2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-09 14:14:00 +08:00
linux-next/arch/x86/pci/common.c
Matt Fleming 65694c5aad x86/PCI: Map PCI setup data with ioremap() so it can be in highmem
f9a37be0f0 ("x86: Use PCI setup data") added support for using PCI ROM
images from setup_data.  This used phys_to_virt(), which is not valid for
highmem addresses, and can cause a crash when booting a 32-bit kernel via
the EFI boot stub.

pcibios_add_device() assumes that the physical addresses stored in
setup_data are accessible via the direct kernel mapping, and that calling
phys_to_virt() is valid.  This isn't guaranteed to be true on x86 where the
direct mapping range is much smaller than on x86-64.

Calling phys_to_virt() on a highmem address results in the following:

 BUG: unable to handle kernel paging request at 39a3c198
 IP: [<c262be0f>] pcibios_add_device+0x2f/0x90
 ...
 Call Trace:
  [<c2370c73>] pci_device_add+0xe3/0x130
  [<c274640b>] pci_scan_single_device+0x8b/0xb0
  [<c2370d08>] pci_scan_slot+0x48/0x100
  [<c2371904>] pci_scan_child_bus+0x24/0xc0
  [<c262a7b0>] pci_acpi_scan_root+0x2c0/0x490
  [<c23b7203>] acpi_pci_root_add+0x312/0x42f
  ...

The solution is to use ioremap() instead of phys_to_virt() to map the
setup data into the kernel address space.

[bhelgaas: changelog]
Tested-by: Jani Nikula <jani.nikula@intel.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Seth Forshee <seth.forshee@canonical.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: stable@vger.kernel.org	# v3.8+
2013-06-05 10:50:04 -06:00

782 lines
17 KiB
C

/*
* Low-Level PCI Support for PC
*
* (c) 1999--2000 Martin Mares <mj@ucw.cz>
*/
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/pci-acpi.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/dmi.h>
#include <linux/slab.h>
#include <asm-generic/pci-bridge.h>
#include <asm/acpi.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/pci_x86.h>
#include <asm/setup.h>
unsigned int pci_probe = PCI_PROBE_BIOS | PCI_PROBE_CONF1 | PCI_PROBE_CONF2 |
PCI_PROBE_MMCONF;
unsigned int pci_early_dump_regs;
static int pci_bf_sort;
static int smbios_type_b1_flag;
int pci_routeirq;
int noioapicquirk;
#ifdef CONFIG_X86_REROUTE_FOR_BROKEN_BOOT_IRQS
int noioapicreroute = 0;
#else
int noioapicreroute = 1;
#endif
int pcibios_last_bus = -1;
unsigned long pirq_table_addr;
const struct pci_raw_ops *__read_mostly raw_pci_ops;
const struct pci_raw_ops *__read_mostly raw_pci_ext_ops;
int raw_pci_read(unsigned int domain, unsigned int bus, unsigned int devfn,
int reg, int len, u32 *val)
{
if (domain == 0 && reg < 256 && raw_pci_ops)
return raw_pci_ops->read(domain, bus, devfn, reg, len, val);
if (raw_pci_ext_ops)
return raw_pci_ext_ops->read(domain, bus, devfn, reg, len, val);
return -EINVAL;
}
int raw_pci_write(unsigned int domain, unsigned int bus, unsigned int devfn,
int reg, int len, u32 val)
{
if (domain == 0 && reg < 256 && raw_pci_ops)
return raw_pci_ops->write(domain, bus, devfn, reg, len, val);
if (raw_pci_ext_ops)
return raw_pci_ext_ops->write(domain, bus, devfn, reg, len, val);
return -EINVAL;
}
static int pci_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
{
return raw_pci_read(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
static int pci_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
{
return raw_pci_write(pci_domain_nr(bus), bus->number,
devfn, where, size, value);
}
struct pci_ops pci_root_ops = {
.read = pci_read,
.write = pci_write,
};
/*
* This interrupt-safe spinlock protects all accesses to PCI
* configuration space.
*/
DEFINE_RAW_SPINLOCK(pci_config_lock);
static int can_skip_ioresource_align(const struct dmi_system_id *d)
{
pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
printk(KERN_INFO "PCI: %s detected, can skip ISA alignment\n", d->ident);
return 0;
}
static const struct dmi_system_id can_skip_pciprobe_dmi_table[] = {
/*
* Systems where PCI IO resource ISA alignment can be skipped
* when the ISA enable bit in the bridge control is not set
*/
{
.callback = can_skip_ioresource_align,
.ident = "IBM System x3800",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
DMI_MATCH(DMI_PRODUCT_NAME, "x3800"),
},
},
{
.callback = can_skip_ioresource_align,
.ident = "IBM System x3850",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
DMI_MATCH(DMI_PRODUCT_NAME, "x3850"),
},
},
{
.callback = can_skip_ioresource_align,
.ident = "IBM System x3950",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "IBM"),
DMI_MATCH(DMI_PRODUCT_NAME, "x3950"),
},
},
{}
};
void __init dmi_check_skip_isa_align(void)
{
dmi_check_system(can_skip_pciprobe_dmi_table);
}
static void pcibios_fixup_device_resources(struct pci_dev *dev)
{
struct resource *rom_r = &dev->resource[PCI_ROM_RESOURCE];
struct resource *bar_r;
int bar;
if (pci_probe & PCI_NOASSIGN_BARS) {
/*
* If the BIOS did not assign the BAR, zero out the
* resource so the kernel doesn't attmept to assign
* it later on in pci_assign_unassigned_resources
*/
for (bar = 0; bar <= PCI_STD_RESOURCE_END; bar++) {
bar_r = &dev->resource[bar];
if (bar_r->start == 0 && bar_r->end != 0) {
bar_r->flags = 0;
bar_r->end = 0;
}
}
}
if (pci_probe & PCI_NOASSIGN_ROMS) {
if (rom_r->parent)
return;
if (rom_r->start) {
/* we deal with BIOS assigned ROM later */
return;
}
rom_r->start = rom_r->end = rom_r->flags = 0;
}
}
/*
* Called after each bus is probed, but before its children
* are examined.
*/
void pcibios_fixup_bus(struct pci_bus *b)
{
struct pci_dev *dev;
pci_read_bridge_bases(b);
list_for_each_entry(dev, &b->devices, bus_list)
pcibios_fixup_device_resources(dev);
}
void pcibios_add_bus(struct pci_bus *bus)
{
acpi_pci_add_bus(bus);
}
void pcibios_remove_bus(struct pci_bus *bus)
{
acpi_pci_remove_bus(bus);
}
/*
* Only use DMI information to set this if nothing was passed
* on the kernel command line (which was parsed earlier).
*/
static int set_bf_sort(const struct dmi_system_id *d)
{
if (pci_bf_sort == pci_bf_sort_default) {
pci_bf_sort = pci_dmi_bf;
printk(KERN_INFO "PCI: %s detected, enabling pci=bfsort.\n", d->ident);
}
return 0;
}
static void read_dmi_type_b1(const struct dmi_header *dm,
void *private_data)
{
u8 *d = (u8 *)dm + 4;
if (dm->type != 0xB1)
return;
switch (((*(u32 *)d) >> 9) & 0x03) {
case 0x00:
printk(KERN_INFO "dmi type 0xB1 record - unknown flag\n");
break;
case 0x01: /* set pci=bfsort */
smbios_type_b1_flag = 1;
break;
case 0x02: /* do not set pci=bfsort */
smbios_type_b1_flag = 2;
break;
default:
break;
}
}
static int find_sort_method(const struct dmi_system_id *d)
{
dmi_walk(read_dmi_type_b1, NULL);
if (smbios_type_b1_flag == 1) {
set_bf_sort(d);
return 0;
}
return -1;
}
/*
* Enable renumbering of PCI bus# ranges to reach all PCI busses (Cardbus)
*/
#ifdef __i386__
static int assign_all_busses(const struct dmi_system_id *d)
{
pci_probe |= PCI_ASSIGN_ALL_BUSSES;
printk(KERN_INFO "%s detected: enabling PCI bus# renumbering"
" (pci=assign-busses)\n", d->ident);
return 0;
}
#endif
static int set_scan_all(const struct dmi_system_id *d)
{
printk(KERN_INFO "PCI: %s detected, enabling pci=pcie_scan_all\n",
d->ident);
pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
return 0;
}
static const struct dmi_system_id pciprobe_dmi_table[] = {
#ifdef __i386__
/*
* Laptops which need pci=assign-busses to see Cardbus cards
*/
{
.callback = assign_all_busses,
.ident = "Samsung X20 Laptop",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Samsung Electronics"),
DMI_MATCH(DMI_PRODUCT_NAME, "SX20S"),
},
},
#endif /* __i386__ */
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge 1950",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1950"),
},
},
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge 1955",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1955"),
},
},
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge 2900",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2900"),
},
},
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge 2950",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2950"),
},
},
{
.callback = set_bf_sort,
.ident = "Dell PowerEdge R900",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell"),
DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge R900"),
},
},
{
.callback = find_sort_method,
.ident = "Dell System",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL20p G3",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G3"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL20p G4",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL20p G4"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL30p G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL30p G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL25p G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL25p G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL35p G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL35p G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL45p G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL45p G2",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL45p G2"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL460c G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL460c G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL465c G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL465c G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL480c G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL480c G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant BL685c G1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant BL685c G1"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant DL360",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL360"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant DL380",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL380"),
},
},
#ifdef __i386__
{
.callback = assign_all_busses,
.ident = "Compaq EVO N800c",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Compaq"),
DMI_MATCH(DMI_PRODUCT_NAME, "EVO N800c"),
},
},
#endif
{
.callback = set_bf_sort,
.ident = "HP ProLiant DL385 G2",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL385 G2"),
},
},
{
.callback = set_bf_sort,
.ident = "HP ProLiant DL585 G2",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "HP"),
DMI_MATCH(DMI_PRODUCT_NAME, "ProLiant DL585 G2"),
},
},
{
.callback = set_scan_all,
.ident = "Stratus/NEC ftServer",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Stratus"),
DMI_MATCH(DMI_PRODUCT_NAME, "ftServer"),
},
},
{}
};
void __init dmi_check_pciprobe(void)
{
dmi_check_system(pciprobe_dmi_table);
}
struct pci_bus *pcibios_scan_root(int busnum)
{
struct pci_bus *bus = NULL;
while ((bus = pci_find_next_bus(bus)) != NULL) {
if (bus->number == busnum) {
/* Already scanned */
return bus;
}
}
return pci_scan_bus_on_node(busnum, &pci_root_ops,
get_mp_bus_to_node(busnum));
}
void __init pcibios_set_cache_line_size(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
/*
* Set PCI cacheline size to that of the CPU if the CPU has reported it.
* (For older CPUs that don't support cpuid, we se it to 32 bytes
* It's also good for 386/486s (which actually have 16)
* as quite a few PCI devices do not support smaller values.
*/
if (c->x86_clflush_size > 0) {
pci_dfl_cache_line_size = c->x86_clflush_size >> 2;
printk(KERN_DEBUG "PCI: pci_cache_line_size set to %d bytes\n",
pci_dfl_cache_line_size << 2);
} else {
pci_dfl_cache_line_size = 32 >> 2;
printk(KERN_DEBUG "PCI: Unknown cacheline size. Setting to 32 bytes\n");
}
}
int __init pcibios_init(void)
{
if (!raw_pci_ops) {
printk(KERN_WARNING "PCI: System does not support PCI\n");
return 0;
}
pcibios_set_cache_line_size();
pcibios_resource_survey();
if (pci_bf_sort >= pci_force_bf)
pci_sort_breadthfirst();
return 0;
}
char * __init pcibios_setup(char *str)
{
if (!strcmp(str, "off")) {
pci_probe = 0;
return NULL;
} else if (!strcmp(str, "bfsort")) {
pci_bf_sort = pci_force_bf;
return NULL;
} else if (!strcmp(str, "nobfsort")) {
pci_bf_sort = pci_force_nobf;
return NULL;
}
#ifdef CONFIG_PCI_BIOS
else if (!strcmp(str, "bios")) {
pci_probe = PCI_PROBE_BIOS;
return NULL;
} else if (!strcmp(str, "nobios")) {
pci_probe &= ~PCI_PROBE_BIOS;
return NULL;
} else if (!strcmp(str, "biosirq")) {
pci_probe |= PCI_BIOS_IRQ_SCAN;
return NULL;
} else if (!strncmp(str, "pirqaddr=", 9)) {
pirq_table_addr = simple_strtoul(str+9, NULL, 0);
return NULL;
}
#endif
#ifdef CONFIG_PCI_DIRECT
else if (!strcmp(str, "conf1")) {
pci_probe = PCI_PROBE_CONF1 | PCI_NO_CHECKS;
return NULL;
}
else if (!strcmp(str, "conf2")) {
pci_probe = PCI_PROBE_CONF2 | PCI_NO_CHECKS;
return NULL;
}
#endif
#ifdef CONFIG_PCI_MMCONFIG
else if (!strcmp(str, "nommconf")) {
pci_probe &= ~PCI_PROBE_MMCONF;
return NULL;
}
else if (!strcmp(str, "check_enable_amd_mmconf")) {
pci_probe |= PCI_CHECK_ENABLE_AMD_MMCONF;
return NULL;
}
#endif
else if (!strcmp(str, "noacpi")) {
acpi_noirq_set();
return NULL;
}
else if (!strcmp(str, "noearly")) {
pci_probe |= PCI_PROBE_NOEARLY;
return NULL;
}
#ifndef CONFIG_X86_VISWS
else if (!strcmp(str, "usepirqmask")) {
pci_probe |= PCI_USE_PIRQ_MASK;
return NULL;
} else if (!strncmp(str, "irqmask=", 8)) {
pcibios_irq_mask = simple_strtol(str+8, NULL, 0);
return NULL;
} else if (!strncmp(str, "lastbus=", 8)) {
pcibios_last_bus = simple_strtol(str+8, NULL, 0);
return NULL;
}
#endif
else if (!strcmp(str, "rom")) {
pci_probe |= PCI_ASSIGN_ROMS;
return NULL;
} else if (!strcmp(str, "norom")) {
pci_probe |= PCI_NOASSIGN_ROMS;
return NULL;
} else if (!strcmp(str, "nobar")) {
pci_probe |= PCI_NOASSIGN_BARS;
return NULL;
} else if (!strcmp(str, "assign-busses")) {
pci_probe |= PCI_ASSIGN_ALL_BUSSES;
return NULL;
} else if (!strcmp(str, "use_crs")) {
pci_probe |= PCI_USE__CRS;
return NULL;
} else if (!strcmp(str, "nocrs")) {
pci_probe |= PCI_ROOT_NO_CRS;
return NULL;
} else if (!strcmp(str, "earlydump")) {
pci_early_dump_regs = 1;
return NULL;
} else if (!strcmp(str, "routeirq")) {
pci_routeirq = 1;
return NULL;
} else if (!strcmp(str, "skip_isa_align")) {
pci_probe |= PCI_CAN_SKIP_ISA_ALIGN;
return NULL;
} else if (!strcmp(str, "noioapicquirk")) {
noioapicquirk = 1;
return NULL;
} else if (!strcmp(str, "ioapicreroute")) {
if (noioapicreroute != -1)
noioapicreroute = 0;
return NULL;
} else if (!strcmp(str, "noioapicreroute")) {
if (noioapicreroute != -1)
noioapicreroute = 1;
return NULL;
}
return str;
}
unsigned int pcibios_assign_all_busses(void)
{
return (pci_probe & PCI_ASSIGN_ALL_BUSSES) ? 1 : 0;
}
int pcibios_add_device(struct pci_dev *dev)
{
struct setup_data *data;
struct pci_setup_rom *rom;
u64 pa_data;
pa_data = boot_params.hdr.setup_data;
while (pa_data) {
data = ioremap(pa_data, sizeof(*rom));
if (!data)
return -ENOMEM;
if (data->type == SETUP_PCI) {
rom = (struct pci_setup_rom *)data;
if ((pci_domain_nr(dev->bus) == rom->segment) &&
(dev->bus->number == rom->bus) &&
(PCI_SLOT(dev->devfn) == rom->device) &&
(PCI_FUNC(dev->devfn) == rom->function) &&
(dev->vendor == rom->vendor) &&
(dev->device == rom->devid)) {
dev->rom = pa_data +
offsetof(struct pci_setup_rom, romdata);
dev->romlen = rom->pcilen;
}
}
pa_data = data->next;
iounmap(data);
}
return 0;
}
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
int err;
if ((err = pci_enable_resources(dev, mask)) < 0)
return err;
if (!pci_dev_msi_enabled(dev))
return pcibios_enable_irq(dev);
return 0;
}
void pcibios_disable_device (struct pci_dev *dev)
{
if (!pci_dev_msi_enabled(dev) && pcibios_disable_irq)
pcibios_disable_irq(dev);
}
int pci_ext_cfg_avail(void)
{
if (raw_pci_ext_ops)
return 1;
else
return 0;
}
struct pci_bus *pci_scan_bus_on_node(int busno, struct pci_ops *ops, int node)
{
LIST_HEAD(resources);
struct pci_bus *bus = NULL;
struct pci_sysdata *sd;
/*
* Allocate per-root-bus (not per bus) arch-specific data.
* TODO: leak; this memory is never freed.
* It's arguable whether it's worth the trouble to care.
*/
sd = kzalloc(sizeof(*sd), GFP_KERNEL);
if (!sd) {
printk(KERN_ERR "PCI: OOM, skipping PCI bus %02x\n", busno);
return NULL;
}
sd->node = node;
x86_pci_root_bus_resources(busno, &resources);
printk(KERN_DEBUG "PCI: Probing PCI hardware (bus %02x)\n", busno);
bus = pci_scan_root_bus(NULL, busno, ops, sd, &resources);
if (!bus) {
pci_free_resource_list(&resources);
kfree(sd);
}
return bus;
}
struct pci_bus *pci_scan_bus_with_sysdata(int busno)
{
return pci_scan_bus_on_node(busno, &pci_root_ops, -1);
}
/*
* NUMA info for PCI busses
*
* Early arch code is responsible for filling in reasonable values here.
* A node id of "-1" means "use current node". In other words, if a bus
* has a -1 node id, it's not tightly coupled to any particular chunk
* of memory (as is the case on some Nehalem systems).
*/
#ifdef CONFIG_NUMA
#define BUS_NR 256
#ifdef CONFIG_X86_64
static int mp_bus_to_node[BUS_NR] = {
[0 ... BUS_NR - 1] = -1
};
void set_mp_bus_to_node(int busnum, int node)
{
if (busnum >= 0 && busnum < BUS_NR)
mp_bus_to_node[busnum] = node;
}
int get_mp_bus_to_node(int busnum)
{
int node = -1;
if (busnum < 0 || busnum > (BUS_NR - 1))
return node;
node = mp_bus_to_node[busnum];
/*
* let numa_node_id to decide it later in dma_alloc_pages
* if there is no ram on that node
*/
if (node != -1 && !node_online(node))
node = -1;
return node;
}
#else /* CONFIG_X86_32 */
static int mp_bus_to_node[BUS_NR] = {
[0 ... BUS_NR - 1] = -1
};
void set_mp_bus_to_node(int busnum, int node)
{
if (busnum >= 0 && busnum < BUS_NR)
mp_bus_to_node[busnum] = (unsigned char) node;
}
int get_mp_bus_to_node(int busnum)
{
int node;
if (busnum < 0 || busnum > (BUS_NR - 1))
return 0;
node = mp_bus_to_node[busnum];
return node;
}
#endif /* CONFIG_X86_32 */
#endif /* CONFIG_NUMA */