2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/arch/powerpc/platforms/cell/spufs/run.c
Jeremy Kerr f5ed0eb6fe powerpc/spufs: Use state_mutex for switch_log locking, and prevent multiple openers
Currently, we use ctx->mapping_lock and ctx->switch_log->lock for the
context switch log. The mapping lock only prevents concurrent open()s,
so we require the switch_lock->lock for reads.

Since writes to the switch log buffer occur on context switches, we're
better off synchronising with the state_mutex, which is held during a
switch. Since we're serialised througout the buffer reads and writes,
we can use the state mutex to protect open and release too, and
can now kfree() the log buffer on release. This allows us to perform
the switch log notify without taking any extra locks.

Because the buffer is only present while the file is open, we can use
it to prevent multiple simultaneous openers.

Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
2008-10-21 11:13:19 +11:00

452 lines
11 KiB
C

#define DEBUG
#include <linux/wait.h>
#include <linux/ptrace.h>
#include <asm/spu.h>
#include <asm/spu_priv1.h>
#include <asm/io.h>
#include <asm/unistd.h>
#include "spufs.h"
/* interrupt-level stop callback function. */
void spufs_stop_callback(struct spu *spu, int irq)
{
struct spu_context *ctx = spu->ctx;
/*
* It should be impossible to preempt a context while an exception
* is being processed, since the context switch code is specially
* coded to deal with interrupts ... But, just in case, sanity check
* the context pointer. It is OK to return doing nothing since
* the exception will be regenerated when the context is resumed.
*/
if (ctx) {
/* Copy exception arguments into module specific structure */
switch(irq) {
case 0 :
ctx->csa.class_0_pending = spu->class_0_pending;
ctx->csa.class_0_dar = spu->class_0_dar;
break;
case 1 :
ctx->csa.class_1_dsisr = spu->class_1_dsisr;
ctx->csa.class_1_dar = spu->class_1_dar;
break;
case 2 :
break;
}
/* ensure that the exception status has hit memory before a
* thread waiting on the context's stop queue is woken */
smp_wmb();
wake_up_all(&ctx->stop_wq);
}
}
int spu_stopped(struct spu_context *ctx, u32 *stat)
{
u64 dsisr;
u32 stopped;
stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
top:
*stat = ctx->ops->status_read(ctx);
if (*stat & stopped) {
/*
* If the spu hasn't finished stopping, we need to
* re-read the register to get the stopped value.
*/
if (*stat & SPU_STATUS_RUNNING)
goto top;
return 1;
}
if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
return 1;
dsisr = ctx->csa.class_1_dsisr;
if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
return 1;
if (ctx->csa.class_0_pending)
return 1;
return 0;
}
static int spu_setup_isolated(struct spu_context *ctx)
{
int ret;
u64 __iomem *mfc_cntl;
u64 sr1;
u32 status;
unsigned long timeout;
const u32 status_loading = SPU_STATUS_RUNNING
| SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
ret = -ENODEV;
if (!isolated_loader)
goto out;
/*
* We need to exclude userspace access to the context.
*
* To protect against memory access we invalidate all ptes
* and make sure the pagefault handlers block on the mutex.
*/
spu_unmap_mappings(ctx);
mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
/* purge the MFC DMA queue to ensure no spurious accesses before we
* enter kernel mode */
timeout = jiffies + HZ;
out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
!= MFC_CNTL_PURGE_DMA_COMPLETE) {
if (time_after(jiffies, timeout)) {
printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
__func__);
ret = -EIO;
goto out;
}
cond_resched();
}
/* put the SPE in kernel mode to allow access to the loader */
sr1 = spu_mfc_sr1_get(ctx->spu);
sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
spu_mfc_sr1_set(ctx->spu, sr1);
/* start the loader */
ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
ctx->ops->signal2_write(ctx,
(unsigned long)isolated_loader & 0xffffffff);
ctx->ops->runcntl_write(ctx,
SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
ret = 0;
timeout = jiffies + HZ;
while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
status_loading) {
if (time_after(jiffies, timeout)) {
printk(KERN_ERR "%s: timeout waiting for loader\n",
__func__);
ret = -EIO;
goto out_drop_priv;
}
cond_resched();
}
if (!(status & SPU_STATUS_RUNNING)) {
/* If isolated LOAD has failed: run SPU, we will get a stop-and
* signal later. */
pr_debug("%s: isolated LOAD failed\n", __func__);
ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
ret = -EACCES;
goto out_drop_priv;
}
if (!(status & SPU_STATUS_ISOLATED_STATE)) {
/* This isn't allowed by the CBEA, but check anyway */
pr_debug("%s: SPU fell out of isolated mode?\n", __func__);
ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
ret = -EINVAL;
goto out_drop_priv;
}
out_drop_priv:
/* Finished accessing the loader. Drop kernel mode */
sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
spu_mfc_sr1_set(ctx->spu, sr1);
out:
return ret;
}
static int spu_run_init(struct spu_context *ctx, u32 *npc)
{
unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
int ret;
spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
/*
* NOSCHED is synchronous scheduling with respect to the caller.
* The caller waits for the context to be loaded.
*/
if (ctx->flags & SPU_CREATE_NOSCHED) {
if (ctx->state == SPU_STATE_SAVED) {
ret = spu_activate(ctx, 0);
if (ret)
return ret;
}
}
/*
* Apply special setup as required.
*/
if (ctx->flags & SPU_CREATE_ISOLATE) {
if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
ret = spu_setup_isolated(ctx);
if (ret)
return ret;
}
/*
* If userspace has set the runcntrl register (eg, to
* issue an isolated exit), we need to re-set it here
*/
runcntl = ctx->ops->runcntl_read(ctx) &
(SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
if (runcntl == 0)
runcntl = SPU_RUNCNTL_RUNNABLE;
} else {
unsigned long privcntl;
if (test_thread_flag(TIF_SINGLESTEP))
privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP;
else
privcntl = SPU_PRIVCNTL_MODE_NORMAL;
ctx->ops->privcntl_write(ctx, privcntl);
ctx->ops->npc_write(ctx, *npc);
}
ctx->ops->runcntl_write(ctx, runcntl);
if (ctx->flags & SPU_CREATE_NOSCHED) {
spuctx_switch_state(ctx, SPU_UTIL_USER);
} else {
if (ctx->state == SPU_STATE_SAVED) {
ret = spu_activate(ctx, 0);
if (ret)
return ret;
} else {
spuctx_switch_state(ctx, SPU_UTIL_USER);
}
}
set_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
return 0;
}
static int spu_run_fini(struct spu_context *ctx, u32 *npc,
u32 *status)
{
int ret = 0;
spu_del_from_rq(ctx);
*status = ctx->ops->status_read(ctx);
*npc = ctx->ops->npc_read(ctx);
spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
clear_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags);
spu_switch_log_notify(NULL, ctx, SWITCH_LOG_EXIT, *status);
spu_release(ctx);
if (signal_pending(current))
ret = -ERESTARTSYS;
return ret;
}
/*
* SPU syscall restarting is tricky because we violate the basic
* assumption that the signal handler is running on the interrupted
* thread. Here instead, the handler runs on PowerPC user space code,
* while the syscall was called from the SPU.
* This means we can only do a very rough approximation of POSIX
* signal semantics.
*/
static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
unsigned int *npc)
{
int ret;
switch (*spu_ret) {
case -ERESTARTSYS:
case -ERESTARTNOINTR:
/*
* Enter the regular syscall restarting for
* sys_spu_run, then restart the SPU syscall
* callback.
*/
*npc -= 8;
ret = -ERESTARTSYS;
break;
case -ERESTARTNOHAND:
case -ERESTART_RESTARTBLOCK:
/*
* Restart block is too hard for now, just return -EINTR
* to the SPU.
* ERESTARTNOHAND comes from sys_pause, we also return
* -EINTR from there.
* Assume that we need to be restarted ourselves though.
*/
*spu_ret = -EINTR;
ret = -ERESTARTSYS;
break;
default:
printk(KERN_WARNING "%s: unexpected return code %ld\n",
__func__, *spu_ret);
ret = 0;
}
return ret;
}
static int spu_process_callback(struct spu_context *ctx)
{
struct spu_syscall_block s;
u32 ls_pointer, npc;
void __iomem *ls;
long spu_ret;
int ret;
/* get syscall block from local store */
npc = ctx->ops->npc_read(ctx) & ~3;
ls = (void __iomem *)ctx->ops->get_ls(ctx);
ls_pointer = in_be32(ls + npc);
if (ls_pointer > (LS_SIZE - sizeof(s)))
return -EFAULT;
memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
/* do actual syscall without pinning the spu */
ret = 0;
spu_ret = -ENOSYS;
npc += 4;
if (s.nr_ret < __NR_syscalls) {
spu_release(ctx);
/* do actual system call from here */
spu_ret = spu_sys_callback(&s);
if (spu_ret <= -ERESTARTSYS) {
ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
}
mutex_lock(&ctx->state_mutex);
if (ret == -ERESTARTSYS)
return ret;
}
/* need to re-get the ls, as it may have changed when we released the
* spu */
ls = (void __iomem *)ctx->ops->get_ls(ctx);
/* write result, jump over indirect pointer */
memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
ctx->ops->npc_write(ctx, npc);
ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
return ret;
}
long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
{
int ret;
struct spu *spu;
u32 status;
if (mutex_lock_interruptible(&ctx->run_mutex))
return -ERESTARTSYS;
ctx->event_return = 0;
ret = spu_acquire(ctx);
if (ret)
goto out_unlock;
spu_enable_spu(ctx);
spu_update_sched_info(ctx);
ret = spu_run_init(ctx, npc);
if (ret) {
spu_release(ctx);
goto out;
}
do {
ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
if (unlikely(ret)) {
/*
* This is nasty: we need the state_mutex for all the
* bookkeeping even if the syscall was interrupted by
* a signal. ewww.
*/
mutex_lock(&ctx->state_mutex);
break;
}
spu = ctx->spu;
if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
&ctx->sched_flags))) {
if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
spu_switch_notify(spu, ctx);
continue;
}
}
spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
(status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
ret = spu_process_callback(ctx);
if (ret)
break;
status &= ~SPU_STATUS_STOPPED_BY_STOP;
}
ret = spufs_handle_class1(ctx);
if (ret)
break;
ret = spufs_handle_class0(ctx);
if (ret)
break;
if (signal_pending(current))
ret = -ERESTARTSYS;
} while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
SPU_STATUS_STOPPED_BY_HALT |
SPU_STATUS_SINGLE_STEP)));
spu_disable_spu(ctx);
ret = spu_run_fini(ctx, npc, &status);
spu_yield(ctx);
if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
(((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100))
ctx->stats.libassist++;
if ((ret == 0) ||
((ret == -ERESTARTSYS) &&
((status & SPU_STATUS_STOPPED_BY_HALT) ||
(status & SPU_STATUS_SINGLE_STEP) ||
((status & SPU_STATUS_STOPPED_BY_STOP) &&
(status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
ret = status;
/* Note: we don't need to force_sig SIGTRAP on single-step
* since we have TIF_SINGLESTEP set, thus the kernel will do
* it upon return from the syscall anyawy
*/
if (unlikely(status & SPU_STATUS_SINGLE_STEP))
ret = -ERESTARTSYS;
else if (unlikely((status & SPU_STATUS_STOPPED_BY_STOP)
&& (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff)) {
force_sig(SIGTRAP, current);
ret = -ERESTARTSYS;
}
out:
*event = ctx->event_return;
out_unlock:
mutex_unlock(&ctx->run_mutex);
return ret;
}