mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-01 10:13:58 +08:00
acafe7e302
One of the more common cases of allocation size calculations is finding the size of a structure that has a zero-sized array at the end, along with memory for some number of elements for that array. For example: struct foo { int stuff; void *entry[]; }; instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL); Instead of leaving these open-coded and prone to type mistakes, we can now use the new struct_size() helper: instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL); This patch makes the changes for kmalloc()-family (and kvmalloc()-family) uses. It was done via automatic conversion with manual review for the "CHECKME" non-standard cases noted below, using the following Coccinelle script: // pkey_cache = kmalloc(sizeof *pkey_cache + tprops->pkey_tbl_len * // sizeof *pkey_cache->table, GFP_KERNEL); @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; identifier VAR, ELEMENT; expression COUNT; @@ - alloc(sizeof(*VAR) + COUNT * sizeof(*VAR->ELEMENT), GFP) + alloc(struct_size(VAR, ELEMENT, COUNT), GFP) // mr = kzalloc(sizeof(*mr) + m * sizeof(mr->map[0]), GFP_KERNEL); @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; identifier VAR, ELEMENT; expression COUNT; @@ - alloc(sizeof(*VAR) + COUNT * sizeof(VAR->ELEMENT[0]), GFP) + alloc(struct_size(VAR, ELEMENT, COUNT), GFP) // Same pattern, but can't trivially locate the trailing element name, // or variable name. @@ identifier alloc =~ "kmalloc|kzalloc|kvmalloc|kvzalloc"; expression GFP; expression SOMETHING, COUNT, ELEMENT; @@ - alloc(sizeof(SOMETHING) + COUNT * sizeof(ELEMENT), GFP) + alloc(CHECKME_struct_size(&SOMETHING, ELEMENT, COUNT), GFP) Signed-off-by: Kees Cook <keescook@chromium.org>
472 lines
12 KiB
C
472 lines
12 KiB
C
/* SCTP kernel implementation
|
|
* Copyright (c) 1999-2000 Cisco, Inc.
|
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
|
* Copyright (c) 2001-2002 International Business Machines, Corp.
|
|
* Copyright (c) 2001 Intel Corp.
|
|
* Copyright (c) 2001 Nokia, Inc.
|
|
* Copyright (c) 2001 La Monte H.P. Yarroll
|
|
*
|
|
* This file is part of the SCTP kernel implementation
|
|
*
|
|
* This abstraction represents an SCTP endpoint.
|
|
*
|
|
* The SCTP implementation is free software;
|
|
* you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* The SCTP implementation is distributed in the hope that it
|
|
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
* ************************
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with GNU CC; see the file COPYING. If not, see
|
|
* <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Please send any bug reports or fixes you make to the
|
|
* email address(es):
|
|
* lksctp developers <linux-sctp@vger.kernel.org>
|
|
*
|
|
* Written or modified by:
|
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
|
* Karl Knutson <karl@athena.chicago.il.us>
|
|
* Jon Grimm <jgrimm@austin.ibm.com>
|
|
* Daisy Chang <daisyc@us.ibm.com>
|
|
* Dajiang Zhang <dajiang.zhang@nokia.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/in.h>
|
|
#include <linux/random.h> /* get_random_bytes() */
|
|
#include <net/sock.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/sctp/sctp.h>
|
|
#include <net/sctp/sm.h>
|
|
|
|
/* Forward declarations for internal helpers. */
|
|
static void sctp_endpoint_bh_rcv(struct work_struct *work);
|
|
|
|
/*
|
|
* Initialize the base fields of the endpoint structure.
|
|
*/
|
|
static struct sctp_endpoint *sctp_endpoint_init(struct sctp_endpoint *ep,
|
|
struct sock *sk,
|
|
gfp_t gfp)
|
|
{
|
|
struct net *net = sock_net(sk);
|
|
struct sctp_hmac_algo_param *auth_hmacs = NULL;
|
|
struct sctp_chunks_param *auth_chunks = NULL;
|
|
struct sctp_shared_key *null_key;
|
|
int err;
|
|
|
|
ep->digest = kzalloc(SCTP_SIGNATURE_SIZE, gfp);
|
|
if (!ep->digest)
|
|
return NULL;
|
|
|
|
ep->auth_enable = net->sctp.auth_enable;
|
|
if (ep->auth_enable) {
|
|
/* Allocate space for HMACS and CHUNKS authentication
|
|
* variables. There are arrays that we encode directly
|
|
* into parameters to make the rest of the operations easier.
|
|
*/
|
|
auth_hmacs = kzalloc(struct_size(auth_hmacs, hmac_ids,
|
|
SCTP_AUTH_NUM_HMACS), gfp);
|
|
if (!auth_hmacs)
|
|
goto nomem;
|
|
|
|
auth_chunks = kzalloc(sizeof(*auth_chunks) +
|
|
SCTP_NUM_CHUNK_TYPES, gfp);
|
|
if (!auth_chunks)
|
|
goto nomem;
|
|
|
|
/* Initialize the HMACS parameter.
|
|
* SCTP-AUTH: Section 3.3
|
|
* Every endpoint supporting SCTP chunk authentication MUST
|
|
* support the HMAC based on the SHA-1 algorithm.
|
|
*/
|
|
auth_hmacs->param_hdr.type = SCTP_PARAM_HMAC_ALGO;
|
|
auth_hmacs->param_hdr.length =
|
|
htons(sizeof(struct sctp_paramhdr) + 2);
|
|
auth_hmacs->hmac_ids[0] = htons(SCTP_AUTH_HMAC_ID_SHA1);
|
|
|
|
/* Initialize the CHUNKS parameter */
|
|
auth_chunks->param_hdr.type = SCTP_PARAM_CHUNKS;
|
|
auth_chunks->param_hdr.length =
|
|
htons(sizeof(struct sctp_paramhdr));
|
|
|
|
/* If the Add-IP functionality is enabled, we must
|
|
* authenticate, ASCONF and ASCONF-ACK chunks
|
|
*/
|
|
if (net->sctp.addip_enable) {
|
|
auth_chunks->chunks[0] = SCTP_CID_ASCONF;
|
|
auth_chunks->chunks[1] = SCTP_CID_ASCONF_ACK;
|
|
auth_chunks->param_hdr.length =
|
|
htons(sizeof(struct sctp_paramhdr) + 2);
|
|
}
|
|
}
|
|
|
|
/* Initialize the base structure. */
|
|
/* What type of endpoint are we? */
|
|
ep->base.type = SCTP_EP_TYPE_SOCKET;
|
|
|
|
/* Initialize the basic object fields. */
|
|
refcount_set(&ep->base.refcnt, 1);
|
|
ep->base.dead = false;
|
|
|
|
/* Create an input queue. */
|
|
sctp_inq_init(&ep->base.inqueue);
|
|
|
|
/* Set its top-half handler */
|
|
sctp_inq_set_th_handler(&ep->base.inqueue, sctp_endpoint_bh_rcv);
|
|
|
|
/* Initialize the bind addr area */
|
|
sctp_bind_addr_init(&ep->base.bind_addr, 0);
|
|
|
|
/* Remember who we are attached to. */
|
|
ep->base.sk = sk;
|
|
sock_hold(ep->base.sk);
|
|
|
|
/* Create the lists of associations. */
|
|
INIT_LIST_HEAD(&ep->asocs);
|
|
|
|
/* Use SCTP specific send buffer space queues. */
|
|
ep->sndbuf_policy = net->sctp.sndbuf_policy;
|
|
|
|
sk->sk_data_ready = sctp_data_ready;
|
|
sk->sk_write_space = sctp_write_space;
|
|
sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
|
|
|
|
/* Get the receive buffer policy for this endpoint */
|
|
ep->rcvbuf_policy = net->sctp.rcvbuf_policy;
|
|
|
|
/* Initialize the secret key used with cookie. */
|
|
get_random_bytes(ep->secret_key, sizeof(ep->secret_key));
|
|
|
|
/* SCTP-AUTH extensions*/
|
|
INIT_LIST_HEAD(&ep->endpoint_shared_keys);
|
|
null_key = sctp_auth_shkey_create(0, gfp);
|
|
if (!null_key)
|
|
goto nomem;
|
|
|
|
list_add(&null_key->key_list, &ep->endpoint_shared_keys);
|
|
|
|
/* Allocate and initialize transorms arrays for supported HMACs. */
|
|
err = sctp_auth_init_hmacs(ep, gfp);
|
|
if (err)
|
|
goto nomem_hmacs;
|
|
|
|
/* Add the null key to the endpoint shared keys list and
|
|
* set the hmcas and chunks pointers.
|
|
*/
|
|
ep->auth_hmacs_list = auth_hmacs;
|
|
ep->auth_chunk_list = auth_chunks;
|
|
ep->prsctp_enable = net->sctp.prsctp_enable;
|
|
ep->reconf_enable = net->sctp.reconf_enable;
|
|
|
|
return ep;
|
|
|
|
nomem_hmacs:
|
|
sctp_auth_destroy_keys(&ep->endpoint_shared_keys);
|
|
nomem:
|
|
/* Free all allocations */
|
|
kfree(auth_hmacs);
|
|
kfree(auth_chunks);
|
|
kfree(ep->digest);
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/* Create a sctp_endpoint with all that boring stuff initialized.
|
|
* Returns NULL if there isn't enough memory.
|
|
*/
|
|
struct sctp_endpoint *sctp_endpoint_new(struct sock *sk, gfp_t gfp)
|
|
{
|
|
struct sctp_endpoint *ep;
|
|
|
|
/* Build a local endpoint. */
|
|
ep = kzalloc(sizeof(*ep), gfp);
|
|
if (!ep)
|
|
goto fail;
|
|
|
|
if (!sctp_endpoint_init(ep, sk, gfp))
|
|
goto fail_init;
|
|
|
|
SCTP_DBG_OBJCNT_INC(ep);
|
|
return ep;
|
|
|
|
fail_init:
|
|
kfree(ep);
|
|
fail:
|
|
return NULL;
|
|
}
|
|
|
|
/* Add an association to an endpoint. */
|
|
void sctp_endpoint_add_asoc(struct sctp_endpoint *ep,
|
|
struct sctp_association *asoc)
|
|
{
|
|
struct sock *sk = ep->base.sk;
|
|
|
|
/* If this is a temporary association, don't bother
|
|
* since we'll be removing it shortly and don't
|
|
* want anyone to find it anyway.
|
|
*/
|
|
if (asoc->temp)
|
|
return;
|
|
|
|
/* Now just add it to our list of asocs */
|
|
list_add_tail(&asoc->asocs, &ep->asocs);
|
|
|
|
/* Increment the backlog value for a TCP-style listening socket. */
|
|
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
|
|
sk->sk_ack_backlog++;
|
|
}
|
|
|
|
/* Free the endpoint structure. Delay cleanup until
|
|
* all users have released their reference count on this structure.
|
|
*/
|
|
void sctp_endpoint_free(struct sctp_endpoint *ep)
|
|
{
|
|
ep->base.dead = true;
|
|
|
|
inet_sk_set_state(ep->base.sk, SCTP_SS_CLOSED);
|
|
|
|
/* Unlink this endpoint, so we can't find it again! */
|
|
sctp_unhash_endpoint(ep);
|
|
|
|
sctp_endpoint_put(ep);
|
|
}
|
|
|
|
/* Final destructor for endpoint. */
|
|
static void sctp_endpoint_destroy(struct sctp_endpoint *ep)
|
|
{
|
|
struct sock *sk;
|
|
|
|
if (unlikely(!ep->base.dead)) {
|
|
WARN(1, "Attempt to destroy undead endpoint %p!\n", ep);
|
|
return;
|
|
}
|
|
|
|
/* Free the digest buffer */
|
|
kfree(ep->digest);
|
|
|
|
/* SCTP-AUTH: Free up AUTH releated data such as shared keys
|
|
* chunks and hmacs arrays that were allocated
|
|
*/
|
|
sctp_auth_destroy_keys(&ep->endpoint_shared_keys);
|
|
kfree(ep->auth_hmacs_list);
|
|
kfree(ep->auth_chunk_list);
|
|
|
|
/* AUTH - Free any allocated HMAC transform containers */
|
|
sctp_auth_destroy_hmacs(ep->auth_hmacs);
|
|
|
|
/* Cleanup. */
|
|
sctp_inq_free(&ep->base.inqueue);
|
|
sctp_bind_addr_free(&ep->base.bind_addr);
|
|
|
|
memset(ep->secret_key, 0, sizeof(ep->secret_key));
|
|
|
|
sk = ep->base.sk;
|
|
/* Remove and free the port */
|
|
if (sctp_sk(sk)->bind_hash)
|
|
sctp_put_port(sk);
|
|
|
|
sctp_sk(sk)->ep = NULL;
|
|
/* Give up our hold on the sock */
|
|
sock_put(sk);
|
|
|
|
kfree(ep);
|
|
SCTP_DBG_OBJCNT_DEC(ep);
|
|
}
|
|
|
|
/* Hold a reference to an endpoint. */
|
|
void sctp_endpoint_hold(struct sctp_endpoint *ep)
|
|
{
|
|
refcount_inc(&ep->base.refcnt);
|
|
}
|
|
|
|
/* Release a reference to an endpoint and clean up if there are
|
|
* no more references.
|
|
*/
|
|
void sctp_endpoint_put(struct sctp_endpoint *ep)
|
|
{
|
|
if (refcount_dec_and_test(&ep->base.refcnt))
|
|
sctp_endpoint_destroy(ep);
|
|
}
|
|
|
|
/* Is this the endpoint we are looking for? */
|
|
struct sctp_endpoint *sctp_endpoint_is_match(struct sctp_endpoint *ep,
|
|
struct net *net,
|
|
const union sctp_addr *laddr)
|
|
{
|
|
struct sctp_endpoint *retval = NULL;
|
|
|
|
if ((htons(ep->base.bind_addr.port) == laddr->v4.sin_port) &&
|
|
net_eq(sock_net(ep->base.sk), net)) {
|
|
if (sctp_bind_addr_match(&ep->base.bind_addr, laddr,
|
|
sctp_sk(ep->base.sk)))
|
|
retval = ep;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* Find the association that goes with this chunk.
|
|
* We lookup the transport from hashtable at first, then get association
|
|
* through t->assoc.
|
|
*/
|
|
struct sctp_association *sctp_endpoint_lookup_assoc(
|
|
const struct sctp_endpoint *ep,
|
|
const union sctp_addr *paddr,
|
|
struct sctp_transport **transport)
|
|
{
|
|
struct sctp_association *asoc = NULL;
|
|
struct sctp_transport *t;
|
|
|
|
*transport = NULL;
|
|
|
|
/* If the local port is not set, there can't be any associations
|
|
* on this endpoint.
|
|
*/
|
|
if (!ep->base.bind_addr.port)
|
|
return NULL;
|
|
|
|
rcu_read_lock();
|
|
t = sctp_epaddr_lookup_transport(ep, paddr);
|
|
if (!t)
|
|
goto out;
|
|
|
|
*transport = t;
|
|
asoc = t->asoc;
|
|
out:
|
|
rcu_read_unlock();
|
|
return asoc;
|
|
}
|
|
|
|
/* Look for any peeled off association from the endpoint that matches the
|
|
* given peer address.
|
|
*/
|
|
bool sctp_endpoint_is_peeled_off(struct sctp_endpoint *ep,
|
|
const union sctp_addr *paddr)
|
|
{
|
|
struct sctp_sockaddr_entry *addr;
|
|
struct sctp_bind_addr *bp;
|
|
struct net *net = sock_net(ep->base.sk);
|
|
|
|
bp = &ep->base.bind_addr;
|
|
/* This function is called with the socket lock held,
|
|
* so the address_list can not change.
|
|
*/
|
|
list_for_each_entry(addr, &bp->address_list, list) {
|
|
if (sctp_has_association(net, &addr->a, paddr))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Do delayed input processing. This is scheduled by sctp_rcv().
|
|
* This may be called on BH or task time.
|
|
*/
|
|
static void sctp_endpoint_bh_rcv(struct work_struct *work)
|
|
{
|
|
struct sctp_endpoint *ep =
|
|
container_of(work, struct sctp_endpoint,
|
|
base.inqueue.immediate);
|
|
struct sctp_association *asoc;
|
|
struct sock *sk;
|
|
struct net *net;
|
|
struct sctp_transport *transport;
|
|
struct sctp_chunk *chunk;
|
|
struct sctp_inq *inqueue;
|
|
union sctp_subtype subtype;
|
|
enum sctp_state state;
|
|
int error = 0;
|
|
int first_time = 1; /* is this the first time through the loop */
|
|
|
|
if (ep->base.dead)
|
|
return;
|
|
|
|
asoc = NULL;
|
|
inqueue = &ep->base.inqueue;
|
|
sk = ep->base.sk;
|
|
net = sock_net(sk);
|
|
|
|
while (NULL != (chunk = sctp_inq_pop(inqueue))) {
|
|
subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
|
|
|
|
/* If the first chunk in the packet is AUTH, do special
|
|
* processing specified in Section 6.3 of SCTP-AUTH spec
|
|
*/
|
|
if (first_time && (subtype.chunk == SCTP_CID_AUTH)) {
|
|
struct sctp_chunkhdr *next_hdr;
|
|
|
|
next_hdr = sctp_inq_peek(inqueue);
|
|
if (!next_hdr)
|
|
goto normal;
|
|
|
|
/* If the next chunk is COOKIE-ECHO, skip the AUTH
|
|
* chunk while saving a pointer to it so we can do
|
|
* Authentication later (during cookie-echo
|
|
* processing).
|
|
*/
|
|
if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
|
|
chunk->auth_chunk = skb_clone(chunk->skb,
|
|
GFP_ATOMIC);
|
|
chunk->auth = 1;
|
|
continue;
|
|
}
|
|
}
|
|
normal:
|
|
/* We might have grown an association since last we
|
|
* looked, so try again.
|
|
*
|
|
* This happens when we've just processed our
|
|
* COOKIE-ECHO chunk.
|
|
*/
|
|
if (NULL == chunk->asoc) {
|
|
asoc = sctp_endpoint_lookup_assoc(ep,
|
|
sctp_source(chunk),
|
|
&transport);
|
|
chunk->asoc = asoc;
|
|
chunk->transport = transport;
|
|
}
|
|
|
|
state = asoc ? asoc->state : SCTP_STATE_CLOSED;
|
|
if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
|
|
continue;
|
|
|
|
/* Remember where the last DATA chunk came from so we
|
|
* know where to send the SACK.
|
|
*/
|
|
if (asoc && sctp_chunk_is_data(chunk))
|
|
asoc->peer.last_data_from = chunk->transport;
|
|
else {
|
|
SCTP_INC_STATS(sock_net(ep->base.sk), SCTP_MIB_INCTRLCHUNKS);
|
|
if (asoc)
|
|
asoc->stats.ictrlchunks++;
|
|
}
|
|
|
|
if (chunk->transport)
|
|
chunk->transport->last_time_heard = ktime_get();
|
|
|
|
error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, state,
|
|
ep, asoc, chunk, GFP_ATOMIC);
|
|
|
|
if (error && chunk)
|
|
chunk->pdiscard = 1;
|
|
|
|
/* Check to see if the endpoint is freed in response to
|
|
* the incoming chunk. If so, get out of the while loop.
|
|
*/
|
|
if (!sctp_sk(sk)->ep)
|
|
break;
|
|
|
|
if (first_time)
|
|
first_time = 0;
|
|
}
|
|
}
|