2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/drivers/bus/omap_l3_noc.c
Rafael J. Wysocki ab232ba570 Merge branches 'pm-sleep' and 'pm-runtime'
* pm-sleep:
  PM / sleep: trace_device_pm_callback coverage in dpm_prepare/complete
  PM / wakeup: add a dummy wakeup_source to record statistics
  PM / sleep: Make suspend-to-idle-specific code depend on CONFIG_SUSPEND
  PM / sleep: Return -EBUSY from suspend_enter() on wakeup detection
  PM / tick: Add tracepoints for suspend-to-idle diagnostics
  PM / sleep: Fix symbol name in a comment in kernel/power/main.c
  leds / PM: fix hibernation on arm when gpio-led used with CPU led trigger
  ARM: omap-device: use SET_NOIRQ_SYSTEM_SLEEP_PM_OPS
  bus: omap_l3_noc: add missed callbacks for suspend-to-disk
  PM / sleep: Add macro to define common noirq system PM callbacks
  PM / sleep: Refine diagnostic messages in enter_state()
  PM / wakeup: validate wakeup source before activating it.

* pm-runtime:
  PM / Runtime: Update last_busy in rpm_resume
  PM / runtime: add note about re-calling in during device probe()
2015-06-19 01:18:02 +02:00

378 lines
10 KiB
C

/*
* OMAP L3 Interconnect error handling driver
*
* Copyright (C) 2011-2015 Texas Instruments Incorporated - http://www.ti.com/
* Santosh Shilimkar <santosh.shilimkar@ti.com>
* Sricharan <r.sricharan@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "omap_l3_noc.h"
/**
* l3_handle_target() - Handle Target specific parse and reporting
* @l3: pointer to l3 struct
* @base: base address of clkdm
* @flag_mux: flagmux corresponding to the event
* @err_src: error source index of the slave (target)
*
* This does the second part of the error interrupt handling:
* 3) Parse in the slave information
* 4) Print the logged information.
* 5) Add dump stack to provide kernel trace.
* 6) Clear the source if known.
*
* This handles two types of errors:
* 1) Custom errors in L3 :
* Target like DMM/FW/EMIF generates SRESP=ERR error
* 2) Standard L3 error:
* - Unsupported CMD.
* L3 tries to access target while it is idle
* - OCP disconnect.
* - Address hole error:
* If DSS/ISS/FDIF/USBHOSTFS access a target where they
* do not have connectivity, the error is logged in
* their default target which is DMM2.
*
* On High Secure devices, firewall errors are possible and those
* can be trapped as well. But the trapping is implemented as part
* secure software and hence need not be implemented here.
*/
static int l3_handle_target(struct omap_l3 *l3, void __iomem *base,
struct l3_flagmux_data *flag_mux, int err_src)
{
int k;
u32 std_err_main, clear, masterid;
u8 op_code, m_req_info;
void __iomem *l3_targ_base;
void __iomem *l3_targ_stderr, *l3_targ_slvofslsb, *l3_targ_mstaddr;
void __iomem *l3_targ_hdr, *l3_targ_info;
struct l3_target_data *l3_targ_inst;
struct l3_masters_data *master;
char *target_name, *master_name = "UN IDENTIFIED";
char *err_description;
char err_string[30] = { 0 };
char info_string[60] = { 0 };
/* We DONOT expect err_src to go out of bounds */
BUG_ON(err_src > MAX_CLKDM_TARGETS);
if (err_src < flag_mux->num_targ_data) {
l3_targ_inst = &flag_mux->l3_targ[err_src];
target_name = l3_targ_inst->name;
l3_targ_base = base + l3_targ_inst->offset;
} else {
target_name = L3_TARGET_NOT_SUPPORTED;
}
if (target_name == L3_TARGET_NOT_SUPPORTED)
return -ENODEV;
/* Read the stderrlog_main_source from clk domain */
l3_targ_stderr = l3_targ_base + L3_TARG_STDERRLOG_MAIN;
l3_targ_slvofslsb = l3_targ_base + L3_TARG_STDERRLOG_SLVOFSLSB;
std_err_main = readl_relaxed(l3_targ_stderr);
switch (std_err_main & CUSTOM_ERROR) {
case STANDARD_ERROR:
err_description = "Standard";
snprintf(err_string, sizeof(err_string),
": At Address: 0x%08X ",
readl_relaxed(l3_targ_slvofslsb));
l3_targ_mstaddr = l3_targ_base + L3_TARG_STDERRLOG_MSTADDR;
l3_targ_hdr = l3_targ_base + L3_TARG_STDERRLOG_HDR;
l3_targ_info = l3_targ_base + L3_TARG_STDERRLOG_INFO;
break;
case CUSTOM_ERROR:
err_description = "Custom";
l3_targ_mstaddr = l3_targ_base +
L3_TARG_STDERRLOG_CINFO_MSTADDR;
l3_targ_hdr = l3_targ_base + L3_TARG_STDERRLOG_CINFO_OPCODE;
l3_targ_info = l3_targ_base + L3_TARG_STDERRLOG_CINFO_INFO;
break;
default:
/* Nothing to be handled here as of now */
return 0;
}
/* STDERRLOG_MSTADDR Stores the NTTP master address. */
masterid = (readl_relaxed(l3_targ_mstaddr) &
l3->mst_addr_mask) >> __ffs(l3->mst_addr_mask);
for (k = 0, master = l3->l3_masters; k < l3->num_masters;
k++, master++) {
if (masterid == master->id) {
master_name = master->name;
break;
}
}
op_code = readl_relaxed(l3_targ_hdr) & 0x7;
m_req_info = readl_relaxed(l3_targ_info) & 0xF;
snprintf(info_string, sizeof(info_string),
": %s in %s mode during %s access",
(m_req_info & BIT(0)) ? "Opcode Fetch" : "Data Access",
(m_req_info & BIT(1)) ? "Supervisor" : "User",
(m_req_info & BIT(3)) ? "Debug" : "Functional");
WARN(true,
"%s:L3 %s Error: MASTER %s TARGET %s (%s)%s%s\n",
dev_name(l3->dev),
err_description,
master_name, target_name,
l3_transaction_type[op_code],
err_string, info_string);
/* clear the std error log*/
clear = std_err_main | CLEAR_STDERR_LOG;
writel_relaxed(clear, l3_targ_stderr);
return 0;
}
/**
* l3_interrupt_handler() - interrupt handler for l3 events
* @irq: irq number
* @_l3: pointer to l3 structure
*
* Interrupt Handler for L3 error detection.
* 1) Identify the L3 clockdomain partition to which the error belongs to.
* 2) Identify the slave where the error information is logged
* ... handle the slave event..
* 7) if the slave is unknown, mask out the slave.
*/
static irqreturn_t l3_interrupt_handler(int irq, void *_l3)
{
struct omap_l3 *l3 = _l3;
int inttype, i, ret;
int err_src = 0;
u32 err_reg, mask_val;
void __iomem *base, *mask_reg;
struct l3_flagmux_data *flag_mux;
/* Get the Type of interrupt */
inttype = irq == l3->app_irq ? L3_APPLICATION_ERROR : L3_DEBUG_ERROR;
for (i = 0; i < l3->num_modules; i++) {
/*
* Read the regerr register of the clock domain
* to determine the source
*/
base = l3->l3_base[i];
flag_mux = l3->l3_flagmux[i];
err_reg = readl_relaxed(base + flag_mux->offset +
L3_FLAGMUX_REGERR0 + (inttype << 3));
err_reg &= ~(inttype ? flag_mux->mask_app_bits :
flag_mux->mask_dbg_bits);
/* Get the corresponding error and analyse */
if (err_reg) {
/* Identify the source from control status register */
err_src = __ffs(err_reg);
ret = l3_handle_target(l3, base, flag_mux, err_src);
/*
* Certain plaforms may have "undocumented" status
* pending on boot. So dont generate a severe warning
* here. Just mask it off to prevent the error from
* reoccuring and locking up the system.
*/
if (ret) {
dev_err(l3->dev,
"L3 %s error: target %d mod:%d %s\n",
inttype ? "debug" : "application",
err_src, i, "(unclearable)");
mask_reg = base + flag_mux->offset +
L3_FLAGMUX_MASK0 + (inttype << 3);
mask_val = readl_relaxed(mask_reg);
mask_val &= ~(1 << err_src);
writel_relaxed(mask_val, mask_reg);
/* Mark these bits as to be ignored */
if (inttype)
flag_mux->mask_app_bits |= 1 << err_src;
else
flag_mux->mask_dbg_bits |= 1 << err_src;
}
/* Error found so break the for loop */
return IRQ_HANDLED;
}
}
dev_err(l3->dev, "L3 %s IRQ not handled!!\n",
inttype ? "debug" : "application");
return IRQ_NONE;
}
static const struct of_device_id l3_noc_match[] = {
{.compatible = "ti,omap4-l3-noc", .data = &omap4_l3_data},
{.compatible = "ti,omap5-l3-noc", .data = &omap5_l3_data},
{.compatible = "ti,dra7-l3-noc", .data = &dra_l3_data},
{.compatible = "ti,am4372-l3-noc", .data = &am4372_l3_data},
{},
};
MODULE_DEVICE_TABLE(of, l3_noc_match);
static int omap_l3_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id;
static struct omap_l3 *l3;
int ret, i, res_idx;
of_id = of_match_device(l3_noc_match, &pdev->dev);
if (!of_id) {
dev_err(&pdev->dev, "OF data missing\n");
return -EINVAL;
}
l3 = devm_kzalloc(&pdev->dev, sizeof(*l3), GFP_KERNEL);
if (!l3)
return -ENOMEM;
memcpy(l3, of_id->data, sizeof(*l3));
l3->dev = &pdev->dev;
platform_set_drvdata(pdev, l3);
/* Get mem resources */
for (i = 0, res_idx = 0; i < l3->num_modules; i++) {
struct resource *res;
if (l3->l3_base[i] == L3_BASE_IS_SUBMODULE) {
/* First entry cannot be submodule */
BUG_ON(i == 0);
l3->l3_base[i] = l3->l3_base[i - 1];
continue;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, res_idx);
l3->l3_base[i] = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(l3->l3_base[i])) {
dev_err(l3->dev, "ioremap %d failed\n", i);
return PTR_ERR(l3->l3_base[i]);
}
res_idx++;
}
/*
* Setup interrupt Handlers
*/
l3->debug_irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(l3->dev, l3->debug_irq, l3_interrupt_handler,
0x0, "l3-dbg-irq", l3);
if (ret) {
dev_err(l3->dev, "request_irq failed for %d\n",
l3->debug_irq);
return ret;
}
l3->app_irq = platform_get_irq(pdev, 1);
ret = devm_request_irq(l3->dev, l3->app_irq, l3_interrupt_handler,
0x0, "l3-app-irq", l3);
if (ret)
dev_err(l3->dev, "request_irq failed for %d\n", l3->app_irq);
return ret;
}
#ifdef CONFIG_PM_SLEEP
/**
* l3_resume_noirq() - resume function for l3_noc
* @dev: pointer to l3_noc device structure
*
* We only have the resume handler only since we
* have already maintained the delta register
* configuration as part of configuring the system
*/
static int l3_resume_noirq(struct device *dev)
{
struct omap_l3 *l3 = dev_get_drvdata(dev);
int i;
struct l3_flagmux_data *flag_mux;
void __iomem *base, *mask_regx = NULL;
u32 mask_val;
for (i = 0; i < l3->num_modules; i++) {
base = l3->l3_base[i];
flag_mux = l3->l3_flagmux[i];
if (!flag_mux->mask_app_bits && !flag_mux->mask_dbg_bits)
continue;
mask_regx = base + flag_mux->offset + L3_FLAGMUX_MASK0 +
(L3_APPLICATION_ERROR << 3);
mask_val = readl_relaxed(mask_regx);
mask_val &= ~(flag_mux->mask_app_bits);
writel_relaxed(mask_val, mask_regx);
mask_regx = base + flag_mux->offset + L3_FLAGMUX_MASK0 +
(L3_DEBUG_ERROR << 3);
mask_val = readl_relaxed(mask_regx);
mask_val &= ~(flag_mux->mask_dbg_bits);
writel_relaxed(mask_val, mask_regx);
}
/* Dummy read to force OCP barrier */
if (mask_regx)
(void)readl(mask_regx);
return 0;
}
static const struct dev_pm_ops l3_dev_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, l3_resume_noirq)
};
#define L3_DEV_PM_OPS (&l3_dev_pm_ops)
#else
#define L3_DEV_PM_OPS NULL
#endif
static struct platform_driver omap_l3_driver = {
.probe = omap_l3_probe,
.driver = {
.name = "omap_l3_noc",
.pm = L3_DEV_PM_OPS,
.of_match_table = of_match_ptr(l3_noc_match),
},
};
static int __init omap_l3_init(void)
{
return platform_driver_register(&omap_l3_driver);
}
postcore_initcall_sync(omap_l3_init);
static void __exit omap_l3_exit(void)
{
platform_driver_unregister(&omap_l3_driver);
}
module_exit(omap_l3_exit);