2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/kernel/audit.c
Paul Moore 290e44b7dd audit: use ktime_get_coarse_real_ts64() for timestamps
Commit c72051d577 ("audit: use ktime_get_coarse_ts64() for time
access") converted audit's use of current_kernel_time64() to the
new ktime_get_coarse_ts64() function.  Unfortunately this resulted
in incorrect timestamps, e.g. events stamped with the year 1969
despite it being 2018.  This patch corrects this by using
ktime_get_coarse_real_ts64() just like the current_kernel_time64()
wrapper.

Fixes: c72051d577 ("audit: use ktime_get_coarse_ts64() for time access")
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Moore <paul@paul-moore.com>
2018-07-17 14:45:08 -04:00

2391 lines
62 KiB
C

/* audit.c -- Auditing support
* Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
* System-call specific features have moved to auditsc.c
*
* Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
*
* Goals: 1) Integrate fully with Security Modules.
* 2) Minimal run-time overhead:
* a) Minimal when syscall auditing is disabled (audit_enable=0).
* b) Small when syscall auditing is enabled and no audit record
* is generated (defer as much work as possible to record
* generation time):
* i) context is allocated,
* ii) names from getname are stored without a copy, and
* iii) inode information stored from path_lookup.
* 3) Ability to disable syscall auditing at boot time (audit=0).
* 4) Usable by other parts of the kernel (if audit_log* is called,
* then a syscall record will be generated automatically for the
* current syscall).
* 5) Netlink interface to user-space.
* 6) Support low-overhead kernel-based filtering to minimize the
* information that must be passed to user-space.
*
* Audit userspace, documentation, tests, and bug/issue trackers:
* https://github.com/linux-audit
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/file.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/atomic.h>
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/kthread.h>
#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/mutex.h>
#include <linux/gfp.h>
#include <linux/pid.h>
#include <linux/slab.h>
#include <linux/audit.h>
#include <net/sock.h>
#include <net/netlink.h>
#include <linux/skbuff.h>
#ifdef CONFIG_SECURITY
#include <linux/security.h>
#endif
#include <linux/freezer.h>
#include <linux/pid_namespace.h>
#include <net/netns/generic.h>
#include "audit.h"
/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
* (Initialization happens after skb_init is called.) */
#define AUDIT_DISABLED -1
#define AUDIT_UNINITIALIZED 0
#define AUDIT_INITIALIZED 1
static int audit_initialized;
u32 audit_enabled = AUDIT_OFF;
bool audit_ever_enabled = !!AUDIT_OFF;
EXPORT_SYMBOL_GPL(audit_enabled);
/* Default state when kernel boots without any parameters. */
static u32 audit_default = AUDIT_OFF;
/* If auditing cannot proceed, audit_failure selects what happens. */
static u32 audit_failure = AUDIT_FAIL_PRINTK;
/* private audit network namespace index */
static unsigned int audit_net_id;
/**
* struct audit_net - audit private network namespace data
* @sk: communication socket
*/
struct audit_net {
struct sock *sk;
};
/**
* struct auditd_connection - kernel/auditd connection state
* @pid: auditd PID
* @portid: netlink portid
* @net: the associated network namespace
* @rcu: RCU head
*
* Description:
* This struct is RCU protected; you must either hold the RCU lock for reading
* or the associated spinlock for writing.
*/
static struct auditd_connection {
struct pid *pid;
u32 portid;
struct net *net;
struct rcu_head rcu;
} *auditd_conn = NULL;
static DEFINE_SPINLOCK(auditd_conn_lock);
/* If audit_rate_limit is non-zero, limit the rate of sending audit records
* to that number per second. This prevents DoS attacks, but results in
* audit records being dropped. */
static u32 audit_rate_limit;
/* Number of outstanding audit_buffers allowed.
* When set to zero, this means unlimited. */
static u32 audit_backlog_limit = 64;
#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
/* The identity of the user shutting down the audit system. */
kuid_t audit_sig_uid = INVALID_UID;
pid_t audit_sig_pid = -1;
u32 audit_sig_sid = 0;
/* Records can be lost in several ways:
0) [suppressed in audit_alloc]
1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
2) out of memory in audit_log_move [alloc_skb]
3) suppressed due to audit_rate_limit
4) suppressed due to audit_backlog_limit
*/
static atomic_t audit_lost = ATOMIC_INIT(0);
/* Hash for inode-based rules */
struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
static struct kmem_cache *audit_buffer_cache;
/* queue msgs to send via kauditd_task */
static struct sk_buff_head audit_queue;
/* queue msgs due to temporary unicast send problems */
static struct sk_buff_head audit_retry_queue;
/* queue msgs waiting for new auditd connection */
static struct sk_buff_head audit_hold_queue;
/* queue servicing thread */
static struct task_struct *kauditd_task;
static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
/* waitqueue for callers who are blocked on the audit backlog */
static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
.mask = -1,
.features = 0,
.lock = 0,};
static char *audit_feature_names[2] = {
"only_unset_loginuid",
"loginuid_immutable",
};
/**
* struct audit_ctl_mutex - serialize requests from userspace
* @lock: the mutex used for locking
* @owner: the task which owns the lock
*
* Description:
* This is the lock struct used to ensure we only process userspace requests
* in an orderly fashion. We can't simply use a mutex/lock here because we
* need to track lock ownership so we don't end up blocking the lock owner in
* audit_log_start() or similar.
*/
static struct audit_ctl_mutex {
struct mutex lock;
void *owner;
} audit_cmd_mutex;
/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
* audit records. Since printk uses a 1024 byte buffer, this buffer
* should be at least that large. */
#define AUDIT_BUFSIZ 1024
/* The audit_buffer is used when formatting an audit record. The caller
* locks briefly to get the record off the freelist or to allocate the
* buffer, and locks briefly to send the buffer to the netlink layer or
* to place it on a transmit queue. Multiple audit_buffers can be in
* use simultaneously. */
struct audit_buffer {
struct sk_buff *skb; /* formatted skb ready to send */
struct audit_context *ctx; /* NULL or associated context */
gfp_t gfp_mask;
};
struct audit_reply {
__u32 portid;
struct net *net;
struct sk_buff *skb;
};
/**
* auditd_test_task - Check to see if a given task is an audit daemon
* @task: the task to check
*
* Description:
* Return 1 if the task is a registered audit daemon, 0 otherwise.
*/
int auditd_test_task(struct task_struct *task)
{
int rc;
struct auditd_connection *ac;
rcu_read_lock();
ac = rcu_dereference(auditd_conn);
rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
rcu_read_unlock();
return rc;
}
/**
* audit_ctl_lock - Take the audit control lock
*/
void audit_ctl_lock(void)
{
mutex_lock(&audit_cmd_mutex.lock);
audit_cmd_mutex.owner = current;
}
/**
* audit_ctl_unlock - Drop the audit control lock
*/
void audit_ctl_unlock(void)
{
audit_cmd_mutex.owner = NULL;
mutex_unlock(&audit_cmd_mutex.lock);
}
/**
* audit_ctl_owner_current - Test to see if the current task owns the lock
*
* Description:
* Return true if the current task owns the audit control lock, false if it
* doesn't own the lock.
*/
static bool audit_ctl_owner_current(void)
{
return (current == audit_cmd_mutex.owner);
}
/**
* auditd_pid_vnr - Return the auditd PID relative to the namespace
*
* Description:
* Returns the PID in relation to the namespace, 0 on failure.
*/
static pid_t auditd_pid_vnr(void)
{
pid_t pid;
const struct auditd_connection *ac;
rcu_read_lock();
ac = rcu_dereference(auditd_conn);
if (!ac || !ac->pid)
pid = 0;
else
pid = pid_vnr(ac->pid);
rcu_read_unlock();
return pid;
}
/**
* audit_get_sk - Return the audit socket for the given network namespace
* @net: the destination network namespace
*
* Description:
* Returns the sock pointer if valid, NULL otherwise. The caller must ensure
* that a reference is held for the network namespace while the sock is in use.
*/
static struct sock *audit_get_sk(const struct net *net)
{
struct audit_net *aunet;
if (!net)
return NULL;
aunet = net_generic(net, audit_net_id);
return aunet->sk;
}
void audit_panic(const char *message)
{
switch (audit_failure) {
case AUDIT_FAIL_SILENT:
break;
case AUDIT_FAIL_PRINTK:
if (printk_ratelimit())
pr_err("%s\n", message);
break;
case AUDIT_FAIL_PANIC:
panic("audit: %s\n", message);
break;
}
}
static inline int audit_rate_check(void)
{
static unsigned long last_check = 0;
static int messages = 0;
static DEFINE_SPINLOCK(lock);
unsigned long flags;
unsigned long now;
unsigned long elapsed;
int retval = 0;
if (!audit_rate_limit) return 1;
spin_lock_irqsave(&lock, flags);
if (++messages < audit_rate_limit) {
retval = 1;
} else {
now = jiffies;
elapsed = now - last_check;
if (elapsed > HZ) {
last_check = now;
messages = 0;
retval = 1;
}
}
spin_unlock_irqrestore(&lock, flags);
return retval;
}
/**
* audit_log_lost - conditionally log lost audit message event
* @message: the message stating reason for lost audit message
*
* Emit at least 1 message per second, even if audit_rate_check is
* throttling.
* Always increment the lost messages counter.
*/
void audit_log_lost(const char *message)
{
static unsigned long last_msg = 0;
static DEFINE_SPINLOCK(lock);
unsigned long flags;
unsigned long now;
int print;
atomic_inc(&audit_lost);
print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
if (!print) {
spin_lock_irqsave(&lock, flags);
now = jiffies;
if (now - last_msg > HZ) {
print = 1;
last_msg = now;
}
spin_unlock_irqrestore(&lock, flags);
}
if (print) {
if (printk_ratelimit())
pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
atomic_read(&audit_lost),
audit_rate_limit,
audit_backlog_limit);
audit_panic(message);
}
}
static int audit_log_config_change(char *function_name, u32 new, u32 old,
int allow_changes)
{
struct audit_buffer *ab;
int rc = 0;
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
if (unlikely(!ab))
return rc;
audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
audit_log_session_info(ab);
rc = audit_log_task_context(ab);
if (rc)
allow_changes = 0; /* Something weird, deny request */
audit_log_format(ab, " res=%d", allow_changes);
audit_log_end(ab);
return rc;
}
static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
{
int allow_changes, rc = 0;
u32 old = *to_change;
/* check if we are locked */
if (audit_enabled == AUDIT_LOCKED)
allow_changes = 0;
else
allow_changes = 1;
if (audit_enabled != AUDIT_OFF) {
rc = audit_log_config_change(function_name, new, old, allow_changes);
if (rc)
allow_changes = 0;
}
/* If we are allowed, make the change */
if (allow_changes == 1)
*to_change = new;
/* Not allowed, update reason */
else if (rc == 0)
rc = -EPERM;
return rc;
}
static int audit_set_rate_limit(u32 limit)
{
return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
}
static int audit_set_backlog_limit(u32 limit)
{
return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
}
static int audit_set_backlog_wait_time(u32 timeout)
{
return audit_do_config_change("audit_backlog_wait_time",
&audit_backlog_wait_time, timeout);
}
static int audit_set_enabled(u32 state)
{
int rc;
if (state > AUDIT_LOCKED)
return -EINVAL;
rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
if (!rc)
audit_ever_enabled |= !!state;
return rc;
}
static int audit_set_failure(u32 state)
{
if (state != AUDIT_FAIL_SILENT
&& state != AUDIT_FAIL_PRINTK
&& state != AUDIT_FAIL_PANIC)
return -EINVAL;
return audit_do_config_change("audit_failure", &audit_failure, state);
}
/**
* auditd_conn_free - RCU helper to release an auditd connection struct
* @rcu: RCU head
*
* Description:
* Drop any references inside the auditd connection tracking struct and free
* the memory.
*/
static void auditd_conn_free(struct rcu_head *rcu)
{
struct auditd_connection *ac;
ac = container_of(rcu, struct auditd_connection, rcu);
put_pid(ac->pid);
put_net(ac->net);
kfree(ac);
}
/**
* auditd_set - Set/Reset the auditd connection state
* @pid: auditd PID
* @portid: auditd netlink portid
* @net: auditd network namespace pointer
*
* Description:
* This function will obtain and drop network namespace references as
* necessary. Returns zero on success, negative values on failure.
*/
static int auditd_set(struct pid *pid, u32 portid, struct net *net)
{
unsigned long flags;
struct auditd_connection *ac_old, *ac_new;
if (!pid || !net)
return -EINVAL;
ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
if (!ac_new)
return -ENOMEM;
ac_new->pid = get_pid(pid);
ac_new->portid = portid;
ac_new->net = get_net(net);
spin_lock_irqsave(&auditd_conn_lock, flags);
ac_old = rcu_dereference_protected(auditd_conn,
lockdep_is_held(&auditd_conn_lock));
rcu_assign_pointer(auditd_conn, ac_new);
spin_unlock_irqrestore(&auditd_conn_lock, flags);
if (ac_old)
call_rcu(&ac_old->rcu, auditd_conn_free);
return 0;
}
/**
* kauditd_print_skb - Print the audit record to the ring buffer
* @skb: audit record
*
* Whatever the reason, this packet may not make it to the auditd connection
* so write it via printk so the information isn't completely lost.
*/
static void kauditd_printk_skb(struct sk_buff *skb)
{
struct nlmsghdr *nlh = nlmsg_hdr(skb);
char *data = nlmsg_data(nlh);
if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
}
/**
* kauditd_rehold_skb - Handle a audit record send failure in the hold queue
* @skb: audit record
*
* Description:
* This should only be used by the kauditd_thread when it fails to flush the
* hold queue.
*/
static void kauditd_rehold_skb(struct sk_buff *skb)
{
/* put the record back in the queue at the same place */
skb_queue_head(&audit_hold_queue, skb);
}
/**
* kauditd_hold_skb - Queue an audit record, waiting for auditd
* @skb: audit record
*
* Description:
* Queue the audit record, waiting for an instance of auditd. When this
* function is called we haven't given up yet on sending the record, but things
* are not looking good. The first thing we want to do is try to write the
* record via printk and then see if we want to try and hold on to the record
* and queue it, if we have room. If we want to hold on to the record, but we
* don't have room, record a record lost message.
*/
static void kauditd_hold_skb(struct sk_buff *skb)
{
/* at this point it is uncertain if we will ever send this to auditd so
* try to send the message via printk before we go any further */
kauditd_printk_skb(skb);
/* can we just silently drop the message? */
if (!audit_default) {
kfree_skb(skb);
return;
}
/* if we have room, queue the message */
if (!audit_backlog_limit ||
skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
skb_queue_tail(&audit_hold_queue, skb);
return;
}
/* we have no other options - drop the message */
audit_log_lost("kauditd hold queue overflow");
kfree_skb(skb);
}
/**
* kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
* @skb: audit record
*
* Description:
* Not as serious as kauditd_hold_skb() as we still have a connected auditd,
* but for some reason we are having problems sending it audit records so
* queue the given record and attempt to resend.
*/
static void kauditd_retry_skb(struct sk_buff *skb)
{
/* NOTE: because records should only live in the retry queue for a
* short period of time, before either being sent or moved to the hold
* queue, we don't currently enforce a limit on this queue */
skb_queue_tail(&audit_retry_queue, skb);
}
/**
* auditd_reset - Disconnect the auditd connection
* @ac: auditd connection state
*
* Description:
* Break the auditd/kauditd connection and move all the queued records into the
* hold queue in case auditd reconnects. It is important to note that the @ac
* pointer should never be dereferenced inside this function as it may be NULL
* or invalid, you can only compare the memory address! If @ac is NULL then
* the connection will always be reset.
*/
static void auditd_reset(const struct auditd_connection *ac)
{
unsigned long flags;
struct sk_buff *skb;
struct auditd_connection *ac_old;
/* if it isn't already broken, break the connection */
spin_lock_irqsave(&auditd_conn_lock, flags);
ac_old = rcu_dereference_protected(auditd_conn,
lockdep_is_held(&auditd_conn_lock));
if (ac && ac != ac_old) {
/* someone already registered a new auditd connection */
spin_unlock_irqrestore(&auditd_conn_lock, flags);
return;
}
rcu_assign_pointer(auditd_conn, NULL);
spin_unlock_irqrestore(&auditd_conn_lock, flags);
if (ac_old)
call_rcu(&ac_old->rcu, auditd_conn_free);
/* flush the retry queue to the hold queue, but don't touch the main
* queue since we need to process that normally for multicast */
while ((skb = skb_dequeue(&audit_retry_queue)))
kauditd_hold_skb(skb);
}
/**
* auditd_send_unicast_skb - Send a record via unicast to auditd
* @skb: audit record
*
* Description:
* Send a skb to the audit daemon, returns positive/zero values on success and
* negative values on failure; in all cases the skb will be consumed by this
* function. If the send results in -ECONNREFUSED the connection with auditd
* will be reset. This function may sleep so callers should not hold any locks
* where this would cause a problem.
*/
static int auditd_send_unicast_skb(struct sk_buff *skb)
{
int rc;
u32 portid;
struct net *net;
struct sock *sk;
struct auditd_connection *ac;
/* NOTE: we can't call netlink_unicast while in the RCU section so
* take a reference to the network namespace and grab local
* copies of the namespace, the sock, and the portid; the
* namespace and sock aren't going to go away while we hold a
* reference and if the portid does become invalid after the RCU
* section netlink_unicast() should safely return an error */
rcu_read_lock();
ac = rcu_dereference(auditd_conn);
if (!ac) {
rcu_read_unlock();
kfree_skb(skb);
rc = -ECONNREFUSED;
goto err;
}
net = get_net(ac->net);
sk = audit_get_sk(net);
portid = ac->portid;
rcu_read_unlock();
rc = netlink_unicast(sk, skb, portid, 0);
put_net(net);
if (rc < 0)
goto err;
return rc;
err:
if (ac && rc == -ECONNREFUSED)
auditd_reset(ac);
return rc;
}
/**
* kauditd_send_queue - Helper for kauditd_thread to flush skb queues
* @sk: the sending sock
* @portid: the netlink destination
* @queue: the skb queue to process
* @retry_limit: limit on number of netlink unicast failures
* @skb_hook: per-skb hook for additional processing
* @err_hook: hook called if the skb fails the netlink unicast send
*
* Description:
* Run through the given queue and attempt to send the audit records to auditd,
* returns zero on success, negative values on failure. It is up to the caller
* to ensure that the @sk is valid for the duration of this function.
*
*/
static int kauditd_send_queue(struct sock *sk, u32 portid,
struct sk_buff_head *queue,
unsigned int retry_limit,
void (*skb_hook)(struct sk_buff *skb),
void (*err_hook)(struct sk_buff *skb))
{
int rc = 0;
struct sk_buff *skb;
static unsigned int failed = 0;
/* NOTE: kauditd_thread takes care of all our locking, we just use
* the netlink info passed to us (e.g. sk and portid) */
while ((skb = skb_dequeue(queue))) {
/* call the skb_hook for each skb we touch */
if (skb_hook)
(*skb_hook)(skb);
/* can we send to anyone via unicast? */
if (!sk) {
if (err_hook)
(*err_hook)(skb);
continue;
}
/* grab an extra skb reference in case of error */
skb_get(skb);
rc = netlink_unicast(sk, skb, portid, 0);
if (rc < 0) {
/* fatal failure for our queue flush attempt? */
if (++failed >= retry_limit ||
rc == -ECONNREFUSED || rc == -EPERM) {
/* yes - error processing for the queue */
sk = NULL;
if (err_hook)
(*err_hook)(skb);
if (!skb_hook)
goto out;
/* keep processing with the skb_hook */
continue;
} else
/* no - requeue to preserve ordering */
skb_queue_head(queue, skb);
} else {
/* it worked - drop the extra reference and continue */
consume_skb(skb);
failed = 0;
}
}
out:
return (rc >= 0 ? 0 : rc);
}
/*
* kauditd_send_multicast_skb - Send a record to any multicast listeners
* @skb: audit record
*
* Description:
* Write a multicast message to anyone listening in the initial network
* namespace. This function doesn't consume an skb as might be expected since
* it has to copy it anyways.
*/
static void kauditd_send_multicast_skb(struct sk_buff *skb)
{
struct sk_buff *copy;
struct sock *sock = audit_get_sk(&init_net);
struct nlmsghdr *nlh;
/* NOTE: we are not taking an additional reference for init_net since
* we don't have to worry about it going away */
if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
return;
/*
* The seemingly wasteful skb_copy() rather than bumping the refcount
* using skb_get() is necessary because non-standard mods are made to
* the skb by the original kaudit unicast socket send routine. The
* existing auditd daemon assumes this breakage. Fixing this would
* require co-ordinating a change in the established protocol between
* the kaudit kernel subsystem and the auditd userspace code. There is
* no reason for new multicast clients to continue with this
* non-compliance.
*/
copy = skb_copy(skb, GFP_KERNEL);
if (!copy)
return;
nlh = nlmsg_hdr(copy);
nlh->nlmsg_len = skb->len;
nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
}
/**
* kauditd_thread - Worker thread to send audit records to userspace
* @dummy: unused
*/
static int kauditd_thread(void *dummy)
{
int rc;
u32 portid = 0;
struct net *net = NULL;
struct sock *sk = NULL;
struct auditd_connection *ac;
#define UNICAST_RETRIES 5
set_freezable();
while (!kthread_should_stop()) {
/* NOTE: see the lock comments in auditd_send_unicast_skb() */
rcu_read_lock();
ac = rcu_dereference(auditd_conn);
if (!ac) {
rcu_read_unlock();
goto main_queue;
}
net = get_net(ac->net);
sk = audit_get_sk(net);
portid = ac->portid;
rcu_read_unlock();
/* attempt to flush the hold queue */
rc = kauditd_send_queue(sk, portid,
&audit_hold_queue, UNICAST_RETRIES,
NULL, kauditd_rehold_skb);
if (ac && rc < 0) {
sk = NULL;
auditd_reset(ac);
goto main_queue;
}
/* attempt to flush the retry queue */
rc = kauditd_send_queue(sk, portid,
&audit_retry_queue, UNICAST_RETRIES,
NULL, kauditd_hold_skb);
if (ac && rc < 0) {
sk = NULL;
auditd_reset(ac);
goto main_queue;
}
main_queue:
/* process the main queue - do the multicast send and attempt
* unicast, dump failed record sends to the retry queue; if
* sk == NULL due to previous failures we will just do the
* multicast send and move the record to the hold queue */
rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
kauditd_send_multicast_skb,
(sk ?
kauditd_retry_skb : kauditd_hold_skb));
if (ac && rc < 0)
auditd_reset(ac);
sk = NULL;
/* drop our netns reference, no auditd sends past this line */
if (net) {
put_net(net);
net = NULL;
}
/* we have processed all the queues so wake everyone */
wake_up(&audit_backlog_wait);
/* NOTE: we want to wake up if there is anything on the queue,
* regardless of if an auditd is connected, as we need to
* do the multicast send and rotate records from the
* main queue to the retry/hold queues */
wait_event_freezable(kauditd_wait,
(skb_queue_len(&audit_queue) ? 1 : 0));
}
return 0;
}
int audit_send_list(void *_dest)
{
struct audit_netlink_list *dest = _dest;
struct sk_buff *skb;
struct sock *sk = audit_get_sk(dest->net);
/* wait for parent to finish and send an ACK */
audit_ctl_lock();
audit_ctl_unlock();
while ((skb = __skb_dequeue(&dest->q)) != NULL)
netlink_unicast(sk, skb, dest->portid, 0);
put_net(dest->net);
kfree(dest);
return 0;
}
struct sk_buff *audit_make_reply(int seq, int type, int done,
int multi, const void *payload, int size)
{
struct sk_buff *skb;
struct nlmsghdr *nlh;
void *data;
int flags = multi ? NLM_F_MULTI : 0;
int t = done ? NLMSG_DONE : type;
skb = nlmsg_new(size, GFP_KERNEL);
if (!skb)
return NULL;
nlh = nlmsg_put(skb, 0, seq, t, size, flags);
if (!nlh)
goto out_kfree_skb;
data = nlmsg_data(nlh);
memcpy(data, payload, size);
return skb;
out_kfree_skb:
kfree_skb(skb);
return NULL;
}
static int audit_send_reply_thread(void *arg)
{
struct audit_reply *reply = (struct audit_reply *)arg;
struct sock *sk = audit_get_sk(reply->net);
audit_ctl_lock();
audit_ctl_unlock();
/* Ignore failure. It'll only happen if the sender goes away,
because our timeout is set to infinite. */
netlink_unicast(sk, reply->skb, reply->portid, 0);
put_net(reply->net);
kfree(reply);
return 0;
}
/**
* audit_send_reply - send an audit reply message via netlink
* @request_skb: skb of request we are replying to (used to target the reply)
* @seq: sequence number
* @type: audit message type
* @done: done (last) flag
* @multi: multi-part message flag
* @payload: payload data
* @size: payload size
*
* Allocates an skb, builds the netlink message, and sends it to the port id.
* No failure notifications.
*/
static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
int multi, const void *payload, int size)
{
struct net *net = sock_net(NETLINK_CB(request_skb).sk);
struct sk_buff *skb;
struct task_struct *tsk;
struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
GFP_KERNEL);
if (!reply)
return;
skb = audit_make_reply(seq, type, done, multi, payload, size);
if (!skb)
goto out;
reply->net = get_net(net);
reply->portid = NETLINK_CB(request_skb).portid;
reply->skb = skb;
tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
if (!IS_ERR(tsk))
return;
kfree_skb(skb);
out:
kfree(reply);
}
/*
* Check for appropriate CAP_AUDIT_ capabilities on incoming audit
* control messages.
*/
static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
{
int err = 0;
/* Only support initial user namespace for now. */
/*
* We return ECONNREFUSED because it tricks userspace into thinking
* that audit was not configured into the kernel. Lots of users
* configure their PAM stack (because that's what the distro does)
* to reject login if unable to send messages to audit. If we return
* ECONNREFUSED the PAM stack thinks the kernel does not have audit
* configured in and will let login proceed. If we return EPERM
* userspace will reject all logins. This should be removed when we
* support non init namespaces!!
*/
if (current_user_ns() != &init_user_ns)
return -ECONNREFUSED;
switch (msg_type) {
case AUDIT_LIST:
case AUDIT_ADD:
case AUDIT_DEL:
return -EOPNOTSUPP;
case AUDIT_GET:
case AUDIT_SET:
case AUDIT_GET_FEATURE:
case AUDIT_SET_FEATURE:
case AUDIT_LIST_RULES:
case AUDIT_ADD_RULE:
case AUDIT_DEL_RULE:
case AUDIT_SIGNAL_INFO:
case AUDIT_TTY_GET:
case AUDIT_TTY_SET:
case AUDIT_TRIM:
case AUDIT_MAKE_EQUIV:
/* Only support auditd and auditctl in initial pid namespace
* for now. */
if (task_active_pid_ns(current) != &init_pid_ns)
return -EPERM;
if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
err = -EPERM;
break;
case AUDIT_USER:
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
if (!netlink_capable(skb, CAP_AUDIT_WRITE))
err = -EPERM;
break;
default: /* bad msg */
err = -EINVAL;
}
return err;
}
static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
{
uid_t uid = from_kuid(&init_user_ns, current_uid());
pid_t pid = task_tgid_nr(current);
if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
*ab = NULL;
return;
}
*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
if (unlikely(!*ab))
return;
audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
audit_log_session_info(*ab);
audit_log_task_context(*ab);
}
int is_audit_feature_set(int i)
{
return af.features & AUDIT_FEATURE_TO_MASK(i);
}
static int audit_get_feature(struct sk_buff *skb)
{
u32 seq;
seq = nlmsg_hdr(skb)->nlmsg_seq;
audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
return 0;
}
static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
u32 old_lock, u32 new_lock, int res)
{
struct audit_buffer *ab;
if (audit_enabled == AUDIT_OFF)
return;
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
if (!ab)
return;
audit_log_task_info(ab, current);
audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
audit_feature_names[which], !!old_feature, !!new_feature,
!!old_lock, !!new_lock, res);
audit_log_end(ab);
}
static int audit_set_feature(struct sk_buff *skb)
{
struct audit_features *uaf;
int i;
BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
uaf = nlmsg_data(nlmsg_hdr(skb));
/* if there is ever a version 2 we should handle that here */
for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
u32 feature = AUDIT_FEATURE_TO_MASK(i);
u32 old_feature, new_feature, old_lock, new_lock;
/* if we are not changing this feature, move along */
if (!(feature & uaf->mask))
continue;
old_feature = af.features & feature;
new_feature = uaf->features & feature;
new_lock = (uaf->lock | af.lock) & feature;
old_lock = af.lock & feature;
/* are we changing a locked feature? */
if (old_lock && (new_feature != old_feature)) {
audit_log_feature_change(i, old_feature, new_feature,
old_lock, new_lock, 0);
return -EPERM;
}
}
/* nothing invalid, do the changes */
for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
u32 feature = AUDIT_FEATURE_TO_MASK(i);
u32 old_feature, new_feature, old_lock, new_lock;
/* if we are not changing this feature, move along */
if (!(feature & uaf->mask))
continue;
old_feature = af.features & feature;
new_feature = uaf->features & feature;
old_lock = af.lock & feature;
new_lock = (uaf->lock | af.lock) & feature;
if (new_feature != old_feature)
audit_log_feature_change(i, old_feature, new_feature,
old_lock, new_lock, 1);
if (new_feature)
af.features |= feature;
else
af.features &= ~feature;
af.lock |= new_lock;
}
return 0;
}
static int audit_replace(struct pid *pid)
{
pid_t pvnr;
struct sk_buff *skb;
pvnr = pid_vnr(pid);
skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
if (!skb)
return -ENOMEM;
return auditd_send_unicast_skb(skb);
}
static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
{
u32 seq;
void *data;
int err;
struct audit_buffer *ab;
u16 msg_type = nlh->nlmsg_type;
struct audit_sig_info *sig_data;
char *ctx = NULL;
u32 len;
err = audit_netlink_ok(skb, msg_type);
if (err)
return err;
seq = nlh->nlmsg_seq;
data = nlmsg_data(nlh);
switch (msg_type) {
case AUDIT_GET: {
struct audit_status s;
memset(&s, 0, sizeof(s));
s.enabled = audit_enabled;
s.failure = audit_failure;
/* NOTE: use pid_vnr() so the PID is relative to the current
* namespace */
s.pid = auditd_pid_vnr();
s.rate_limit = audit_rate_limit;
s.backlog_limit = audit_backlog_limit;
s.lost = atomic_read(&audit_lost);
s.backlog = skb_queue_len(&audit_queue);
s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
s.backlog_wait_time = audit_backlog_wait_time;
audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
break;
}
case AUDIT_SET: {
struct audit_status s;
memset(&s, 0, sizeof(s));
/* guard against past and future API changes */
memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
if (s.mask & AUDIT_STATUS_ENABLED) {
err = audit_set_enabled(s.enabled);
if (err < 0)
return err;
}
if (s.mask & AUDIT_STATUS_FAILURE) {
err = audit_set_failure(s.failure);
if (err < 0)
return err;
}
if (s.mask & AUDIT_STATUS_PID) {
/* NOTE: we are using the vnr PID functions below
* because the s.pid value is relative to the
* namespace of the caller; at present this
* doesn't matter much since you can really only
* run auditd from the initial pid namespace, but
* something to keep in mind if this changes */
pid_t new_pid = s.pid;
pid_t auditd_pid;
struct pid *req_pid = task_tgid(current);
/* Sanity check - PID values must match. Setting
* pid to 0 is how auditd ends auditing. */
if (new_pid && (new_pid != pid_vnr(req_pid)))
return -EINVAL;
/* test the auditd connection */
audit_replace(req_pid);
auditd_pid = auditd_pid_vnr();
if (auditd_pid) {
/* replacing a healthy auditd is not allowed */
if (new_pid) {
audit_log_config_change("audit_pid",
new_pid, auditd_pid, 0);
return -EEXIST;
}
/* only current auditd can unregister itself */
if (pid_vnr(req_pid) != auditd_pid) {
audit_log_config_change("audit_pid",
new_pid, auditd_pid, 0);
return -EACCES;
}
}
if (new_pid) {
/* register a new auditd connection */
err = auditd_set(req_pid,
NETLINK_CB(skb).portid,
sock_net(NETLINK_CB(skb).sk));
if (audit_enabled != AUDIT_OFF)
audit_log_config_change("audit_pid",
new_pid,
auditd_pid,
err ? 0 : 1);
if (err)
return err;
/* try to process any backlog */
wake_up_interruptible(&kauditd_wait);
} else {
if (audit_enabled != AUDIT_OFF)
audit_log_config_change("audit_pid",
new_pid,
auditd_pid, 1);
/* unregister the auditd connection */
auditd_reset(NULL);
}
}
if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
err = audit_set_rate_limit(s.rate_limit);
if (err < 0)
return err;
}
if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
err = audit_set_backlog_limit(s.backlog_limit);
if (err < 0)
return err;
}
if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
if (sizeof(s) > (size_t)nlh->nlmsg_len)
return -EINVAL;
if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
return -EINVAL;
err = audit_set_backlog_wait_time(s.backlog_wait_time);
if (err < 0)
return err;
}
if (s.mask == AUDIT_STATUS_LOST) {
u32 lost = atomic_xchg(&audit_lost, 0);
audit_log_config_change("lost", 0, lost, 1);
return lost;
}
break;
}
case AUDIT_GET_FEATURE:
err = audit_get_feature(skb);
if (err)
return err;
break;
case AUDIT_SET_FEATURE:
err = audit_set_feature(skb);
if (err)
return err;
break;
case AUDIT_USER:
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
if (!audit_enabled && msg_type != AUDIT_USER_AVC)
return 0;
err = audit_filter(msg_type, AUDIT_FILTER_USER);
if (err == 1) { /* match or error */
err = 0;
if (msg_type == AUDIT_USER_TTY) {
err = tty_audit_push();
if (err)
break;
}
audit_log_common_recv_msg(&ab, msg_type);
if (msg_type != AUDIT_USER_TTY)
audit_log_format(ab, " msg='%.*s'",
AUDIT_MESSAGE_TEXT_MAX,
(char *)data);
else {
int size;
audit_log_format(ab, " data=");
size = nlmsg_len(nlh);
if (size > 0 &&
((unsigned char *)data)[size - 1] == '\0')
size--;
audit_log_n_untrustedstring(ab, data, size);
}
audit_log_end(ab);
}
break;
case AUDIT_ADD_RULE:
case AUDIT_DEL_RULE:
if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
return -EINVAL;
if (audit_enabled == AUDIT_LOCKED) {
audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
audit_log_end(ab);
return -EPERM;
}
err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
break;
case AUDIT_LIST_RULES:
err = audit_list_rules_send(skb, seq);
break;
case AUDIT_TRIM:
audit_trim_trees();
audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
audit_log_format(ab, " op=trim res=1");
audit_log_end(ab);
break;
case AUDIT_MAKE_EQUIV: {
void *bufp = data;
u32 sizes[2];
size_t msglen = nlmsg_len(nlh);
char *old, *new;
err = -EINVAL;
if (msglen < 2 * sizeof(u32))
break;
memcpy(sizes, bufp, 2 * sizeof(u32));
bufp += 2 * sizeof(u32);
msglen -= 2 * sizeof(u32);
old = audit_unpack_string(&bufp, &msglen, sizes[0]);
if (IS_ERR(old)) {
err = PTR_ERR(old);
break;
}
new = audit_unpack_string(&bufp, &msglen, sizes[1]);
if (IS_ERR(new)) {
err = PTR_ERR(new);
kfree(old);
break;
}
/* OK, here comes... */
err = audit_tag_tree(old, new);
audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
audit_log_format(ab, " op=make_equiv old=");
audit_log_untrustedstring(ab, old);
audit_log_format(ab, " new=");
audit_log_untrustedstring(ab, new);
audit_log_format(ab, " res=%d", !err);
audit_log_end(ab);
kfree(old);
kfree(new);
break;
}
case AUDIT_SIGNAL_INFO:
len = 0;
if (audit_sig_sid) {
err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
if (err)
return err;
}
sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
if (!sig_data) {
if (audit_sig_sid)
security_release_secctx(ctx, len);
return -ENOMEM;
}
sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
sig_data->pid = audit_sig_pid;
if (audit_sig_sid) {
memcpy(sig_data->ctx, ctx, len);
security_release_secctx(ctx, len);
}
audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
sig_data, sizeof(*sig_data) + len);
kfree(sig_data);
break;
case AUDIT_TTY_GET: {
struct audit_tty_status s;
unsigned int t;
t = READ_ONCE(current->signal->audit_tty);
s.enabled = t & AUDIT_TTY_ENABLE;
s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
break;
}
case AUDIT_TTY_SET: {
struct audit_tty_status s, old;
struct audit_buffer *ab;
unsigned int t;
memset(&s, 0, sizeof(s));
/* guard against past and future API changes */
memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
/* check if new data is valid */
if ((s.enabled != 0 && s.enabled != 1) ||
(s.log_passwd != 0 && s.log_passwd != 1))
err = -EINVAL;
if (err)
t = READ_ONCE(current->signal->audit_tty);
else {
t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
t = xchg(&current->signal->audit_tty, t);
}
old.enabled = t & AUDIT_TTY_ENABLE;
old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
" old-log_passwd=%d new-log_passwd=%d res=%d",
old.enabled, s.enabled, old.log_passwd,
s.log_passwd, !err);
audit_log_end(ab);
break;
}
default:
err = -EINVAL;
break;
}
return err < 0 ? err : 0;
}
/**
* audit_receive - receive messages from a netlink control socket
* @skb: the message buffer
*
* Parse the provided skb and deal with any messages that may be present,
* malformed skbs are discarded.
*/
static void audit_receive(struct sk_buff *skb)
{
struct nlmsghdr *nlh;
/*
* len MUST be signed for nlmsg_next to be able to dec it below 0
* if the nlmsg_len was not aligned
*/
int len;
int err;
nlh = nlmsg_hdr(skb);
len = skb->len;
audit_ctl_lock();
while (nlmsg_ok(nlh, len)) {
err = audit_receive_msg(skb, nlh);
/* if err or if this message says it wants a response */
if (err || (nlh->nlmsg_flags & NLM_F_ACK))
netlink_ack(skb, nlh, err, NULL);
nlh = nlmsg_next(nlh, &len);
}
audit_ctl_unlock();
}
/* Run custom bind function on netlink socket group connect or bind requests. */
static int audit_bind(struct net *net, int group)
{
if (!capable(CAP_AUDIT_READ))
return -EPERM;
return 0;
}
static int __net_init audit_net_init(struct net *net)
{
struct netlink_kernel_cfg cfg = {
.input = audit_receive,
.bind = audit_bind,
.flags = NL_CFG_F_NONROOT_RECV,
.groups = AUDIT_NLGRP_MAX,
};
struct audit_net *aunet = net_generic(net, audit_net_id);
aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
if (aunet->sk == NULL) {
audit_panic("cannot initialize netlink socket in namespace");
return -ENOMEM;
}
aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
return 0;
}
static void __net_exit audit_net_exit(struct net *net)
{
struct audit_net *aunet = net_generic(net, audit_net_id);
/* NOTE: you would think that we would want to check the auditd
* connection and potentially reset it here if it lives in this
* namespace, but since the auditd connection tracking struct holds a
* reference to this namespace (see auditd_set()) we are only ever
* going to get here after that connection has been released */
netlink_kernel_release(aunet->sk);
}
static struct pernet_operations audit_net_ops __net_initdata = {
.init = audit_net_init,
.exit = audit_net_exit,
.id = &audit_net_id,
.size = sizeof(struct audit_net),
};
/* Initialize audit support at boot time. */
static int __init audit_init(void)
{
int i;
if (audit_initialized == AUDIT_DISABLED)
return 0;
audit_buffer_cache = kmem_cache_create("audit_buffer",
sizeof(struct audit_buffer),
0, SLAB_PANIC, NULL);
skb_queue_head_init(&audit_queue);
skb_queue_head_init(&audit_retry_queue);
skb_queue_head_init(&audit_hold_queue);
for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
INIT_LIST_HEAD(&audit_inode_hash[i]);
mutex_init(&audit_cmd_mutex.lock);
audit_cmd_mutex.owner = NULL;
pr_info("initializing netlink subsys (%s)\n",
audit_default ? "enabled" : "disabled");
register_pernet_subsys(&audit_net_ops);
audit_initialized = AUDIT_INITIALIZED;
kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
if (IS_ERR(kauditd_task)) {
int err = PTR_ERR(kauditd_task);
panic("audit: failed to start the kauditd thread (%d)\n", err);
}
audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
"state=initialized audit_enabled=%u res=1",
audit_enabled);
return 0;
}
postcore_initcall(audit_init);
/*
* Process kernel command-line parameter at boot time.
* audit={0|off} or audit={1|on}.
*/
static int __init audit_enable(char *str)
{
if (!strcasecmp(str, "off") || !strcmp(str, "0"))
audit_default = AUDIT_OFF;
else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
audit_default = AUDIT_ON;
else {
pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
audit_default = AUDIT_ON;
}
if (audit_default == AUDIT_OFF)
audit_initialized = AUDIT_DISABLED;
if (audit_set_enabled(audit_default))
pr_err("audit: error setting audit state (%d)\n",
audit_default);
pr_info("%s\n", audit_default ?
"enabled (after initialization)" : "disabled (until reboot)");
return 1;
}
__setup("audit=", audit_enable);
/* Process kernel command-line parameter at boot time.
* audit_backlog_limit=<n> */
static int __init audit_backlog_limit_set(char *str)
{
u32 audit_backlog_limit_arg;
pr_info("audit_backlog_limit: ");
if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
pr_cont("using default of %u, unable to parse %s\n",
audit_backlog_limit, str);
return 1;
}
audit_backlog_limit = audit_backlog_limit_arg;
pr_cont("%d\n", audit_backlog_limit);
return 1;
}
__setup("audit_backlog_limit=", audit_backlog_limit_set);
static void audit_buffer_free(struct audit_buffer *ab)
{
if (!ab)
return;
kfree_skb(ab->skb);
kmem_cache_free(audit_buffer_cache, ab);
}
static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
gfp_t gfp_mask, int type)
{
struct audit_buffer *ab;
ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
if (!ab)
return NULL;
ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
if (!ab->skb)
goto err;
if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
goto err;
ab->ctx = ctx;
ab->gfp_mask = gfp_mask;
return ab;
err:
audit_buffer_free(ab);
return NULL;
}
/**
* audit_serial - compute a serial number for the audit record
*
* Compute a serial number for the audit record. Audit records are
* written to user-space as soon as they are generated, so a complete
* audit record may be written in several pieces. The timestamp of the
* record and this serial number are used by the user-space tools to
* determine which pieces belong to the same audit record. The
* (timestamp,serial) tuple is unique for each syscall and is live from
* syscall entry to syscall exit.
*
* NOTE: Another possibility is to store the formatted records off the
* audit context (for those records that have a context), and emit them
* all at syscall exit. However, this could delay the reporting of
* significant errors until syscall exit (or never, if the system
* halts).
*/
unsigned int audit_serial(void)
{
static atomic_t serial = ATOMIC_INIT(0);
return atomic_add_return(1, &serial);
}
static inline void audit_get_stamp(struct audit_context *ctx,
struct timespec64 *t, unsigned int *serial)
{
if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
ktime_get_coarse_real_ts64(t);
*serial = audit_serial();
}
}
/**
* audit_log_start - obtain an audit buffer
* @ctx: audit_context (may be NULL)
* @gfp_mask: type of allocation
* @type: audit message type
*
* Returns audit_buffer pointer on success or NULL on error.
*
* Obtain an audit buffer. This routine does locking to obtain the
* audit buffer, but then no locking is required for calls to
* audit_log_*format. If the task (ctx) is a task that is currently in a
* syscall, then the syscall is marked as auditable and an audit record
* will be written at syscall exit. If there is no associated task, then
* task context (ctx) should be NULL.
*/
struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
int type)
{
struct audit_buffer *ab;
struct timespec64 t;
unsigned int uninitialized_var(serial);
if (audit_initialized != AUDIT_INITIALIZED)
return NULL;
if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
return NULL;
/* NOTE: don't ever fail/sleep on these two conditions:
* 1. auditd generated record - since we need auditd to drain the
* queue; also, when we are checking for auditd, compare PIDs using
* task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
* using a PID anchored in the caller's namespace
* 2. generator holding the audit_cmd_mutex - we don't want to block
* while holding the mutex */
if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
long stime = audit_backlog_wait_time;
while (audit_backlog_limit &&
(skb_queue_len(&audit_queue) > audit_backlog_limit)) {
/* wake kauditd to try and flush the queue */
wake_up_interruptible(&kauditd_wait);
/* sleep if we are allowed and we haven't exhausted our
* backlog wait limit */
if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
DECLARE_WAITQUEUE(wait, current);
add_wait_queue_exclusive(&audit_backlog_wait,
&wait);
set_current_state(TASK_UNINTERRUPTIBLE);
stime = schedule_timeout(stime);
remove_wait_queue(&audit_backlog_wait, &wait);
} else {
if (audit_rate_check() && printk_ratelimit())
pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
skb_queue_len(&audit_queue),
audit_backlog_limit);
audit_log_lost("backlog limit exceeded");
return NULL;
}
}
}
ab = audit_buffer_alloc(ctx, gfp_mask, type);
if (!ab) {
audit_log_lost("out of memory in audit_log_start");
return NULL;
}
audit_get_stamp(ab->ctx, &t, &serial);
audit_log_format(ab, "audit(%llu.%03lu:%u): ",
(unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
return ab;
}
/**
* audit_expand - expand skb in the audit buffer
* @ab: audit_buffer
* @extra: space to add at tail of the skb
*
* Returns 0 (no space) on failed expansion, or available space if
* successful.
*/
static inline int audit_expand(struct audit_buffer *ab, int extra)
{
struct sk_buff *skb = ab->skb;
int oldtail = skb_tailroom(skb);
int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
int newtail = skb_tailroom(skb);
if (ret < 0) {
audit_log_lost("out of memory in audit_expand");
return 0;
}
skb->truesize += newtail - oldtail;
return newtail;
}
/*
* Format an audit message into the audit buffer. If there isn't enough
* room in the audit buffer, more room will be allocated and vsnprint
* will be called a second time. Currently, we assume that a printk
* can't format message larger than 1024 bytes, so we don't either.
*/
static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
va_list args)
{
int len, avail;
struct sk_buff *skb;
va_list args2;
if (!ab)
return;
BUG_ON(!ab->skb);
skb = ab->skb;
avail = skb_tailroom(skb);
if (avail == 0) {
avail = audit_expand(ab, AUDIT_BUFSIZ);
if (!avail)
goto out;
}
va_copy(args2, args);
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
if (len >= avail) {
/* The printk buffer is 1024 bytes long, so if we get
* here and AUDIT_BUFSIZ is at least 1024, then we can
* log everything that printk could have logged. */
avail = audit_expand(ab,
max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
if (!avail)
goto out_va_end;
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
}
if (len > 0)
skb_put(skb, len);
out_va_end:
va_end(args2);
out:
return;
}
/**
* audit_log_format - format a message into the audit buffer.
* @ab: audit_buffer
* @fmt: format string
* @...: optional parameters matching @fmt string
*
* All the work is done in audit_log_vformat.
*/
void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
{
va_list args;
if (!ab)
return;
va_start(args, fmt);
audit_log_vformat(ab, fmt, args);
va_end(args);
}
/**
* audit_log_n_hex - convert a buffer to hex and append it to the audit skb
* @ab: the audit_buffer
* @buf: buffer to convert to hex
* @len: length of @buf to be converted
*
* No return value; failure to expand is silently ignored.
*
* This function will take the passed buf and convert it into a string of
* ascii hex digits. The new string is placed onto the skb.
*/
void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
size_t len)
{
int i, avail, new_len;
unsigned char *ptr;
struct sk_buff *skb;
if (!ab)
return;
BUG_ON(!ab->skb);
skb = ab->skb;
avail = skb_tailroom(skb);
new_len = len<<1;
if (new_len >= avail) {
/* Round the buffer request up to the next multiple */
new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
avail = audit_expand(ab, new_len);
if (!avail)
return;
}
ptr = skb_tail_pointer(skb);
for (i = 0; i < len; i++)
ptr = hex_byte_pack_upper(ptr, buf[i]);
*ptr = 0;
skb_put(skb, len << 1); /* new string is twice the old string */
}
/*
* Format a string of no more than slen characters into the audit buffer,
* enclosed in quote marks.
*/
void audit_log_n_string(struct audit_buffer *ab, const char *string,
size_t slen)
{
int avail, new_len;
unsigned char *ptr;
struct sk_buff *skb;
if (!ab)
return;
BUG_ON(!ab->skb);
skb = ab->skb;
avail = skb_tailroom(skb);
new_len = slen + 3; /* enclosing quotes + null terminator */
if (new_len > avail) {
avail = audit_expand(ab, new_len);
if (!avail)
return;
}
ptr = skb_tail_pointer(skb);
*ptr++ = '"';
memcpy(ptr, string, slen);
ptr += slen;
*ptr++ = '"';
*ptr = 0;
skb_put(skb, slen + 2); /* don't include null terminator */
}
/**
* audit_string_contains_control - does a string need to be logged in hex
* @string: string to be checked
* @len: max length of the string to check
*/
bool audit_string_contains_control(const char *string, size_t len)
{
const unsigned char *p;
for (p = string; p < (const unsigned char *)string + len; p++) {
if (*p == '"' || *p < 0x21 || *p > 0x7e)
return true;
}
return false;
}
/**
* audit_log_n_untrustedstring - log a string that may contain random characters
* @ab: audit_buffer
* @len: length of string (not including trailing null)
* @string: string to be logged
*
* This code will escape a string that is passed to it if the string
* contains a control character, unprintable character, double quote mark,
* or a space. Unescaped strings will start and end with a double quote mark.
* Strings that are escaped are printed in hex (2 digits per char).
*
* The caller specifies the number of characters in the string to log, which may
* or may not be the entire string.
*/
void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
size_t len)
{
if (audit_string_contains_control(string, len))
audit_log_n_hex(ab, string, len);
else
audit_log_n_string(ab, string, len);
}
/**
* audit_log_untrustedstring - log a string that may contain random characters
* @ab: audit_buffer
* @string: string to be logged
*
* Same as audit_log_n_untrustedstring(), except that strlen is used to
* determine string length.
*/
void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
{
audit_log_n_untrustedstring(ab, string, strlen(string));
}
/* This is a helper-function to print the escaped d_path */
void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
const struct path *path)
{
char *p, *pathname;
if (prefix)
audit_log_format(ab, "%s", prefix);
/* We will allow 11 spaces for ' (deleted)' to be appended */
pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
if (!pathname) {
audit_log_string(ab, "<no_memory>");
return;
}
p = d_path(path, pathname, PATH_MAX+11);
if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
/* FIXME: can we save some information here? */
audit_log_string(ab, "<too_long>");
} else
audit_log_untrustedstring(ab, p);
kfree(pathname);
}
void audit_log_session_info(struct audit_buffer *ab)
{
unsigned int sessionid = audit_get_sessionid(current);
uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
}
void audit_log_key(struct audit_buffer *ab, char *key)
{
audit_log_format(ab, " key=");
if (key)
audit_log_untrustedstring(ab, key);
else
audit_log_format(ab, "(null)");
}
void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
{
int i;
audit_log_format(ab, " %s=", prefix);
CAP_FOR_EACH_U32(i) {
audit_log_format(ab, "%08x",
cap->cap[CAP_LAST_U32 - i]);
}
}
static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
{
audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
audit_log_format(ab, " cap_fe=%d cap_fver=%x",
name->fcap.fE, name->fcap_ver);
}
static inline int audit_copy_fcaps(struct audit_names *name,
const struct dentry *dentry)
{
struct cpu_vfs_cap_data caps;
int rc;
if (!dentry)
return 0;
rc = get_vfs_caps_from_disk(dentry, &caps);
if (rc)
return rc;
name->fcap.permitted = caps.permitted;
name->fcap.inheritable = caps.inheritable;
name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
VFS_CAP_REVISION_SHIFT;
return 0;
}
/* Copy inode data into an audit_names. */
void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
struct inode *inode)
{
name->ino = inode->i_ino;
name->dev = inode->i_sb->s_dev;
name->mode = inode->i_mode;
name->uid = inode->i_uid;
name->gid = inode->i_gid;
name->rdev = inode->i_rdev;
security_inode_getsecid(inode, &name->osid);
audit_copy_fcaps(name, dentry);
}
/**
* audit_log_name - produce AUDIT_PATH record from struct audit_names
* @context: audit_context for the task
* @n: audit_names structure with reportable details
* @path: optional path to report instead of audit_names->name
* @record_num: record number to report when handling a list of names
* @call_panic: optional pointer to int that will be updated if secid fails
*/
void audit_log_name(struct audit_context *context, struct audit_names *n,
const struct path *path, int record_num, int *call_panic)
{
struct audit_buffer *ab;
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
if (!ab)
return;
audit_log_format(ab, "item=%d", record_num);
if (path)
audit_log_d_path(ab, " name=", path);
else if (n->name) {
switch (n->name_len) {
case AUDIT_NAME_FULL:
/* log the full path */
audit_log_format(ab, " name=");
audit_log_untrustedstring(ab, n->name->name);
break;
case 0:
/* name was specified as a relative path and the
* directory component is the cwd */
audit_log_d_path(ab, " name=", &context->pwd);
break;
default:
/* log the name's directory component */
audit_log_format(ab, " name=");
audit_log_n_untrustedstring(ab, n->name->name,
n->name_len);
}
} else
audit_log_format(ab, " name=(null)");
if (n->ino != AUDIT_INO_UNSET)
audit_log_format(ab, " inode=%lu"
" dev=%02x:%02x mode=%#ho"
" ouid=%u ogid=%u rdev=%02x:%02x",
n->ino,
MAJOR(n->dev),
MINOR(n->dev),
n->mode,
from_kuid(&init_user_ns, n->uid),
from_kgid(&init_user_ns, n->gid),
MAJOR(n->rdev),
MINOR(n->rdev));
if (n->osid != 0) {
char *ctx = NULL;
u32 len;
if (security_secid_to_secctx(
n->osid, &ctx, &len)) {
audit_log_format(ab, " osid=%u", n->osid);
if (call_panic)
*call_panic = 2;
} else {
audit_log_format(ab, " obj=%s", ctx);
security_release_secctx(ctx, len);
}
}
/* log the audit_names record type */
audit_log_format(ab, " nametype=");
switch(n->type) {
case AUDIT_TYPE_NORMAL:
audit_log_format(ab, "NORMAL");
break;
case AUDIT_TYPE_PARENT:
audit_log_format(ab, "PARENT");
break;
case AUDIT_TYPE_CHILD_DELETE:
audit_log_format(ab, "DELETE");
break;
case AUDIT_TYPE_CHILD_CREATE:
audit_log_format(ab, "CREATE");
break;
default:
audit_log_format(ab, "UNKNOWN");
break;
}
audit_log_fcaps(ab, n);
audit_log_end(ab);
}
int audit_log_task_context(struct audit_buffer *ab)
{
char *ctx = NULL;
unsigned len;
int error;
u32 sid;
security_task_getsecid(current, &sid);
if (!sid)
return 0;
error = security_secid_to_secctx(sid, &ctx, &len);
if (error) {
if (error != -EINVAL)
goto error_path;
return 0;
}
audit_log_format(ab, " subj=%s", ctx);
security_release_secctx(ctx, len);
return 0;
error_path:
audit_panic("error in audit_log_task_context");
return error;
}
EXPORT_SYMBOL(audit_log_task_context);
void audit_log_d_path_exe(struct audit_buffer *ab,
struct mm_struct *mm)
{
struct file *exe_file;
if (!mm)
goto out_null;
exe_file = get_mm_exe_file(mm);
if (!exe_file)
goto out_null;
audit_log_d_path(ab, " exe=", &exe_file->f_path);
fput(exe_file);
return;
out_null:
audit_log_format(ab, " exe=(null)");
}
struct tty_struct *audit_get_tty(struct task_struct *tsk)
{
struct tty_struct *tty = NULL;
unsigned long flags;
spin_lock_irqsave(&tsk->sighand->siglock, flags);
if (tsk->signal)
tty = tty_kref_get(tsk->signal->tty);
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
return tty;
}
void audit_put_tty(struct tty_struct *tty)
{
tty_kref_put(tty);
}
void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
{
const struct cred *cred;
char comm[sizeof(tsk->comm)];
struct tty_struct *tty;
if (!ab)
return;
/* tsk == current */
cred = current_cred();
tty = audit_get_tty(tsk);
audit_log_format(ab,
" ppid=%d pid=%d auid=%u uid=%u gid=%u"
" euid=%u suid=%u fsuid=%u"
" egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
task_ppid_nr(tsk),
task_tgid_nr(tsk),
from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
from_kuid(&init_user_ns, cred->uid),
from_kgid(&init_user_ns, cred->gid),
from_kuid(&init_user_ns, cred->euid),
from_kuid(&init_user_ns, cred->suid),
from_kuid(&init_user_ns, cred->fsuid),
from_kgid(&init_user_ns, cred->egid),
from_kgid(&init_user_ns, cred->sgid),
from_kgid(&init_user_ns, cred->fsgid),
tty ? tty_name(tty) : "(none)",
audit_get_sessionid(tsk));
audit_put_tty(tty);
audit_log_format(ab, " comm=");
audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
audit_log_d_path_exe(ab, tsk->mm);
audit_log_task_context(ab);
}
EXPORT_SYMBOL(audit_log_task_info);
/**
* audit_log_link_denied - report a link restriction denial
* @operation: specific link operation
*/
void audit_log_link_denied(const char *operation)
{
struct audit_buffer *ab;
if (!audit_enabled || audit_dummy_context())
return;
/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK);
if (!ab)
return;
audit_log_format(ab, "op=%s", operation);
audit_log_task_info(ab, current);
audit_log_format(ab, " res=0");
audit_log_end(ab);
}
/**
* audit_log_end - end one audit record
* @ab: the audit_buffer
*
* We can not do a netlink send inside an irq context because it blocks (last
* arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
* queue and a tasklet is scheduled to remove them from the queue outside the
* irq context. May be called in any context.
*/
void audit_log_end(struct audit_buffer *ab)
{
struct sk_buff *skb;
struct nlmsghdr *nlh;
if (!ab)
return;
if (audit_rate_check()) {
skb = ab->skb;
ab->skb = NULL;
/* setup the netlink header, see the comments in
* kauditd_send_multicast_skb() for length quirks */
nlh = nlmsg_hdr(skb);
nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
/* queue the netlink packet and poke the kauditd thread */
skb_queue_tail(&audit_queue, skb);
wake_up_interruptible(&kauditd_wait);
} else
audit_log_lost("rate limit exceeded");
audit_buffer_free(ab);
}
/**
* audit_log - Log an audit record
* @ctx: audit context
* @gfp_mask: type of allocation
* @type: audit message type
* @fmt: format string to use
* @...: variable parameters matching the format string
*
* This is a convenience function that calls audit_log_start,
* audit_log_vformat, and audit_log_end. It may be called
* in any context.
*/
void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
const char *fmt, ...)
{
struct audit_buffer *ab;
va_list args;
ab = audit_log_start(ctx, gfp_mask, type);
if (ab) {
va_start(args, fmt);
audit_log_vformat(ab, fmt, args);
va_end(args);
audit_log_end(ab);
}
}
EXPORT_SYMBOL(audit_log_start);
EXPORT_SYMBOL(audit_log_end);
EXPORT_SYMBOL(audit_log_format);
EXPORT_SYMBOL(audit_log);