2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/drivers/mtd/nand/cmx270_nand.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

283 lines
6.0 KiB
C

/*
* linux/drivers/mtd/nand/cmx270-nand.c
*
* Copyright (C) 2006 Compulab, Ltd.
* Mike Rapoport <mike@compulab.co.il>
*
* Derived from drivers/mtd/nand/h1910.c
* Copyright (C) 2002 Marius Gröger (mag@sysgo.de)
* Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Overview:
* This is a device driver for the NAND flash device found on the
* CM-X270 board.
*/
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/mach-types.h>
#include <mach/pxa2xx-regs.h>
#define GPIO_NAND_CS (11)
#define GPIO_NAND_RB (89)
/* MTD structure for CM-X270 board */
static struct mtd_info *cmx270_nand_mtd;
/* remaped IO address of the device */
static void __iomem *cmx270_nand_io;
/*
* Define static partitions for flash device
*/
static struct mtd_partition partition_info[] = {
[0] = {
.name = "cmx270-0",
.offset = 0,
.size = MTDPART_SIZ_FULL
}
};
#define NUM_PARTITIONS (ARRAY_SIZE(partition_info))
const char *part_probes[] = { "cmdlinepart", NULL };
static u_char cmx270_read_byte(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return (readl(this->IO_ADDR_R) >> 16);
}
static void cmx270_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
writel((*buf++ << 16), this->IO_ADDR_W);
}
static void cmx270_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
*buf++ = readl(this->IO_ADDR_R) >> 16;
}
static int cmx270_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
if (buf[i] != (u_char)(readl(this->IO_ADDR_R) >> 16))
return -EFAULT;
return 0;
}
static inline void nand_cs_on(void)
{
gpio_set_value(GPIO_NAND_CS, 0);
}
static void nand_cs_off(void)
{
dsb();
gpio_set_value(GPIO_NAND_CS, 1);
}
/*
* hardware specific access to control-lines
*/
static void cmx270_hwcontrol(struct mtd_info *mtd, int dat,
unsigned int ctrl)
{
struct nand_chip* this = mtd->priv;
unsigned int nandaddr = (unsigned int)this->IO_ADDR_W;
dsb();
if (ctrl & NAND_CTRL_CHANGE) {
if ( ctrl & NAND_ALE )
nandaddr |= (1 << 3);
else
nandaddr &= ~(1 << 3);
if ( ctrl & NAND_CLE )
nandaddr |= (1 << 2);
else
nandaddr &= ~(1 << 2);
if ( ctrl & NAND_NCE )
nand_cs_on();
else
nand_cs_off();
}
dsb();
this->IO_ADDR_W = (void __iomem*)nandaddr;
if (dat != NAND_CMD_NONE)
writel((dat << 16), this->IO_ADDR_W);
dsb();
}
/*
* read device ready pin
*/
static int cmx270_device_ready(struct mtd_info *mtd)
{
dsb();
return (gpio_get_value(GPIO_NAND_RB));
}
/*
* Main initialization routine
*/
static int __init cmx270_init(void)
{
struct nand_chip *this;
const char *part_type;
struct mtd_partition *mtd_parts;
int mtd_parts_nb = 0;
int ret;
if (!(machine_is_armcore() && cpu_is_pxa27x()))
return -ENODEV;
ret = gpio_request(GPIO_NAND_CS, "NAND CS");
if (ret) {
pr_warning("CM-X270: failed to request NAND CS gpio\n");
return ret;
}
gpio_direction_output(GPIO_NAND_CS, 1);
ret = gpio_request(GPIO_NAND_RB, "NAND R/B");
if (ret) {
pr_warning("CM-X270: failed to request NAND R/B gpio\n");
goto err_gpio_request;
}
gpio_direction_input(GPIO_NAND_RB);
/* Allocate memory for MTD device structure and private data */
cmx270_nand_mtd = kzalloc(sizeof(struct mtd_info) +
sizeof(struct nand_chip),
GFP_KERNEL);
if (!cmx270_nand_mtd) {
pr_debug("Unable to allocate CM-X270 NAND MTD device structure.\n");
ret = -ENOMEM;
goto err_kzalloc;
}
cmx270_nand_io = ioremap(PXA_CS1_PHYS, 12);
if (!cmx270_nand_io) {
pr_debug("Unable to ioremap NAND device\n");
ret = -EINVAL;
goto err_ioremap;
}
/* Get pointer to private data */
this = (struct nand_chip *)(&cmx270_nand_mtd[1]);
/* Link the private data with the MTD structure */
cmx270_nand_mtd->owner = THIS_MODULE;
cmx270_nand_mtd->priv = this;
/* insert callbacks */
this->IO_ADDR_R = cmx270_nand_io;
this->IO_ADDR_W = cmx270_nand_io;
this->cmd_ctrl = cmx270_hwcontrol;
this->dev_ready = cmx270_device_ready;
/* 15 us command delay time */
this->chip_delay = 20;
this->ecc.mode = NAND_ECC_SOFT;
/* read/write functions */
this->read_byte = cmx270_read_byte;
this->read_buf = cmx270_read_buf;
this->write_buf = cmx270_write_buf;
this->verify_buf = cmx270_verify_buf;
/* Scan to find existence of the device */
if (nand_scan (cmx270_nand_mtd, 1)) {
pr_notice("No NAND device\n");
ret = -ENXIO;
goto err_scan;
}
#ifdef CONFIG_MTD_CMDLINE_PARTS
mtd_parts_nb = parse_mtd_partitions(cmx270_nand_mtd, part_probes,
&mtd_parts, 0);
if (mtd_parts_nb > 0)
part_type = "command line";
else
mtd_parts_nb = 0;
#endif
if (!mtd_parts_nb) {
mtd_parts = partition_info;
mtd_parts_nb = NUM_PARTITIONS;
part_type = "static";
}
/* Register the partitions */
pr_notice("Using %s partition definition\n", part_type);
ret = add_mtd_partitions(cmx270_nand_mtd, mtd_parts, mtd_parts_nb);
if (ret)
goto err_scan;
/* Return happy */
return 0;
err_scan:
iounmap(cmx270_nand_io);
err_ioremap:
kfree(cmx270_nand_mtd);
err_kzalloc:
gpio_free(GPIO_NAND_RB);
err_gpio_request:
gpio_free(GPIO_NAND_CS);
return ret;
}
module_init(cmx270_init);
/*
* Clean up routine
*/
static void __exit cmx270_cleanup(void)
{
/* Release resources, unregister device */
nand_release(cmx270_nand_mtd);
gpio_free(GPIO_NAND_RB);
gpio_free(GPIO_NAND_CS);
iounmap(cmx270_nand_io);
/* Free the MTD device structure */
kfree (cmx270_nand_mtd);
}
module_exit(cmx270_cleanup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Rapoport <mike@compulab.co.il>");
MODULE_DESCRIPTION("NAND flash driver for Compulab CM-X270 Module");