mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-30 16:13:54 +08:00
7d31f4602f
The kexec_load() syscall permits the loading and execution of arbitrary code in ring 0, which is something that lock-down is meant to prevent. It makes sense to disable kexec_load() in this situation. This does not affect kexec_file_load() syscall which can check for a signature on the image to be booted. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Matthew Garrett <mjg59@google.com> Acked-by: Dave Young <dyoung@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> cc: kexec@lists.infradead.org Signed-off-by: James Morris <jmorris@namei.org>
318 lines
7.9 KiB
C
318 lines
7.9 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* kexec.c - kexec_load system call
|
|
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/file.h>
|
|
#include <linux/security.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/list.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "kexec_internal.h"
|
|
|
|
static int copy_user_segment_list(struct kimage *image,
|
|
unsigned long nr_segments,
|
|
struct kexec_segment __user *segments)
|
|
{
|
|
int ret;
|
|
size_t segment_bytes;
|
|
|
|
/* Read in the segments */
|
|
image->nr_segments = nr_segments;
|
|
segment_bytes = nr_segments * sizeof(*segments);
|
|
ret = copy_from_user(image->segment, segments, segment_bytes);
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
|
|
unsigned long nr_segments,
|
|
struct kexec_segment __user *segments,
|
|
unsigned long flags)
|
|
{
|
|
int ret;
|
|
struct kimage *image;
|
|
bool kexec_on_panic = flags & KEXEC_ON_CRASH;
|
|
|
|
if (kexec_on_panic) {
|
|
/* Verify we have a valid entry point */
|
|
if ((entry < phys_to_boot_phys(crashk_res.start)) ||
|
|
(entry > phys_to_boot_phys(crashk_res.end)))
|
|
return -EADDRNOTAVAIL;
|
|
}
|
|
|
|
/* Allocate and initialize a controlling structure */
|
|
image = do_kimage_alloc_init();
|
|
if (!image)
|
|
return -ENOMEM;
|
|
|
|
image->start = entry;
|
|
|
|
ret = copy_user_segment_list(image, nr_segments, segments);
|
|
if (ret)
|
|
goto out_free_image;
|
|
|
|
if (kexec_on_panic) {
|
|
/* Enable special crash kernel control page alloc policy. */
|
|
image->control_page = crashk_res.start;
|
|
image->type = KEXEC_TYPE_CRASH;
|
|
}
|
|
|
|
ret = sanity_check_segment_list(image);
|
|
if (ret)
|
|
goto out_free_image;
|
|
|
|
/*
|
|
* Find a location for the control code buffer, and add it
|
|
* the vector of segments so that it's pages will also be
|
|
* counted as destination pages.
|
|
*/
|
|
ret = -ENOMEM;
|
|
image->control_code_page = kimage_alloc_control_pages(image,
|
|
get_order(KEXEC_CONTROL_PAGE_SIZE));
|
|
if (!image->control_code_page) {
|
|
pr_err("Could not allocate control_code_buffer\n");
|
|
goto out_free_image;
|
|
}
|
|
|
|
if (!kexec_on_panic) {
|
|
image->swap_page = kimage_alloc_control_pages(image, 0);
|
|
if (!image->swap_page) {
|
|
pr_err("Could not allocate swap buffer\n");
|
|
goto out_free_control_pages;
|
|
}
|
|
}
|
|
|
|
*rimage = image;
|
|
return 0;
|
|
out_free_control_pages:
|
|
kimage_free_page_list(&image->control_pages);
|
|
out_free_image:
|
|
kfree(image);
|
|
return ret;
|
|
}
|
|
|
|
static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
|
|
struct kexec_segment __user *segments, unsigned long flags)
|
|
{
|
|
struct kimage **dest_image, *image;
|
|
unsigned long i;
|
|
int ret;
|
|
|
|
if (flags & KEXEC_ON_CRASH) {
|
|
dest_image = &kexec_crash_image;
|
|
if (kexec_crash_image)
|
|
arch_kexec_unprotect_crashkres();
|
|
} else {
|
|
dest_image = &kexec_image;
|
|
}
|
|
|
|
if (nr_segments == 0) {
|
|
/* Uninstall image */
|
|
kimage_free(xchg(dest_image, NULL));
|
|
return 0;
|
|
}
|
|
if (flags & KEXEC_ON_CRASH) {
|
|
/*
|
|
* Loading another kernel to switch to if this one
|
|
* crashes. Free any current crash dump kernel before
|
|
* we corrupt it.
|
|
*/
|
|
kimage_free(xchg(&kexec_crash_image, NULL));
|
|
}
|
|
|
|
ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (flags & KEXEC_PRESERVE_CONTEXT)
|
|
image->preserve_context = 1;
|
|
|
|
ret = machine_kexec_prepare(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* Some architecture(like S390) may touch the crash memory before
|
|
* machine_kexec_prepare(), we must copy vmcoreinfo data after it.
|
|
*/
|
|
ret = kimage_crash_copy_vmcoreinfo(image);
|
|
if (ret)
|
|
goto out;
|
|
|
|
for (i = 0; i < nr_segments; i++) {
|
|
ret = kimage_load_segment(image, &image->segment[i]);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
kimage_terminate(image);
|
|
|
|
/* Install the new kernel and uninstall the old */
|
|
image = xchg(dest_image, image);
|
|
|
|
out:
|
|
if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
|
|
arch_kexec_protect_crashkres();
|
|
|
|
kimage_free(image);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Exec Kernel system call: for obvious reasons only root may call it.
|
|
*
|
|
* This call breaks up into three pieces.
|
|
* - A generic part which loads the new kernel from the current
|
|
* address space, and very carefully places the data in the
|
|
* allocated pages.
|
|
*
|
|
* - A generic part that interacts with the kernel and tells all of
|
|
* the devices to shut down. Preventing on-going dmas, and placing
|
|
* the devices in a consistent state so a later kernel can
|
|
* reinitialize them.
|
|
*
|
|
* - A machine specific part that includes the syscall number
|
|
* and then copies the image to it's final destination. And
|
|
* jumps into the image at entry.
|
|
*
|
|
* kexec does not sync, or unmount filesystems so if you need
|
|
* that to happen you need to do that yourself.
|
|
*/
|
|
|
|
static inline int kexec_load_check(unsigned long nr_segments,
|
|
unsigned long flags)
|
|
{
|
|
int result;
|
|
|
|
/* We only trust the superuser with rebooting the system. */
|
|
if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
|
|
return -EPERM;
|
|
|
|
/* Permit LSMs and IMA to fail the kexec */
|
|
result = security_kernel_load_data(LOADING_KEXEC_IMAGE);
|
|
if (result < 0)
|
|
return result;
|
|
|
|
/*
|
|
* kexec can be used to circumvent module loading restrictions, so
|
|
* prevent loading in that case
|
|
*/
|
|
result = security_locked_down(LOCKDOWN_KEXEC);
|
|
if (result)
|
|
return result;
|
|
|
|
/*
|
|
* Verify we have a legal set of flags
|
|
* This leaves us room for future extensions.
|
|
*/
|
|
if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
|
|
return -EINVAL;
|
|
|
|
/* Put an artificial cap on the number
|
|
* of segments passed to kexec_load.
|
|
*/
|
|
if (nr_segments > KEXEC_SEGMENT_MAX)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
|
|
struct kexec_segment __user *, segments, unsigned long, flags)
|
|
{
|
|
int result;
|
|
|
|
result = kexec_load_check(nr_segments, flags);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Verify we are on the appropriate architecture */
|
|
if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
|
|
((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
|
|
return -EINVAL;
|
|
|
|
/* Because we write directly to the reserved memory
|
|
* region when loading crash kernels we need a mutex here to
|
|
* prevent multiple crash kernels from attempting to load
|
|
* simultaneously, and to prevent a crash kernel from loading
|
|
* over the top of a in use crash kernel.
|
|
*
|
|
* KISS: always take the mutex.
|
|
*/
|
|
if (!mutex_trylock(&kexec_mutex))
|
|
return -EBUSY;
|
|
|
|
result = do_kexec_load(entry, nr_segments, segments, flags);
|
|
|
|
mutex_unlock(&kexec_mutex);
|
|
|
|
return result;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
|
|
compat_ulong_t, nr_segments,
|
|
struct compat_kexec_segment __user *, segments,
|
|
compat_ulong_t, flags)
|
|
{
|
|
struct compat_kexec_segment in;
|
|
struct kexec_segment out, __user *ksegments;
|
|
unsigned long i, result;
|
|
|
|
result = kexec_load_check(nr_segments, flags);
|
|
if (result)
|
|
return result;
|
|
|
|
/* Don't allow clients that don't understand the native
|
|
* architecture to do anything.
|
|
*/
|
|
if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
|
|
return -EINVAL;
|
|
|
|
ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
|
|
for (i = 0; i < nr_segments; i++) {
|
|
result = copy_from_user(&in, &segments[i], sizeof(in));
|
|
if (result)
|
|
return -EFAULT;
|
|
|
|
out.buf = compat_ptr(in.buf);
|
|
out.bufsz = in.bufsz;
|
|
out.mem = in.mem;
|
|
out.memsz = in.memsz;
|
|
|
|
result = copy_to_user(&ksegments[i], &out, sizeof(out));
|
|
if (result)
|
|
return -EFAULT;
|
|
}
|
|
|
|
/* Because we write directly to the reserved memory
|
|
* region when loading crash kernels we need a mutex here to
|
|
* prevent multiple crash kernels from attempting to load
|
|
* simultaneously, and to prevent a crash kernel from loading
|
|
* over the top of a in use crash kernel.
|
|
*
|
|
* KISS: always take the mutex.
|
|
*/
|
|
if (!mutex_trylock(&kexec_mutex))
|
|
return -EBUSY;
|
|
|
|
result = do_kexec_load(entry, nr_segments, ksegments, flags);
|
|
|
|
mutex_unlock(&kexec_mutex);
|
|
|
|
return result;
|
|
}
|
|
#endif
|