2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/fs/proc/meminfo.c
Linus Torvalds a5ad88ce8c mm: get rid of 'vmalloc_info' from /proc/meminfo
It turns out that at least some versions of glibc end up reading
/proc/meminfo at every single startup, because glibc wants to know the
amount of memory the machine has.  And while that's arguably insane,
it's just how things are.

And it turns out that it's not all that expensive most of the time, but
the vmalloc information statistics (amount of virtual memory used in the
vmalloc space, and the biggest remaining chunk) can be rather expensive
to compute.

The 'get_vmalloc_info()' function actually showed up on my profiles as
4% of the CPU usage of "make test" in the git source repository, because
the git tests are lots of very short-lived shell-scripts etc.

It turns out that apparently this same silly vmalloc info gathering
shows up on the facebook servers too, according to Dave Jones.  So it's
not just "make test" for git.

We had two patches to just cache the information (one by me, one by
Ingo) to mitigate this issue, but the whole vmalloc information of of
rather dubious value to begin with, and people who *actually* want to
know what the situation is wrt the vmalloc area should just look at the
much more complete /proc/vmallocinfo instead.

In fact, according to my testing - and perhaps more importantly,
according to that big search engine in the sky: Google - there is
nothing out there that actually cares about those two expensive fields:
VmallocUsed and VmallocChunk.

So let's try to just remove them entirely.  Actually, this just removes
the computation and reports the numbers as zero for now, just to try to
be minimally intrusive.

If this breaks anything, we'll obviously have to re-introduce the code
to compute this all and add the caching patches on top.  But if given
the option, I'd really prefer to just remove this bad idea entirely
rather than add even more code to work around our historical mistake
that likely nobody really cares about.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-01 17:09:15 -08:00

232 lines
5.9 KiB
C

#include <linux/fs.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/mmzone.h>
#include <linux/proc_fs.h>
#include <linux/quicklist.h>
#include <linux/seq_file.h>
#include <linux/swap.h>
#include <linux/vmstat.h>
#include <linux/atomic.h>
#include <linux/vmalloc.h>
#ifdef CONFIG_CMA
#include <linux/cma.h>
#endif
#include <asm/page.h>
#include <asm/pgtable.h>
#include "internal.h"
void __attribute__((weak)) arch_report_meminfo(struct seq_file *m)
{
}
static int meminfo_proc_show(struct seq_file *m, void *v)
{
struct sysinfo i;
unsigned long committed;
long cached;
long available;
unsigned long pagecache;
unsigned long wmark_low = 0;
unsigned long pages[NR_LRU_LISTS];
struct zone *zone;
int lru;
/*
* display in kilobytes.
*/
#define K(x) ((x) << (PAGE_SHIFT - 10))
si_meminfo(&i);
si_swapinfo(&i);
committed = percpu_counter_read_positive(&vm_committed_as);
cached = global_page_state(NR_FILE_PAGES) -
total_swapcache_pages() - i.bufferram;
if (cached < 0)
cached = 0;
for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
pages[lru] = global_page_state(NR_LRU_BASE + lru);
for_each_zone(zone)
wmark_low += zone->watermark[WMARK_LOW];
/*
* Estimate the amount of memory available for userspace allocations,
* without causing swapping.
*
* Free memory cannot be taken below the low watermark, before the
* system starts swapping.
*/
available = i.freeram - wmark_low;
/*
* Not all the page cache can be freed, otherwise the system will
* start swapping. Assume at least half of the page cache, or the
* low watermark worth of cache, needs to stay.
*/
pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
pagecache -= min(pagecache / 2, wmark_low);
available += pagecache;
/*
* Part of the reclaimable slab consists of items that are in use,
* and cannot be freed. Cap this estimate at the low watermark.
*/
available += global_page_state(NR_SLAB_RECLAIMABLE) -
min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
if (available < 0)
available = 0;
/*
* Tagged format, for easy grepping and expansion.
*/
seq_printf(m,
"MemTotal: %8lu kB\n"
"MemFree: %8lu kB\n"
"MemAvailable: %8lu kB\n"
"Buffers: %8lu kB\n"
"Cached: %8lu kB\n"
"SwapCached: %8lu kB\n"
"Active: %8lu kB\n"
"Inactive: %8lu kB\n"
"Active(anon): %8lu kB\n"
"Inactive(anon): %8lu kB\n"
"Active(file): %8lu kB\n"
"Inactive(file): %8lu kB\n"
"Unevictable: %8lu kB\n"
"Mlocked: %8lu kB\n"
#ifdef CONFIG_HIGHMEM
"HighTotal: %8lu kB\n"
"HighFree: %8lu kB\n"
"LowTotal: %8lu kB\n"
"LowFree: %8lu kB\n"
#endif
#ifndef CONFIG_MMU
"MmapCopy: %8lu kB\n"
#endif
"SwapTotal: %8lu kB\n"
"SwapFree: %8lu kB\n"
"Dirty: %8lu kB\n"
"Writeback: %8lu kB\n"
"AnonPages: %8lu kB\n"
"Mapped: %8lu kB\n"
"Shmem: %8lu kB\n"
"Slab: %8lu kB\n"
"SReclaimable: %8lu kB\n"
"SUnreclaim: %8lu kB\n"
"KernelStack: %8lu kB\n"
"PageTables: %8lu kB\n"
#ifdef CONFIG_QUICKLIST
"Quicklists: %8lu kB\n"
#endif
"NFS_Unstable: %8lu kB\n"
"Bounce: %8lu kB\n"
"WritebackTmp: %8lu kB\n"
"CommitLimit: %8lu kB\n"
"Committed_AS: %8lu kB\n"
"VmallocTotal: %8lu kB\n"
"VmallocUsed: %8lu kB\n"
"VmallocChunk: %8lu kB\n"
#ifdef CONFIG_MEMORY_FAILURE
"HardwareCorrupted: %5lu kB\n"
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
"AnonHugePages: %8lu kB\n"
#endif
#ifdef CONFIG_CMA
"CmaTotal: %8lu kB\n"
"CmaFree: %8lu kB\n"
#endif
,
K(i.totalram),
K(i.freeram),
K(available),
K(i.bufferram),
K(cached),
K(total_swapcache_pages()),
K(pages[LRU_ACTIVE_ANON] + pages[LRU_ACTIVE_FILE]),
K(pages[LRU_INACTIVE_ANON] + pages[LRU_INACTIVE_FILE]),
K(pages[LRU_ACTIVE_ANON]),
K(pages[LRU_INACTIVE_ANON]),
K(pages[LRU_ACTIVE_FILE]),
K(pages[LRU_INACTIVE_FILE]),
K(pages[LRU_UNEVICTABLE]),
K(global_page_state(NR_MLOCK)),
#ifdef CONFIG_HIGHMEM
K(i.totalhigh),
K(i.freehigh),
K(i.totalram-i.totalhigh),
K(i.freeram-i.freehigh),
#endif
#ifndef CONFIG_MMU
K((unsigned long) atomic_long_read(&mmap_pages_allocated)),
#endif
K(i.totalswap),
K(i.freeswap),
K(global_page_state(NR_FILE_DIRTY)),
K(global_page_state(NR_WRITEBACK)),
K(global_page_state(NR_ANON_PAGES)),
K(global_page_state(NR_FILE_MAPPED)),
K(i.sharedram),
K(global_page_state(NR_SLAB_RECLAIMABLE) +
global_page_state(NR_SLAB_UNRECLAIMABLE)),
K(global_page_state(NR_SLAB_RECLAIMABLE)),
K(global_page_state(NR_SLAB_UNRECLAIMABLE)),
global_page_state(NR_KERNEL_STACK) * THREAD_SIZE / 1024,
K(global_page_state(NR_PAGETABLE)),
#ifdef CONFIG_QUICKLIST
K(quicklist_total_size()),
#endif
K(global_page_state(NR_UNSTABLE_NFS)),
K(global_page_state(NR_BOUNCE)),
K(global_page_state(NR_WRITEBACK_TEMP)),
K(vm_commit_limit()),
K(committed),
(unsigned long)VMALLOC_TOTAL >> 10,
0ul, // used to be vmalloc 'used'
0ul // used to be vmalloc 'largest_chunk'
#ifdef CONFIG_MEMORY_FAILURE
, atomic_long_read(&num_poisoned_pages) << (PAGE_SHIFT - 10)
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
, K(global_page_state(NR_ANON_TRANSPARENT_HUGEPAGES) *
HPAGE_PMD_NR)
#endif
#ifdef CONFIG_CMA
, K(totalcma_pages)
, K(global_page_state(NR_FREE_CMA_PAGES))
#endif
);
hugetlb_report_meminfo(m);
arch_report_meminfo(m);
return 0;
#undef K
}
static int meminfo_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, meminfo_proc_show, NULL);
}
static const struct file_operations meminfo_proc_fops = {
.open = meminfo_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init proc_meminfo_init(void)
{
proc_create("meminfo", 0, NULL, &meminfo_proc_fops);
return 0;
}
fs_initcall(proc_meminfo_init);