mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-25 23:26:03 +08:00
edca5ea3ff
ME devices prior to PCH8 (Lynx Point) have two FW status registers, on PCH8 and newer excluding txe there are six FW status registers. Signed-off-by: Alexander Usyskin <alexander.usyskin@intel.com> Signed-off-by: Tomas Winkler <tomas.winkler@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
905 lines
20 KiB
C
905 lines
20 KiB
C
/*
|
|
*
|
|
* Intel Management Engine Interface (Intel MEI) Linux driver
|
|
* Copyright (c) 2003-2012, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/kthread.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include "mei_dev.h"
|
|
#include "hbm.h"
|
|
|
|
#include "hw-me.h"
|
|
#include "hw-me-regs.h"
|
|
|
|
/**
|
|
* mei_me_reg_read - Reads 32bit data from the mei device
|
|
*
|
|
* @hw: the me hardware structure
|
|
* @offset: offset from which to read the data
|
|
*
|
|
* Return: register value (u32)
|
|
*/
|
|
static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
|
|
unsigned long offset)
|
|
{
|
|
return ioread32(hw->mem_addr + offset);
|
|
}
|
|
|
|
|
|
/**
|
|
* mei_me_reg_write - Writes 32bit data to the mei device
|
|
*
|
|
* @hw: the me hardware structure
|
|
* @offset: offset from which to write the data
|
|
* @value: register value to write (u32)
|
|
*/
|
|
static inline void mei_me_reg_write(const struct mei_me_hw *hw,
|
|
unsigned long offset, u32 value)
|
|
{
|
|
iowrite32(value, hw->mem_addr + offset);
|
|
}
|
|
|
|
/**
|
|
* mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
|
|
* read window register
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: ME_CB_RW register value (u32)
|
|
*/
|
|
static u32 mei_me_mecbrw_read(const struct mei_device *dev)
|
|
{
|
|
return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
|
|
}
|
|
/**
|
|
* mei_me_mecsr_read - Reads 32bit data from the ME CSR
|
|
*
|
|
* @hw: the me hardware structure
|
|
*
|
|
* Return: ME_CSR_HA register value (u32)
|
|
*/
|
|
static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
|
|
{
|
|
return mei_me_reg_read(hw, ME_CSR_HA);
|
|
}
|
|
|
|
/**
|
|
* mei_hcsr_read - Reads 32bit data from the host CSR
|
|
*
|
|
* @hw: the me hardware structure
|
|
*
|
|
* Return: H_CSR register value (u32)
|
|
*/
|
|
static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
|
|
{
|
|
return mei_me_reg_read(hw, H_CSR);
|
|
}
|
|
|
|
/**
|
|
* mei_hcsr_set - writes H_CSR register to the mei device,
|
|
* and ignores the H_IS bit for it is write-one-to-zero.
|
|
*
|
|
* @hw: the me hardware structure
|
|
* @hcsr: new register value
|
|
*/
|
|
static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
|
|
{
|
|
hcsr &= ~H_IS;
|
|
mei_me_reg_write(hw, H_CSR, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_fw_status - read fw status register from pci config space
|
|
*
|
|
* @dev: mei device
|
|
* @fw_status: fw status register values
|
|
*
|
|
* Return: 0 on success, error otherwise
|
|
*/
|
|
static int mei_me_fw_status(struct mei_device *dev,
|
|
struct mei_fw_status *fw_status)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(dev->dev);
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
|
|
int ret;
|
|
int i;
|
|
|
|
if (!fw_status)
|
|
return -EINVAL;
|
|
|
|
fw_status->count = fw_src->count;
|
|
for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
|
|
ret = pci_read_config_dword(pdev,
|
|
fw_src->status[i], &fw_status->status[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_config - configure hw dependent settings
|
|
*
|
|
* @dev: mei device
|
|
*/
|
|
static void mei_me_hw_config(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr = mei_hcsr_read(to_me_hw(dev));
|
|
/* Doesn't change in runtime */
|
|
dev->hbuf_depth = (hcsr & H_CBD) >> 24;
|
|
|
|
hw->pg_state = MEI_PG_OFF;
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_state - translate internal pg state
|
|
* to the mei power gating state
|
|
*
|
|
* @dev: mei device
|
|
*
|
|
* Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
|
|
*/
|
|
static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
|
|
return hw->pg_state;
|
|
}
|
|
|
|
/**
|
|
* mei_me_intr_clear - clear and stop interrupts
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_intr_clear(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr = mei_hcsr_read(hw);
|
|
|
|
if ((hcsr & H_IS) == H_IS)
|
|
mei_me_reg_write(hw, H_CSR, hcsr);
|
|
}
|
|
/**
|
|
* mei_me_intr_enable - enables mei device interrupts
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_intr_enable(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr = mei_hcsr_read(hw);
|
|
|
|
hcsr |= H_IE;
|
|
mei_hcsr_set(hw, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_intr_disable - disables mei device interrupts
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_intr_disable(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr = mei_hcsr_read(hw);
|
|
|
|
hcsr &= ~H_IE;
|
|
mei_hcsr_set(hw, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_reset_release - release device from the reset
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_hw_reset_release(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr = mei_hcsr_read(hw);
|
|
|
|
hcsr |= H_IG;
|
|
hcsr &= ~H_RST;
|
|
mei_hcsr_set(hw, hcsr);
|
|
|
|
/* complete this write before we set host ready on another CPU */
|
|
mmiowb();
|
|
}
|
|
/**
|
|
* mei_me_hw_reset - resets fw via mei csr register.
|
|
*
|
|
* @dev: the device structure
|
|
* @intr_enable: if interrupt should be enabled after reset.
|
|
*
|
|
* Return: always 0
|
|
*/
|
|
static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr = mei_hcsr_read(hw);
|
|
|
|
hcsr |= H_RST | H_IG | H_IS;
|
|
|
|
if (intr_enable)
|
|
hcsr |= H_IE;
|
|
else
|
|
hcsr &= ~H_IE;
|
|
|
|
dev->recvd_hw_ready = false;
|
|
mei_me_reg_write(hw, H_CSR, hcsr);
|
|
|
|
/*
|
|
* Host reads the H_CSR once to ensure that the
|
|
* posted write to H_CSR completes.
|
|
*/
|
|
hcsr = mei_hcsr_read(hw);
|
|
|
|
if ((hcsr & H_RST) == 0)
|
|
dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
|
|
|
|
if ((hcsr & H_RDY) == H_RDY)
|
|
dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
|
|
|
|
if (intr_enable == false)
|
|
mei_me_hw_reset_release(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_host_set_ready - enable device
|
|
*
|
|
* @dev: mei device
|
|
*/
|
|
static void mei_me_host_set_ready(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr = mei_hcsr_read(hw);
|
|
|
|
hcsr |= H_IE | H_IG | H_RDY;
|
|
mei_hcsr_set(hw, hcsr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_host_is_ready - check whether the host has turned ready
|
|
*
|
|
* @dev: mei device
|
|
* Return: bool
|
|
*/
|
|
static bool mei_me_host_is_ready(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr = mei_hcsr_read(hw);
|
|
|
|
return (hcsr & H_RDY) == H_RDY;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_is_ready - check whether the me(hw) has turned ready
|
|
*
|
|
* @dev: mei device
|
|
* Return: bool
|
|
*/
|
|
static bool mei_me_hw_is_ready(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 mecsr = mei_me_mecsr_read(hw);
|
|
|
|
return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_ready_wait - wait until the me(hw) has turned ready
|
|
* or timeout is reached
|
|
*
|
|
* @dev: mei device
|
|
* Return: 0 on success, error otherwise
|
|
*/
|
|
static int mei_me_hw_ready_wait(struct mei_device *dev)
|
|
{
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_hw_ready,
|
|
dev->recvd_hw_ready,
|
|
mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
|
|
mutex_lock(&dev->device_lock);
|
|
if (!dev->recvd_hw_ready) {
|
|
dev_err(dev->dev, "wait hw ready failed\n");
|
|
return -ETIME;
|
|
}
|
|
|
|
dev->recvd_hw_ready = false;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hw_start - hw start routine
|
|
*
|
|
* @dev: mei device
|
|
* Return: 0 on success, error otherwise
|
|
*/
|
|
static int mei_me_hw_start(struct mei_device *dev)
|
|
{
|
|
int ret = mei_me_hw_ready_wait(dev);
|
|
|
|
if (ret)
|
|
return ret;
|
|
dev_dbg(dev->dev, "hw is ready\n");
|
|
|
|
mei_me_host_set_ready(dev);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/**
|
|
* mei_hbuf_filled_slots - gets number of device filled buffer slots
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: number of filled slots
|
|
*/
|
|
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 hcsr;
|
|
char read_ptr, write_ptr;
|
|
|
|
hcsr = mei_hcsr_read(hw);
|
|
|
|
read_ptr = (char) ((hcsr & H_CBRP) >> 8);
|
|
write_ptr = (char) ((hcsr & H_CBWP) >> 16);
|
|
|
|
return (unsigned char) (write_ptr - read_ptr);
|
|
}
|
|
|
|
/**
|
|
* mei_me_hbuf_is_empty - checks if host buffer is empty.
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: true if empty, false - otherwise.
|
|
*/
|
|
static bool mei_me_hbuf_is_empty(struct mei_device *dev)
|
|
{
|
|
return mei_hbuf_filled_slots(dev) == 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hbuf_empty_slots - counts write empty slots.
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: -EOVERFLOW if overflow, otherwise empty slots count
|
|
*/
|
|
static int mei_me_hbuf_empty_slots(struct mei_device *dev)
|
|
{
|
|
unsigned char filled_slots, empty_slots;
|
|
|
|
filled_slots = mei_hbuf_filled_slots(dev);
|
|
empty_slots = dev->hbuf_depth - filled_slots;
|
|
|
|
/* check for overflow */
|
|
if (filled_slots > dev->hbuf_depth)
|
|
return -EOVERFLOW;
|
|
|
|
return empty_slots;
|
|
}
|
|
|
|
/**
|
|
* mei_me_hbuf_max_len - returns size of hw buffer.
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: size of hw buffer in bytes
|
|
*/
|
|
static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
|
|
{
|
|
return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
|
|
}
|
|
|
|
|
|
/**
|
|
* mei_me_write_message - writes a message to mei device.
|
|
*
|
|
* @dev: the device structure
|
|
* @header: mei HECI header of message
|
|
* @buf: message payload will be written
|
|
*
|
|
* Return: -EIO if write has failed
|
|
*/
|
|
static int mei_me_write_message(struct mei_device *dev,
|
|
struct mei_msg_hdr *header,
|
|
unsigned char *buf)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
unsigned long rem;
|
|
unsigned long length = header->length;
|
|
u32 *reg_buf = (u32 *)buf;
|
|
u32 hcsr;
|
|
u32 dw_cnt;
|
|
int i;
|
|
int empty_slots;
|
|
|
|
dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
|
|
|
|
empty_slots = mei_hbuf_empty_slots(dev);
|
|
dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
|
|
|
|
dw_cnt = mei_data2slots(length);
|
|
if (empty_slots < 0 || dw_cnt > empty_slots)
|
|
return -EMSGSIZE;
|
|
|
|
mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
|
|
|
|
for (i = 0; i < length / 4; i++)
|
|
mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
|
|
|
|
rem = length & 0x3;
|
|
if (rem > 0) {
|
|
u32 reg = 0;
|
|
|
|
memcpy(®, &buf[length - rem], rem);
|
|
mei_me_reg_write(hw, H_CB_WW, reg);
|
|
}
|
|
|
|
hcsr = mei_hcsr_read(hw) | H_IG;
|
|
mei_hcsr_set(hw, hcsr);
|
|
if (!mei_me_hw_is_ready(dev))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_count_full_read_slots - counts read full slots.
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: -EOVERFLOW if overflow, otherwise filled slots count
|
|
*/
|
|
static int mei_me_count_full_read_slots(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 me_csr;
|
|
char read_ptr, write_ptr;
|
|
unsigned char buffer_depth, filled_slots;
|
|
|
|
me_csr = mei_me_mecsr_read(hw);
|
|
buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
|
|
read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
|
|
write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
|
|
filled_slots = (unsigned char) (write_ptr - read_ptr);
|
|
|
|
/* check for overflow */
|
|
if (filled_slots > buffer_depth)
|
|
return -EOVERFLOW;
|
|
|
|
dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
|
|
return (int)filled_slots;
|
|
}
|
|
|
|
/**
|
|
* mei_me_read_slots - reads a message from mei device.
|
|
*
|
|
* @dev: the device structure
|
|
* @buffer: message buffer will be written
|
|
* @buffer_length: message size will be read
|
|
*
|
|
* Return: always 0
|
|
*/
|
|
static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
|
|
unsigned long buffer_length)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 *reg_buf = (u32 *)buffer;
|
|
u32 hcsr;
|
|
|
|
for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
|
|
*reg_buf++ = mei_me_mecbrw_read(dev);
|
|
|
|
if (buffer_length > 0) {
|
|
u32 reg = mei_me_mecbrw_read(dev);
|
|
|
|
memcpy(reg_buf, ®, buffer_length);
|
|
}
|
|
|
|
hcsr = mei_hcsr_read(hw) | H_IG;
|
|
mei_hcsr_set(hw, hcsr);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_enter - write pg enter register
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_pg_enter(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
|
|
|
|
reg |= H_HPG_CSR_PGI;
|
|
mei_me_reg_write(hw, H_HPG_CSR, reg);
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_exit - write pg exit register
|
|
*
|
|
* @dev: the device structure
|
|
*/
|
|
static void mei_me_pg_exit(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 reg = mei_me_reg_read(hw, H_HPG_CSR);
|
|
|
|
WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
|
|
|
|
reg |= H_HPG_CSR_PGIHEXR;
|
|
mei_me_reg_write(hw, H_HPG_CSR, reg);
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_set_sync - perform pg entry procedure
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
int mei_me_pg_set_sync(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
|
|
int ret;
|
|
|
|
dev->pg_event = MEI_PG_EVENT_WAIT;
|
|
|
|
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_pg,
|
|
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
|
|
mutex_lock(&dev->device_lock);
|
|
|
|
if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
|
|
mei_me_pg_enter(dev);
|
|
ret = 0;
|
|
} else {
|
|
ret = -ETIME;
|
|
}
|
|
|
|
dev->pg_event = MEI_PG_EVENT_IDLE;
|
|
hw->pg_state = MEI_PG_ON;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_unset_sync - perform pg exit procedure
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: 0 on success an error code otherwise
|
|
*/
|
|
int mei_me_pg_unset_sync(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
|
|
int ret;
|
|
|
|
if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
|
|
goto reply;
|
|
|
|
dev->pg_event = MEI_PG_EVENT_WAIT;
|
|
|
|
mei_me_pg_exit(dev);
|
|
|
|
mutex_unlock(&dev->device_lock);
|
|
wait_event_timeout(dev->wait_pg,
|
|
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
|
|
mutex_lock(&dev->device_lock);
|
|
|
|
reply:
|
|
if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
|
|
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
|
|
else
|
|
ret = -ETIME;
|
|
|
|
dev->pg_event = MEI_PG_EVENT_IDLE;
|
|
hw->pg_state = MEI_PG_OFF;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mei_me_pg_is_enabled - detect if PG is supported by HW
|
|
*
|
|
* @dev: the device structure
|
|
*
|
|
* Return: true is pg supported, false otherwise
|
|
*/
|
|
static bool mei_me_pg_is_enabled(struct mei_device *dev)
|
|
{
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 reg = mei_me_reg_read(hw, ME_CSR_HA);
|
|
|
|
if ((reg & ME_PGIC_HRA) == 0)
|
|
goto notsupported;
|
|
|
|
if (!dev->hbm_f_pg_supported)
|
|
goto notsupported;
|
|
|
|
return true;
|
|
|
|
notsupported:
|
|
dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
|
|
!!(reg & ME_PGIC_HRA),
|
|
dev->version.major_version,
|
|
dev->version.minor_version,
|
|
HBM_MAJOR_VERSION_PGI,
|
|
HBM_MINOR_VERSION_PGI);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* mei_me_irq_quick_handler - The ISR of the MEI device
|
|
*
|
|
* @irq: The irq number
|
|
* @dev_id: pointer to the device structure
|
|
*
|
|
* Return: irqreturn_t
|
|
*/
|
|
|
|
irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
|
|
{
|
|
struct mei_device *dev = (struct mei_device *) dev_id;
|
|
struct mei_me_hw *hw = to_me_hw(dev);
|
|
u32 csr_reg = mei_hcsr_read(hw);
|
|
|
|
if ((csr_reg & H_IS) != H_IS)
|
|
return IRQ_NONE;
|
|
|
|
/* clear H_IS bit in H_CSR */
|
|
mei_me_reg_write(hw, H_CSR, csr_reg);
|
|
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
/**
|
|
* mei_me_irq_thread_handler - function called after ISR to handle the interrupt
|
|
* processing.
|
|
*
|
|
* @irq: The irq number
|
|
* @dev_id: pointer to the device structure
|
|
*
|
|
* Return: irqreturn_t
|
|
*
|
|
*/
|
|
irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
|
|
{
|
|
struct mei_device *dev = (struct mei_device *) dev_id;
|
|
struct mei_cl_cb complete_list;
|
|
s32 slots;
|
|
int rets = 0;
|
|
|
|
dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
|
|
/* initialize our complete list */
|
|
mutex_lock(&dev->device_lock);
|
|
mei_io_list_init(&complete_list);
|
|
|
|
/* Ack the interrupt here
|
|
* In case of MSI we don't go through the quick handler */
|
|
if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
|
|
mei_clear_interrupts(dev);
|
|
|
|
/* check if ME wants a reset */
|
|
if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
|
|
dev_warn(dev->dev, "FW not ready: resetting.\n");
|
|
schedule_work(&dev->reset_work);
|
|
goto end;
|
|
}
|
|
|
|
/* check if we need to start the dev */
|
|
if (!mei_host_is_ready(dev)) {
|
|
if (mei_hw_is_ready(dev)) {
|
|
mei_me_hw_reset_release(dev);
|
|
dev_dbg(dev->dev, "we need to start the dev.\n");
|
|
|
|
dev->recvd_hw_ready = true;
|
|
wake_up(&dev->wait_hw_ready);
|
|
} else {
|
|
dev_dbg(dev->dev, "Spurious Interrupt\n");
|
|
}
|
|
goto end;
|
|
}
|
|
/* check slots available for reading */
|
|
slots = mei_count_full_read_slots(dev);
|
|
while (slots > 0) {
|
|
dev_dbg(dev->dev, "slots to read = %08x\n", slots);
|
|
rets = mei_irq_read_handler(dev, &complete_list, &slots);
|
|
/* There is a race between ME write and interrupt delivery:
|
|
* Not all data is always available immediately after the
|
|
* interrupt, so try to read again on the next interrupt.
|
|
*/
|
|
if (rets == -ENODATA)
|
|
break;
|
|
|
|
if (rets && dev->dev_state != MEI_DEV_RESETTING) {
|
|
dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
|
|
rets);
|
|
schedule_work(&dev->reset_work);
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
|
|
|
|
/*
|
|
* During PG handshake only allowed write is the replay to the
|
|
* PG exit message, so block calling write function
|
|
* if the pg state is not idle
|
|
*/
|
|
if (dev->pg_event == MEI_PG_EVENT_IDLE) {
|
|
rets = mei_irq_write_handler(dev, &complete_list);
|
|
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
|
|
}
|
|
|
|
mei_irq_compl_handler(dev, &complete_list);
|
|
|
|
end:
|
|
dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
|
|
mutex_unlock(&dev->device_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const struct mei_hw_ops mei_me_hw_ops = {
|
|
|
|
.fw_status = mei_me_fw_status,
|
|
.pg_state = mei_me_pg_state,
|
|
|
|
.host_is_ready = mei_me_host_is_ready,
|
|
|
|
.hw_is_ready = mei_me_hw_is_ready,
|
|
.hw_reset = mei_me_hw_reset,
|
|
.hw_config = mei_me_hw_config,
|
|
.hw_start = mei_me_hw_start,
|
|
|
|
.pg_is_enabled = mei_me_pg_is_enabled,
|
|
|
|
.intr_clear = mei_me_intr_clear,
|
|
.intr_enable = mei_me_intr_enable,
|
|
.intr_disable = mei_me_intr_disable,
|
|
|
|
.hbuf_free_slots = mei_me_hbuf_empty_slots,
|
|
.hbuf_is_ready = mei_me_hbuf_is_empty,
|
|
.hbuf_max_len = mei_me_hbuf_max_len,
|
|
|
|
.write = mei_me_write_message,
|
|
|
|
.rdbuf_full_slots = mei_me_count_full_read_slots,
|
|
.read_hdr = mei_me_mecbrw_read,
|
|
.read = mei_me_read_slots
|
|
};
|
|
|
|
static bool mei_me_fw_type_nm(struct pci_dev *pdev)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pdev, PCI_CFG_HFS_2, ®);
|
|
/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
|
|
return (reg & 0x600) == 0x200;
|
|
}
|
|
|
|
#define MEI_CFG_FW_NM \
|
|
.quirk_probe = mei_me_fw_type_nm
|
|
|
|
static bool mei_me_fw_type_sps(struct pci_dev *pdev)
|
|
{
|
|
u32 reg;
|
|
/* Read ME FW Status check for SPS Firmware */
|
|
pci_read_config_dword(pdev, PCI_CFG_HFS_1, ®);
|
|
/* if bits [19:16] = 15, running SPS Firmware */
|
|
return (reg & 0xf0000) == 0xf0000;
|
|
}
|
|
|
|
#define MEI_CFG_FW_SPS \
|
|
.quirk_probe = mei_me_fw_type_sps
|
|
|
|
|
|
#define MEI_CFG_LEGACY_HFS \
|
|
.fw_status.count = 0
|
|
|
|
#define MEI_CFG_ICH_HFS \
|
|
.fw_status.count = 1, \
|
|
.fw_status.status[0] = PCI_CFG_HFS_1
|
|
|
|
#define MEI_CFG_PCH_HFS \
|
|
.fw_status.count = 2, \
|
|
.fw_status.status[0] = PCI_CFG_HFS_1, \
|
|
.fw_status.status[1] = PCI_CFG_HFS_2
|
|
|
|
#define MEI_CFG_PCH8_HFS \
|
|
.fw_status.count = 6, \
|
|
.fw_status.status[0] = PCI_CFG_HFS_1, \
|
|
.fw_status.status[1] = PCI_CFG_HFS_2, \
|
|
.fw_status.status[2] = PCI_CFG_HFS_3, \
|
|
.fw_status.status[3] = PCI_CFG_HFS_4, \
|
|
.fw_status.status[4] = PCI_CFG_HFS_5, \
|
|
.fw_status.status[5] = PCI_CFG_HFS_6
|
|
|
|
/* ICH Legacy devices */
|
|
const struct mei_cfg mei_me_legacy_cfg = {
|
|
MEI_CFG_LEGACY_HFS,
|
|
};
|
|
|
|
/* ICH devices */
|
|
const struct mei_cfg mei_me_ich_cfg = {
|
|
MEI_CFG_ICH_HFS,
|
|
};
|
|
|
|
/* PCH devices */
|
|
const struct mei_cfg mei_me_pch_cfg = {
|
|
MEI_CFG_PCH_HFS,
|
|
};
|
|
|
|
|
|
/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
|
|
const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
|
|
MEI_CFG_PCH_HFS,
|
|
MEI_CFG_FW_NM,
|
|
};
|
|
|
|
/* PCH8 Lynx Point and newer devices */
|
|
const struct mei_cfg mei_me_pch8_cfg = {
|
|
MEI_CFG_PCH8_HFS,
|
|
};
|
|
|
|
/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
|
|
const struct mei_cfg mei_me_pch8_sps_cfg = {
|
|
MEI_CFG_PCH8_HFS,
|
|
MEI_CFG_FW_SPS,
|
|
};
|
|
|
|
/**
|
|
* mei_me_dev_init - allocates and initializes the mei device structure
|
|
*
|
|
* @pdev: The pci device structure
|
|
* @cfg: per device generation config
|
|
*
|
|
* Return: The mei_device_device pointer on success, NULL on failure.
|
|
*/
|
|
struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
|
|
const struct mei_cfg *cfg)
|
|
{
|
|
struct mei_device *dev;
|
|
struct mei_me_hw *hw;
|
|
|
|
dev = kzalloc(sizeof(struct mei_device) +
|
|
sizeof(struct mei_me_hw), GFP_KERNEL);
|
|
if (!dev)
|
|
return NULL;
|
|
hw = to_me_hw(dev);
|
|
|
|
mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
|
|
hw->cfg = cfg;
|
|
return dev;
|
|
}
|
|
|