2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 23:26:03 +08:00
linux-next/drivers/misc/mei/hw-me.c
Alexander Usyskin edca5ea3ff mei: read and print all six FW status registers
ME devices prior to PCH8 (Lynx Point) have two FW status registers,
on PCH8 and newer excluding txe there are six FW status registers.

Signed-off-by: Alexander Usyskin <alexander.usyskin@intel.com>
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2014-11-26 19:06:41 -08:00

905 lines
20 KiB
C

/*
*
* Intel Management Engine Interface (Intel MEI) Linux driver
* Copyright (c) 2003-2012, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/pci.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include "mei_dev.h"
#include "hbm.h"
#include "hw-me.h"
#include "hw-me-regs.h"
/**
* mei_me_reg_read - Reads 32bit data from the mei device
*
* @hw: the me hardware structure
* @offset: offset from which to read the data
*
* Return: register value (u32)
*/
static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
unsigned long offset)
{
return ioread32(hw->mem_addr + offset);
}
/**
* mei_me_reg_write - Writes 32bit data to the mei device
*
* @hw: the me hardware structure
* @offset: offset from which to write the data
* @value: register value to write (u32)
*/
static inline void mei_me_reg_write(const struct mei_me_hw *hw,
unsigned long offset, u32 value)
{
iowrite32(value, hw->mem_addr + offset);
}
/**
* mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
* read window register
*
* @dev: the device structure
*
* Return: ME_CB_RW register value (u32)
*/
static u32 mei_me_mecbrw_read(const struct mei_device *dev)
{
return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
}
/**
* mei_me_mecsr_read - Reads 32bit data from the ME CSR
*
* @hw: the me hardware structure
*
* Return: ME_CSR_HA register value (u32)
*/
static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
{
return mei_me_reg_read(hw, ME_CSR_HA);
}
/**
* mei_hcsr_read - Reads 32bit data from the host CSR
*
* @hw: the me hardware structure
*
* Return: H_CSR register value (u32)
*/
static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
{
return mei_me_reg_read(hw, H_CSR);
}
/**
* mei_hcsr_set - writes H_CSR register to the mei device,
* and ignores the H_IS bit for it is write-one-to-zero.
*
* @hw: the me hardware structure
* @hcsr: new register value
*/
static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
{
hcsr &= ~H_IS;
mei_me_reg_write(hw, H_CSR, hcsr);
}
/**
* mei_me_fw_status - read fw status register from pci config space
*
* @dev: mei device
* @fw_status: fw status register values
*
* Return: 0 on success, error otherwise
*/
static int mei_me_fw_status(struct mei_device *dev,
struct mei_fw_status *fw_status)
{
struct pci_dev *pdev = to_pci_dev(dev->dev);
struct mei_me_hw *hw = to_me_hw(dev);
const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
int ret;
int i;
if (!fw_status)
return -EINVAL;
fw_status->count = fw_src->count;
for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
ret = pci_read_config_dword(pdev,
fw_src->status[i], &fw_status->status[i]);
if (ret)
return ret;
}
return 0;
}
/**
* mei_me_hw_config - configure hw dependent settings
*
* @dev: mei device
*/
static void mei_me_hw_config(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr = mei_hcsr_read(to_me_hw(dev));
/* Doesn't change in runtime */
dev->hbuf_depth = (hcsr & H_CBD) >> 24;
hw->pg_state = MEI_PG_OFF;
}
/**
* mei_me_pg_state - translate internal pg state
* to the mei power gating state
*
* @dev: mei device
*
* Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
*/
static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
return hw->pg_state;
}
/**
* mei_me_intr_clear - clear and stop interrupts
*
* @dev: the device structure
*/
static void mei_me_intr_clear(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr = mei_hcsr_read(hw);
if ((hcsr & H_IS) == H_IS)
mei_me_reg_write(hw, H_CSR, hcsr);
}
/**
* mei_me_intr_enable - enables mei device interrupts
*
* @dev: the device structure
*/
static void mei_me_intr_enable(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr = mei_hcsr_read(hw);
hcsr |= H_IE;
mei_hcsr_set(hw, hcsr);
}
/**
* mei_me_intr_disable - disables mei device interrupts
*
* @dev: the device structure
*/
static void mei_me_intr_disable(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr = mei_hcsr_read(hw);
hcsr &= ~H_IE;
mei_hcsr_set(hw, hcsr);
}
/**
* mei_me_hw_reset_release - release device from the reset
*
* @dev: the device structure
*/
static void mei_me_hw_reset_release(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr = mei_hcsr_read(hw);
hcsr |= H_IG;
hcsr &= ~H_RST;
mei_hcsr_set(hw, hcsr);
/* complete this write before we set host ready on another CPU */
mmiowb();
}
/**
* mei_me_hw_reset - resets fw via mei csr register.
*
* @dev: the device structure
* @intr_enable: if interrupt should be enabled after reset.
*
* Return: always 0
*/
static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr = mei_hcsr_read(hw);
hcsr |= H_RST | H_IG | H_IS;
if (intr_enable)
hcsr |= H_IE;
else
hcsr &= ~H_IE;
dev->recvd_hw_ready = false;
mei_me_reg_write(hw, H_CSR, hcsr);
/*
* Host reads the H_CSR once to ensure that the
* posted write to H_CSR completes.
*/
hcsr = mei_hcsr_read(hw);
if ((hcsr & H_RST) == 0)
dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
if ((hcsr & H_RDY) == H_RDY)
dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
if (intr_enable == false)
mei_me_hw_reset_release(dev);
return 0;
}
/**
* mei_me_host_set_ready - enable device
*
* @dev: mei device
*/
static void mei_me_host_set_ready(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr = mei_hcsr_read(hw);
hcsr |= H_IE | H_IG | H_RDY;
mei_hcsr_set(hw, hcsr);
}
/**
* mei_me_host_is_ready - check whether the host has turned ready
*
* @dev: mei device
* Return: bool
*/
static bool mei_me_host_is_ready(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr = mei_hcsr_read(hw);
return (hcsr & H_RDY) == H_RDY;
}
/**
* mei_me_hw_is_ready - check whether the me(hw) has turned ready
*
* @dev: mei device
* Return: bool
*/
static bool mei_me_hw_is_ready(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 mecsr = mei_me_mecsr_read(hw);
return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
}
/**
* mei_me_hw_ready_wait - wait until the me(hw) has turned ready
* or timeout is reached
*
* @dev: mei device
* Return: 0 on success, error otherwise
*/
static int mei_me_hw_ready_wait(struct mei_device *dev)
{
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_hw_ready,
dev->recvd_hw_ready,
mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
mutex_lock(&dev->device_lock);
if (!dev->recvd_hw_ready) {
dev_err(dev->dev, "wait hw ready failed\n");
return -ETIME;
}
dev->recvd_hw_ready = false;
return 0;
}
/**
* mei_me_hw_start - hw start routine
*
* @dev: mei device
* Return: 0 on success, error otherwise
*/
static int mei_me_hw_start(struct mei_device *dev)
{
int ret = mei_me_hw_ready_wait(dev);
if (ret)
return ret;
dev_dbg(dev->dev, "hw is ready\n");
mei_me_host_set_ready(dev);
return ret;
}
/**
* mei_hbuf_filled_slots - gets number of device filled buffer slots
*
* @dev: the device structure
*
* Return: number of filled slots
*/
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr;
char read_ptr, write_ptr;
hcsr = mei_hcsr_read(hw);
read_ptr = (char) ((hcsr & H_CBRP) >> 8);
write_ptr = (char) ((hcsr & H_CBWP) >> 16);
return (unsigned char) (write_ptr - read_ptr);
}
/**
* mei_me_hbuf_is_empty - checks if host buffer is empty.
*
* @dev: the device structure
*
* Return: true if empty, false - otherwise.
*/
static bool mei_me_hbuf_is_empty(struct mei_device *dev)
{
return mei_hbuf_filled_slots(dev) == 0;
}
/**
* mei_me_hbuf_empty_slots - counts write empty slots.
*
* @dev: the device structure
*
* Return: -EOVERFLOW if overflow, otherwise empty slots count
*/
static int mei_me_hbuf_empty_slots(struct mei_device *dev)
{
unsigned char filled_slots, empty_slots;
filled_slots = mei_hbuf_filled_slots(dev);
empty_slots = dev->hbuf_depth - filled_slots;
/* check for overflow */
if (filled_slots > dev->hbuf_depth)
return -EOVERFLOW;
return empty_slots;
}
/**
* mei_me_hbuf_max_len - returns size of hw buffer.
*
* @dev: the device structure
*
* Return: size of hw buffer in bytes
*/
static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
{
return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
}
/**
* mei_me_write_message - writes a message to mei device.
*
* @dev: the device structure
* @header: mei HECI header of message
* @buf: message payload will be written
*
* Return: -EIO if write has failed
*/
static int mei_me_write_message(struct mei_device *dev,
struct mei_msg_hdr *header,
unsigned char *buf)
{
struct mei_me_hw *hw = to_me_hw(dev);
unsigned long rem;
unsigned long length = header->length;
u32 *reg_buf = (u32 *)buf;
u32 hcsr;
u32 dw_cnt;
int i;
int empty_slots;
dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
empty_slots = mei_hbuf_empty_slots(dev);
dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
dw_cnt = mei_data2slots(length);
if (empty_slots < 0 || dw_cnt > empty_slots)
return -EMSGSIZE;
mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
for (i = 0; i < length / 4; i++)
mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
rem = length & 0x3;
if (rem > 0) {
u32 reg = 0;
memcpy(&reg, &buf[length - rem], rem);
mei_me_reg_write(hw, H_CB_WW, reg);
}
hcsr = mei_hcsr_read(hw) | H_IG;
mei_hcsr_set(hw, hcsr);
if (!mei_me_hw_is_ready(dev))
return -EIO;
return 0;
}
/**
* mei_me_count_full_read_slots - counts read full slots.
*
* @dev: the device structure
*
* Return: -EOVERFLOW if overflow, otherwise filled slots count
*/
static int mei_me_count_full_read_slots(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 me_csr;
char read_ptr, write_ptr;
unsigned char buffer_depth, filled_slots;
me_csr = mei_me_mecsr_read(hw);
buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
filled_slots = (unsigned char) (write_ptr - read_ptr);
/* check for overflow */
if (filled_slots > buffer_depth)
return -EOVERFLOW;
dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
return (int)filled_slots;
}
/**
* mei_me_read_slots - reads a message from mei device.
*
* @dev: the device structure
* @buffer: message buffer will be written
* @buffer_length: message size will be read
*
* Return: always 0
*/
static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
unsigned long buffer_length)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 *reg_buf = (u32 *)buffer;
u32 hcsr;
for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
*reg_buf++ = mei_me_mecbrw_read(dev);
if (buffer_length > 0) {
u32 reg = mei_me_mecbrw_read(dev);
memcpy(reg_buf, &reg, buffer_length);
}
hcsr = mei_hcsr_read(hw) | H_IG;
mei_hcsr_set(hw, hcsr);
return 0;
}
/**
* mei_me_pg_enter - write pg enter register
*
* @dev: the device structure
*/
static void mei_me_pg_enter(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
reg |= H_HPG_CSR_PGI;
mei_me_reg_write(hw, H_HPG_CSR, reg);
}
/**
* mei_me_pg_exit - write pg exit register
*
* @dev: the device structure
*/
static void mei_me_pg_exit(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
reg |= H_HPG_CSR_PGIHEXR;
mei_me_reg_write(hw, H_HPG_CSR, reg);
}
/**
* mei_me_pg_set_sync - perform pg entry procedure
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
int mei_me_pg_set_sync(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
int ret;
dev->pg_event = MEI_PG_EVENT_WAIT;
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
if (ret)
return ret;
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_pg,
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
mutex_lock(&dev->device_lock);
if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
mei_me_pg_enter(dev);
ret = 0;
} else {
ret = -ETIME;
}
dev->pg_event = MEI_PG_EVENT_IDLE;
hw->pg_state = MEI_PG_ON;
return ret;
}
/**
* mei_me_pg_unset_sync - perform pg exit procedure
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
int mei_me_pg_unset_sync(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
int ret;
if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
goto reply;
dev->pg_event = MEI_PG_EVENT_WAIT;
mei_me_pg_exit(dev);
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_pg,
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
mutex_lock(&dev->device_lock);
reply:
if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
else
ret = -ETIME;
dev->pg_event = MEI_PG_EVENT_IDLE;
hw->pg_state = MEI_PG_OFF;
return ret;
}
/**
* mei_me_pg_is_enabled - detect if PG is supported by HW
*
* @dev: the device structure
*
* Return: true is pg supported, false otherwise
*/
static bool mei_me_pg_is_enabled(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 reg = mei_me_reg_read(hw, ME_CSR_HA);
if ((reg & ME_PGIC_HRA) == 0)
goto notsupported;
if (!dev->hbm_f_pg_supported)
goto notsupported;
return true;
notsupported:
dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
!!(reg & ME_PGIC_HRA),
dev->version.major_version,
dev->version.minor_version,
HBM_MAJOR_VERSION_PGI,
HBM_MINOR_VERSION_PGI);
return false;
}
/**
* mei_me_irq_quick_handler - The ISR of the MEI device
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* Return: irqreturn_t
*/
irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
{
struct mei_device *dev = (struct mei_device *) dev_id;
struct mei_me_hw *hw = to_me_hw(dev);
u32 csr_reg = mei_hcsr_read(hw);
if ((csr_reg & H_IS) != H_IS)
return IRQ_NONE;
/* clear H_IS bit in H_CSR */
mei_me_reg_write(hw, H_CSR, csr_reg);
return IRQ_WAKE_THREAD;
}
/**
* mei_me_irq_thread_handler - function called after ISR to handle the interrupt
* processing.
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* Return: irqreturn_t
*
*/
irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
{
struct mei_device *dev = (struct mei_device *) dev_id;
struct mei_cl_cb complete_list;
s32 slots;
int rets = 0;
dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
/* initialize our complete list */
mutex_lock(&dev->device_lock);
mei_io_list_init(&complete_list);
/* Ack the interrupt here
* In case of MSI we don't go through the quick handler */
if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
mei_clear_interrupts(dev);
/* check if ME wants a reset */
if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
dev_warn(dev->dev, "FW not ready: resetting.\n");
schedule_work(&dev->reset_work);
goto end;
}
/* check if we need to start the dev */
if (!mei_host_is_ready(dev)) {
if (mei_hw_is_ready(dev)) {
mei_me_hw_reset_release(dev);
dev_dbg(dev->dev, "we need to start the dev.\n");
dev->recvd_hw_ready = true;
wake_up(&dev->wait_hw_ready);
} else {
dev_dbg(dev->dev, "Spurious Interrupt\n");
}
goto end;
}
/* check slots available for reading */
slots = mei_count_full_read_slots(dev);
while (slots > 0) {
dev_dbg(dev->dev, "slots to read = %08x\n", slots);
rets = mei_irq_read_handler(dev, &complete_list, &slots);
/* There is a race between ME write and interrupt delivery:
* Not all data is always available immediately after the
* interrupt, so try to read again on the next interrupt.
*/
if (rets == -ENODATA)
break;
if (rets && dev->dev_state != MEI_DEV_RESETTING) {
dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
rets);
schedule_work(&dev->reset_work);
goto end;
}
}
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
/*
* During PG handshake only allowed write is the replay to the
* PG exit message, so block calling write function
* if the pg state is not idle
*/
if (dev->pg_event == MEI_PG_EVENT_IDLE) {
rets = mei_irq_write_handler(dev, &complete_list);
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
}
mei_irq_compl_handler(dev, &complete_list);
end:
dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
mutex_unlock(&dev->device_lock);
return IRQ_HANDLED;
}
static const struct mei_hw_ops mei_me_hw_ops = {
.fw_status = mei_me_fw_status,
.pg_state = mei_me_pg_state,
.host_is_ready = mei_me_host_is_ready,
.hw_is_ready = mei_me_hw_is_ready,
.hw_reset = mei_me_hw_reset,
.hw_config = mei_me_hw_config,
.hw_start = mei_me_hw_start,
.pg_is_enabled = mei_me_pg_is_enabled,
.intr_clear = mei_me_intr_clear,
.intr_enable = mei_me_intr_enable,
.intr_disable = mei_me_intr_disable,
.hbuf_free_slots = mei_me_hbuf_empty_slots,
.hbuf_is_ready = mei_me_hbuf_is_empty,
.hbuf_max_len = mei_me_hbuf_max_len,
.write = mei_me_write_message,
.rdbuf_full_slots = mei_me_count_full_read_slots,
.read_hdr = mei_me_mecbrw_read,
.read = mei_me_read_slots
};
static bool mei_me_fw_type_nm(struct pci_dev *pdev)
{
u32 reg;
pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
return (reg & 0x600) == 0x200;
}
#define MEI_CFG_FW_NM \
.quirk_probe = mei_me_fw_type_nm
static bool mei_me_fw_type_sps(struct pci_dev *pdev)
{
u32 reg;
/* Read ME FW Status check for SPS Firmware */
pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
/* if bits [19:16] = 15, running SPS Firmware */
return (reg & 0xf0000) == 0xf0000;
}
#define MEI_CFG_FW_SPS \
.quirk_probe = mei_me_fw_type_sps
#define MEI_CFG_LEGACY_HFS \
.fw_status.count = 0
#define MEI_CFG_ICH_HFS \
.fw_status.count = 1, \
.fw_status.status[0] = PCI_CFG_HFS_1
#define MEI_CFG_PCH_HFS \
.fw_status.count = 2, \
.fw_status.status[0] = PCI_CFG_HFS_1, \
.fw_status.status[1] = PCI_CFG_HFS_2
#define MEI_CFG_PCH8_HFS \
.fw_status.count = 6, \
.fw_status.status[0] = PCI_CFG_HFS_1, \
.fw_status.status[1] = PCI_CFG_HFS_2, \
.fw_status.status[2] = PCI_CFG_HFS_3, \
.fw_status.status[3] = PCI_CFG_HFS_4, \
.fw_status.status[4] = PCI_CFG_HFS_5, \
.fw_status.status[5] = PCI_CFG_HFS_6
/* ICH Legacy devices */
const struct mei_cfg mei_me_legacy_cfg = {
MEI_CFG_LEGACY_HFS,
};
/* ICH devices */
const struct mei_cfg mei_me_ich_cfg = {
MEI_CFG_ICH_HFS,
};
/* PCH devices */
const struct mei_cfg mei_me_pch_cfg = {
MEI_CFG_PCH_HFS,
};
/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
MEI_CFG_PCH_HFS,
MEI_CFG_FW_NM,
};
/* PCH8 Lynx Point and newer devices */
const struct mei_cfg mei_me_pch8_cfg = {
MEI_CFG_PCH8_HFS,
};
/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
const struct mei_cfg mei_me_pch8_sps_cfg = {
MEI_CFG_PCH8_HFS,
MEI_CFG_FW_SPS,
};
/**
* mei_me_dev_init - allocates and initializes the mei device structure
*
* @pdev: The pci device structure
* @cfg: per device generation config
*
* Return: The mei_device_device pointer on success, NULL on failure.
*/
struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
const struct mei_cfg *cfg)
{
struct mei_device *dev;
struct mei_me_hw *hw;
dev = kzalloc(sizeof(struct mei_device) +
sizeof(struct mei_me_hw), GFP_KERNEL);
if (!dev)
return NULL;
hw = to_me_hw(dev);
mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
hw->cfg = cfg;
return dev;
}