2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-08 05:34:29 +08:00
linux-next/arch/tile/kernel/pci-dma.c
James Hogan ef0aaf873e tile,mn10300: add device parameter to dma_cache_sync()
Since v2.6.20 "Pass struct dev pointer to dma_cache_sync()"
(d3fa72e455), dma_cache_sync() takes a
struct dev pointer, but these appear to be missing from the tile and
mn10300 implementations, so add them.

Signed-off-by: James Hogan <james.hogan@imgtec.com>
[cmetcalf@tilera.com: took only the "tile" portion as I don't maintain mn10300]
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
2011-05-04 14:41:36 -04:00

252 lines
6.9 KiB
C

/*
* Copyright 2010 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <asm/tlbflush.h>
#include <asm/homecache.h>
/* Generic DMA mapping functions: */
/*
* Allocate what Linux calls "coherent" memory, which for us just
* means uncached.
*/
void *dma_alloc_coherent(struct device *dev,
size_t size,
dma_addr_t *dma_handle,
gfp_t gfp)
{
u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
int node = dev_to_node(dev);
int order = get_order(size);
struct page *pg;
dma_addr_t addr;
gfp |= __GFP_ZERO;
/*
* By forcing NUMA node 0 for 32-bit masks we ensure that the
* high 32 bits of the resulting PA will be zero. If the mask
* size is, e.g., 24, we may still not be able to guarantee a
* suitable memory address, in which case we will return NULL.
* But such devices are uncommon.
*/
if (dma_mask <= DMA_BIT_MASK(32))
node = 0;
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
if (pg == NULL)
return NULL;
addr = page_to_phys(pg);
if (addr + size > dma_mask) {
homecache_free_pages(addr, order);
return NULL;
}
*dma_handle = addr;
return page_address(pg);
}
EXPORT_SYMBOL(dma_alloc_coherent);
/*
* Free memory that was allocated with dma_alloc_coherent.
*/
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
homecache_free_pages((unsigned long)vaddr, get_order(size));
}
EXPORT_SYMBOL(dma_free_coherent);
/*
* The map routines "map" the specified address range for DMA
* accesses. The memory belongs to the device after this call is
* issued, until it is unmapped with dma_unmap_single.
*
* We don't need to do any mapping, we just flush the address range
* out of the cache and return a DMA address.
*
* The unmap routines do whatever is necessary before the processor
* accesses the memory again, and must be called before the driver
* touches the memory. We can get away with a cache invalidate if we
* can count on nothing having been touched.
*/
/* Flush a PA range from cache page by page. */
static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
{
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
while ((ssize_t)size > 0) {
/* Flush the page. */
homecache_flush_cache(page++, 0);
/* Figure out if we need to continue on the next page. */
size -= bytesleft;
bytesleft = PAGE_SIZE;
}
}
/*
* dma_map_single can be passed any memory address, and there appear
* to be no alignment constraints.
*
* There is a chance that the start of the buffer will share a cache
* line with some other data that has been touched in the meantime.
*/
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction direction)
{
dma_addr_t dma_addr = __pa(ptr);
BUG_ON(!valid_dma_direction(direction));
WARN_ON(size == 0);
__dma_map_pa_range(dma_addr, size);
return dma_addr;
}
EXPORT_SYMBOL(dma_map_single);
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
}
EXPORT_SYMBOL(dma_unmap_single);
int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nents == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_map_pa_range(sg->dma_address, sg->length);
}
return nents;
}
EXPORT_SYMBOL(dma_map_sg);
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
}
EXPORT_SYMBOL(dma_unmap_sg);
dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
BUG_ON(offset + size > PAGE_SIZE);
homecache_flush_cache(page, 0);
return page_to_pa(page) + offset;
}
EXPORT_SYMBOL(dma_map_page);
void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
}
EXPORT_SYMBOL(dma_unmap_page);
void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
}
EXPORT_SYMBOL(dma_sync_single_for_cpu);
void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction)
{
unsigned long start = PFN_DOWN(dma_handle);
unsigned long end = PFN_DOWN(dma_handle + size - 1);
unsigned long i;
BUG_ON(!valid_dma_direction(direction));
for (i = start; i <= end; ++i)
homecache_flush_cache(pfn_to_page(i), 0);
}
EXPORT_SYMBOL(dma_sync_single_for_device);
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sg[0].length == 0);
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);
/*
* Flush and invalidate cache for scatterlist.
*/
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_device(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
EXPORT_SYMBOL(dma_sync_sg_for_device);
void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
void dma_sync_single_range_for_device(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_range_for_device);
/*
* dma_alloc_noncoherent() returns non-cacheable memory, so there's no
* need to do any flushing here.
*/
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
{
}
EXPORT_SYMBOL(dma_cache_sync);