
|
|
* if we don't have a platform specific transition_delay_us
|
|
*/
|
|
#ifdef CONFIG_ARM64
|
|
#include <asm/cputype.h>
|
|
|
|
static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
|
|
{
|
|
unsigned long implementor = read_cpuid_implementor();
|
|
unsigned long part_num = read_cpuid_part_number();
|
|
unsigned int delay_us = 0;
|
|
|
|
switch (implementor) {
|
|
case ARM_CPU_IMP_QCOM:
|
|
switch (part_num) {
|
|
case QCOM_CPU_PART_FALKOR_V1:
|
|
case QCOM_CPU_PART_FALKOR:
|
|
delay_us = 10000;
|
|
break;
|
|
default:
|
|
delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
|
|
break;
|
|
}
|
|
|
|
return delay_us;
|
|
}
|
|
|
|
#else
|
|
|
|
static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
|
|
{
|
|
return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
|
|
}
|
|
#endif
|
|
|
|
static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
|
|
{
|
|
struct cppc_cpudata *cpu;
|
|
unsigned int cpu_num = policy->cpu;
|
|
int ret = 0;
|
|
|
|
cpu = all_cpu_data[policy->cpu];
|
|
|
|
cpu->cpu = cpu_num;
|
|
ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
|
|
|
|
if (ret) {
|
|
pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
|
|
cpu_num, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Convert the lowest and nominal freq from MHz to KHz */
|
|
cpu->perf_caps.lowest_freq *= 1000;
|
|
cpu->perf_caps.nominal_freq *= 1000;
|
|
|
|
/*
|
|
* Set min to lowest nonlinear perf to avoid any efficiency penalty (see
|
|
* Section 8.4.7.1.1.5 of ACPI 6.1 spec)
|
|
*/
|
|
policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
|
|
policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
|
|
|
|
/*
|
|
* Set cpuinfo.min_freq to Lowest to make the full range of performance
|
|
* available if userspace wants to use any perf between lowest & lowest
|
|
* nonlinear perf
|
|
*/
|
|
policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
|
|
policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
|
|
|
|
policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
|
|
policy->shared_type = cpu->shared_type;
|
|
|
|
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
|
|
int i;
|
|
|
|
cpumask_copy(policy->cpus, cpu->shared_cpu_map);
|
|
|
|
for_each_cpu(i, policy->cpus) {
|
|
if (unlikely(i == policy->cpu))
|
|
continue;
|
|
|
|
memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
|
|
sizeof(cpu->perf_caps));
|
|
}
|
|
} else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
|
|
/* Support only SW_ANY for now. */
|
|
pr_debug("Unsupported CPU co-ord type\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
cpu->cur_policy = policy;
|
|
|
|
/* Set policy->cur to max now. The governors will adjust later. */
|
|
policy->cur = cppc_cpufreq_perf_to_khz(cpu,
|
|
cpu->perf_caps.highest_perf);
|
|
cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
|
|
|
|
ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
|
|
if (ret)
|
|
pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
|
|
cpu->perf_caps.highest_perf, cpu_num, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline u64 get_delta(u64 t1, u64 t0)
|
|
{
|
|
if (t1 > t0 || t0 > ~(u32)0)
|
|
return t1 - t0;
|
|
|
|
return (u32)t1 - (u32)t0;
|
|
}
|
|
|
|
static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
|
|
struct cppc_perf_fb_ctrs fb_ctrs_t0,
|
|
struct cppc_perf_fb_ctrs fb_ctrs_t1)
|
|
{
|
|
u64 delta_reference, delta_delivered;
|
|
u64 reference_perf, delivered_perf;
|
|
|
|
reference_perf = fb_ctrs_t0.reference_perf;
|
|
|
|
delta_reference = get_delta(fb_ctrs_t1.reference,
|
|
fb_ctrs_t0.reference);
|
|
delta_delivered = get_delta(fb_ctrs_t1.delivered,
|
|
fb_ctrs_t0.delivered);
|
|
|
|
/* Check to avoid divide-by zero */
|
|
if (delta_reference || delta_delivered)
|
|
delivered_perf = (reference_perf * delta_delivered) /
|
|
delta_reference;
|
|
else
|
|
delivered_perf = cpu->perf_ctrls.desired_perf;
|
|
|
|
return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
|
|
}
|
|
|
|
static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
|
|
{
|
|
struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
|
|
struct cppc_cpudata *cpu = all_cpu_data[cpunum];
|
|
int ret;
|
|
|
|
ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
udelay(2); /* 2usec delay between sampling */
|
|
|
|
ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
|
|
}
|
|
|
|
static struct cpufreq_driver cppc_cpufreq_driver = {
|
|
.flags = CPUFREQ_CONST_LOOPS,
|
|
.verify = cppc_verify_policy,
|
|
.target = cppc_cpufreq_set_target,
|
|
.get = cppc_cpufreq_get_rate,
|
|
.init = cppc_cpufreq_cpu_init,
|
|
.stop_cpu = cppc_cpufreq_stop_cpu,
|
|
.name = "cppc_cpufreq",
|
|
};
|
|
|
|
static int __init cppc_cpufreq_init(void)
|
|
{
|
|
int i, ret = 0;
|
|
struct cppc_cpudata *cpu;
|
|
|
|
if (acpi_disabled)
|
|
return -ENODEV;
|
|
|
|
all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
|
|
GFP_KERNEL);
|
|
if (!all_cpu_data)
|
|
return -ENOMEM;
|
|
|
|
for_each_possible_cpu(i) {
|
|
all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
|
|
if (!all_cpu_data[i])
|
|
goto out;
|
|
|
|
cpu = all_cpu_data[i];
|
|
if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
|
|
goto out;
|
|
}
|
|
|
|
ret = acpi_get_psd_map(all_cpu_data);
|
|
if (ret) {
|
|
pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
|
|
goto out;
|
|
}
|
|
|
|
ret = cpufreq_register_driver(&cppc_cpufreq_driver);
|
|
if (ret)
|
|
goto out;
|
|
|
|
return ret;
|
|
|
|
out:
|
|
for_each_possible_cpu(i) {
|
|
cpu = all_cpu_data[i];
|
|
if (!cpu)
|
|
break;
|
|
free_cpumask_var(cpu->shared_cpu_map);
|
|
kfree(cpu);
|
|
}
|
|
|
|
kfree(all_cpu_data);
|
|
return -ENODEV;
|
|
}
|
|
|
|
static void __exit cppc_cpufreq_exit(void)
|
|
{
|
|
struct cppc_cpudata *cpu;
|
|
int i;
|
|
|
|
cpufreq_unregister_driver(&cppc_cpufreq_driver);
|
|
|
|
for_each_possible_cpu(i) {
|
|
cpu = all_cpu_data[i];
|
|
free_cpumask_var(cpu->shared_cpu_map);
|
|
kfree(cpu);
|
|
}
|
|
|
|
kfree(all_cpu_data);
|
|
}
|
|
|
|
module_exit(cppc_cpufreq_exit);
|
|
MODULE_AUTHOR("Ashwin Chaugule");
|
|
MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
late_initcall(cppc_cpufreq_init);
|
|
|
|
static const struct acpi_device_id cppc_acpi_ids[] = {
|
|
{ACPI_PROCESSOR_DEVICE_HID, },
|
|
{}
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
|