2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-28 15:13:55 +08:00
linux-next/drivers/clocksource/timer-atmel-tcb.c
Alexandre Belloni ef1d6a20e0 clocksource/drivers/timer-atmel-tcb: Stop using the 32kHz for clockevents
Stop using the slow clock as the clock source for 32 bit counters because
even at 10MHz, they are able to handle delays up to two minutes. This
provides a way better resolution.

Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20200710230813.1005150-8-alexandre.belloni@bootlin.com
2020-07-11 18:58:12 +02:00

504 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
#include <linux/syscore_ops.h>
#include <soc/at91/atmel_tcb.h>
/*
* We're configured to use a specific TC block, one that's not hooked
* up to external hardware, to provide a time solution:
*
* - Two channels combine to create a free-running 32 bit counter
* with a base rate of 5+ MHz, packaged as a clocksource (with
* resolution better than 200 nsec).
* - Some chips support 32 bit counter. A single channel is used for
* this 32 bit free-running counter. the second channel is not used.
*
* - The third channel may be used to provide a clockevent source, used in
* either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ,
* and can handle delays of up to two seconds. For 32-bit counters, it runs at
* the same rate as the clocksource
*
* REVISIT behavior during system suspend states... we should disable
* all clocks and save the power. Easily done for clockevent devices,
* but clocksources won't necessarily get the needed notifications.
* For deeper system sleep states, this will be mandatory...
*/
static void __iomem *tcaddr;
static struct
{
u32 cmr;
u32 imr;
u32 rc;
bool clken;
} tcb_cache[3];
static u32 bmr_cache;
static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 };
static u64 tc_get_cycles(struct clocksource *cs)
{
unsigned long flags;
u32 lower, upper;
raw_local_irq_save(flags);
do {
upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
} while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
raw_local_irq_restore(flags);
return (upper << 16) | lower;
}
static u64 tc_get_cycles32(struct clocksource *cs)
{
return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
}
static void tc_clksrc_suspend(struct clocksource *cs)
{
int i;
for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
ATMEL_TC_CLKSTA);
}
bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
}
static void tc_clksrc_resume(struct clocksource *cs)
{
int i;
for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
/* Restore registers for the channel, RA and RB are not used */
writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
writel(0, tcaddr + ATMEL_TC_REG(i, RA));
writel(0, tcaddr + ATMEL_TC_REG(i, RB));
/* Disable all the interrupts */
writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
/* Reenable interrupts that were enabled before suspending */
writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
/* Start the clock if it was used */
if (tcb_cache[i].clken)
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
}
/* Dual channel, chain channels */
writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
/* Finally, trigger all the channels*/
writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
}
static struct clocksource clksrc = {
.rating = 200,
.read = tc_get_cycles,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.suspend = tc_clksrc_suspend,
.resume = tc_clksrc_resume,
};
static u64 notrace tc_sched_clock_read(void)
{
return tc_get_cycles(&clksrc);
}
static u64 notrace tc_sched_clock_read32(void)
{
return tc_get_cycles32(&clksrc);
}
static struct delay_timer tc_delay_timer;
static unsigned long tc_delay_timer_read(void)
{
return tc_get_cycles(&clksrc);
}
static unsigned long notrace tc_delay_timer_read32(void)
{
return tc_get_cycles32(&clksrc);
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS
struct tc_clkevt_device {
struct clock_event_device clkevt;
struct clk *clk;
u32 rate;
void __iomem *regs;
};
static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
{
return container_of(clkevt, struct tc_clkevt_device, clkevt);
}
static u32 timer_clock;
static int tc_shutdown(struct clock_event_device *d)
{
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
void __iomem *regs = tcd->regs;
writel(0xff, regs + ATMEL_TC_REG(2, IDR));
writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
if (!clockevent_state_detached(d))
clk_disable(tcd->clk);
return 0;
}
static int tc_set_oneshot(struct clock_event_device *d)
{
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
void __iomem *regs = tcd->regs;
if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
tc_shutdown(d);
clk_enable(tcd->clk);
/* count up to RC, then irq and stop */
writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
/* set_next_event() configures and starts the timer */
return 0;
}
static int tc_set_periodic(struct clock_event_device *d)
{
struct tc_clkevt_device *tcd = to_tc_clkevt(d);
void __iomem *regs = tcd->regs;
if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
tc_shutdown(d);
/* By not making the gentime core emulate periodic mode on top
* of oneshot, we get lower overhead and improved accuracy.
*/
clk_enable(tcd->clk);
/* count up to RC, then irq and restart */
writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
regs + ATMEL_TC_REG(2, CMR));
writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
/* Enable clock and interrupts on RC compare */
writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
/* go go gadget! */
writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
ATMEL_TC_REG(2, CCR));
return 0;
}
static int tc_next_event(unsigned long delta, struct clock_event_device *d)
{
writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
/* go go gadget! */
writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
tcaddr + ATMEL_TC_REG(2, CCR));
return 0;
}
static struct tc_clkevt_device clkevt = {
.clkevt = {
.features = CLOCK_EVT_FEAT_PERIODIC |
CLOCK_EVT_FEAT_ONESHOT,
/* Should be lower than at91rm9200's system timer */
.rating = 125,
.set_next_event = tc_next_event,
.set_state_shutdown = tc_shutdown,
.set_state_periodic = tc_set_periodic,
.set_state_oneshot = tc_set_oneshot,
},
};
static irqreturn_t ch2_irq(int irq, void *handle)
{
struct tc_clkevt_device *dev = handle;
unsigned int sr;
sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
if (sr & ATMEL_TC_CPCS) {
dev->clkevt.event_handler(&dev->clkevt);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
{
int ret;
struct clk *t2_clk = tc->clk[2];
int irq = tc->irq[2];
int bits = tc->tcb_config->counter_width;
/* try to enable t2 clk to avoid future errors in mode change */
ret = clk_prepare_enable(t2_clk);
if (ret)
return ret;
clkevt.regs = tc->regs;
clkevt.clk = t2_clk;
if (bits == 32) {
timer_clock = divisor_idx;
clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx];
} else {
ret = clk_prepare_enable(tc->slow_clk);
if (ret) {
clk_disable_unprepare(t2_clk);
return ret;
}
clkevt.rate = clk_get_rate(tc->slow_clk);
timer_clock = ATMEL_TC_TIMER_CLOCK5;
}
clk_disable(t2_clk);
clkevt.clkevt.cpumask = cpumask_of(0);
ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
if (ret) {
clk_unprepare(t2_clk);
if (bits != 32)
clk_disable_unprepare(tc->slow_clk);
return ret;
}
clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1);
return ret;
}
#else /* !CONFIG_GENERIC_CLOCKEVENTS */
static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx)
{
/* NOTHING */
return 0;
}
#endif
static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
{
/* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
writel(mck_divisor_idx /* likely divide-by-8 */
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP /* free-run */
| ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
| ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
tcaddr + ATMEL_TC_REG(0, CMR));
writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
/* channel 1: waveform mode, input TIOA0 */
writel(ATMEL_TC_XC1 /* input: TIOA0 */
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP, /* free-run */
tcaddr + ATMEL_TC_REG(1, CMR));
writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
/* chain channel 0 to channel 1*/
writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
/* then reset all the timers */
writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
}
static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
{
/* channel 0: waveform mode, input mclk/8 */
writel(mck_divisor_idx /* likely divide-by-8 */
| ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP, /* free-run */
tcaddr + ATMEL_TC_REG(0, CMR));
writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
/* then reset all the timers */
writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
}
static struct atmel_tcb_config tcb_rm9200_config = {
.counter_width = 16,
};
static struct atmel_tcb_config tcb_sam9x5_config = {
.counter_width = 32,
};
static const struct of_device_id atmel_tcb_of_match[] = {
{ .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
{ .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
{ /* sentinel */ }
};
static int __init tcb_clksrc_init(struct device_node *node)
{
struct atmel_tc tc;
struct clk *t0_clk;
const struct of_device_id *match;
u64 (*tc_sched_clock)(void);
u32 rate, divided_rate = 0;
int best_divisor_idx = -1;
int bits;
int i;
int ret;
/* Protect against multiple calls */
if (tcaddr)
return 0;
tc.regs = of_iomap(node->parent, 0);
if (!tc.regs)
return -ENXIO;
t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
if (IS_ERR(t0_clk))
return PTR_ERR(t0_clk);
tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
if (IS_ERR(tc.slow_clk))
return PTR_ERR(tc.slow_clk);
tc.clk[0] = t0_clk;
tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
if (IS_ERR(tc.clk[1]))
tc.clk[1] = t0_clk;
tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
if (IS_ERR(tc.clk[2]))
tc.clk[2] = t0_clk;
tc.irq[2] = of_irq_get(node->parent, 2);
if (tc.irq[2] <= 0) {
tc.irq[2] = of_irq_get(node->parent, 0);
if (tc.irq[2] <= 0)
return -EINVAL;
}
match = of_match_node(atmel_tcb_of_match, node->parent);
if (!match)
return -ENODEV;
tc.tcb_config = match->data;
bits = tc.tcb_config->counter_width;
for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
ret = clk_prepare_enable(t0_clk);
if (ret) {
pr_debug("can't enable T0 clk\n");
return ret;
}
/* How fast will we be counting? Pick something over 5 MHz. */
rate = (u32) clk_get_rate(t0_clk);
for (i = 0; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
unsigned divisor = atmel_tcb_divisors[i];
unsigned tmp;
tmp = rate / divisor;
pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
if (best_divisor_idx > 0) {
if (tmp < 5 * 1000 * 1000)
continue;
}
divided_rate = tmp;
best_divisor_idx = i;
}
clksrc.name = kbasename(node->parent->full_name);
clkevt.clkevt.name = kbasename(node->parent->full_name);
pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
((divided_rate % 1000000) + 500) / 1000);
tcaddr = tc.regs;
if (bits == 32) {
/* use apropriate function to read 32 bit counter */
clksrc.read = tc_get_cycles32;
/* setup ony channel 0 */
tcb_setup_single_chan(&tc, best_divisor_idx);
tc_sched_clock = tc_sched_clock_read32;
tc_delay_timer.read_current_timer = tc_delay_timer_read32;
} else {
/* we have three clocks no matter what the
* underlying platform supports.
*/
ret = clk_prepare_enable(tc.clk[1]);
if (ret) {
pr_debug("can't enable T1 clk\n");
goto err_disable_t0;
}
/* setup both channel 0 & 1 */
tcb_setup_dual_chan(&tc, best_divisor_idx);
tc_sched_clock = tc_sched_clock_read;
tc_delay_timer.read_current_timer = tc_delay_timer_read;
}
/* and away we go! */
ret = clocksource_register_hz(&clksrc, divided_rate);
if (ret)
goto err_disable_t1;
/* channel 2: periodic and oneshot timer support */
ret = setup_clkevents(&tc, best_divisor_idx);
if (ret)
goto err_unregister_clksrc;
sched_clock_register(tc_sched_clock, 32, divided_rate);
tc_delay_timer.freq = divided_rate;
register_current_timer_delay(&tc_delay_timer);
return 0;
err_unregister_clksrc:
clocksource_unregister(&clksrc);
err_disable_t1:
if (bits != 32)
clk_disable_unprepare(tc.clk[1]);
err_disable_t0:
clk_disable_unprepare(t0_clk);
tcaddr = NULL;
return ret;
}
TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);