mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-25 15:15:33 +08:00
2768 lines
92 KiB
C
2768 lines
92 KiB
C
/*
|
|
* Linux Security plug
|
|
*
|
|
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
|
|
* Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
|
|
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
|
|
* Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
|
|
* Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Due to this file being licensed under the GPL there is controversy over
|
|
* whether this permits you to write a module that #includes this file
|
|
* without placing your module under the GPL. Please consult a lawyer for
|
|
* advice before doing this.
|
|
*
|
|
*/
|
|
|
|
#ifndef __LINUX_SECURITY_H
|
|
#define __LINUX_SECURITY_H
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/sem.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/msg.h>
|
|
#include <linux/sched.h>
|
|
|
|
struct ctl_table;
|
|
|
|
/*
|
|
* These functions are in security/capability.c and are used
|
|
* as the default capabilities functions
|
|
*/
|
|
extern int cap_capable (struct task_struct *tsk, int cap);
|
|
extern int cap_settime (struct timespec *ts, struct timezone *tz);
|
|
extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
|
|
extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
|
|
extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
|
|
extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
|
|
extern int cap_bprm_set_security (struct linux_binprm *bprm);
|
|
extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
|
|
extern int cap_bprm_secureexec(struct linux_binprm *bprm);
|
|
extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
|
|
extern int cap_inode_removexattr(struct dentry *dentry, char *name);
|
|
extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
|
|
extern void cap_task_reparent_to_init (struct task_struct *p);
|
|
extern int cap_syslog (int type);
|
|
extern int cap_vm_enough_memory (long pages);
|
|
|
|
struct msghdr;
|
|
struct sk_buff;
|
|
struct sock;
|
|
struct sockaddr;
|
|
struct socket;
|
|
|
|
extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
|
|
extern int cap_netlink_recv(struct sk_buff *skb);
|
|
|
|
/*
|
|
* Values used in the task_security_ops calls
|
|
*/
|
|
/* setuid or setgid, id0 == uid or gid */
|
|
#define LSM_SETID_ID 1
|
|
|
|
/* setreuid or setregid, id0 == real, id1 == eff */
|
|
#define LSM_SETID_RE 2
|
|
|
|
/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
|
|
#define LSM_SETID_RES 4
|
|
|
|
/* setfsuid or setfsgid, id0 == fsuid or fsgid */
|
|
#define LSM_SETID_FS 8
|
|
|
|
/* forward declares to avoid warnings */
|
|
struct nfsctl_arg;
|
|
struct sched_param;
|
|
struct swap_info_struct;
|
|
|
|
/* bprm_apply_creds unsafe reasons */
|
|
#define LSM_UNSAFE_SHARE 1
|
|
#define LSM_UNSAFE_PTRACE 2
|
|
#define LSM_UNSAFE_PTRACE_CAP 4
|
|
|
|
#ifdef CONFIG_SECURITY
|
|
|
|
/**
|
|
* struct security_operations - main security structure
|
|
*
|
|
* Security hooks for program execution operations.
|
|
*
|
|
* @bprm_alloc_security:
|
|
* Allocate and attach a security structure to the @bprm->security field.
|
|
* The security field is initialized to NULL when the bprm structure is
|
|
* allocated.
|
|
* @bprm contains the linux_binprm structure to be modified.
|
|
* Return 0 if operation was successful.
|
|
* @bprm_free_security:
|
|
* @bprm contains the linux_binprm structure to be modified.
|
|
* Deallocate and clear the @bprm->security field.
|
|
* @bprm_apply_creds:
|
|
* Compute and set the security attributes of a process being transformed
|
|
* by an execve operation based on the old attributes (current->security)
|
|
* and the information saved in @bprm->security by the set_security hook.
|
|
* Since this hook function (and its caller) are void, this hook can not
|
|
* return an error. However, it can leave the security attributes of the
|
|
* process unchanged if an access failure occurs at this point.
|
|
* bprm_apply_creds is called under task_lock. @unsafe indicates various
|
|
* reasons why it may be unsafe to change security state.
|
|
* @bprm contains the linux_binprm structure.
|
|
* @bprm_post_apply_creds:
|
|
* Runs after bprm_apply_creds with the task_lock dropped, so that
|
|
* functions which cannot be called safely under the task_lock can
|
|
* be used. This hook is a good place to perform state changes on
|
|
* the process such as closing open file descriptors to which access
|
|
* is no longer granted if the attributes were changed.
|
|
* Note that a security module might need to save state between
|
|
* bprm_apply_creds and bprm_post_apply_creds to store the decision
|
|
* on whether the process may proceed.
|
|
* @bprm contains the linux_binprm structure.
|
|
* @bprm_set_security:
|
|
* Save security information in the bprm->security field, typically based
|
|
* on information about the bprm->file, for later use by the apply_creds
|
|
* hook. This hook may also optionally check permissions (e.g. for
|
|
* transitions between security domains).
|
|
* This hook may be called multiple times during a single execve, e.g. for
|
|
* interpreters. The hook can tell whether it has already been called by
|
|
* checking to see if @bprm->security is non-NULL. If so, then the hook
|
|
* may decide either to retain the security information saved earlier or
|
|
* to replace it.
|
|
* @bprm contains the linux_binprm structure.
|
|
* Return 0 if the hook is successful and permission is granted.
|
|
* @bprm_check_security:
|
|
* This hook mediates the point when a search for a binary handler will
|
|
* begin. It allows a check the @bprm->security value which is set in
|
|
* the preceding set_security call. The primary difference from
|
|
* set_security is that the argv list and envp list are reliably
|
|
* available in @bprm. This hook may be called multiple times
|
|
* during a single execve; and in each pass set_security is called
|
|
* first.
|
|
* @bprm contains the linux_binprm structure.
|
|
* Return 0 if the hook is successful and permission is granted.
|
|
* @bprm_secureexec:
|
|
* Return a boolean value (0 or 1) indicating whether a "secure exec"
|
|
* is required. The flag is passed in the auxiliary table
|
|
* on the initial stack to the ELF interpreter to indicate whether libc
|
|
* should enable secure mode.
|
|
* @bprm contains the linux_binprm structure.
|
|
*
|
|
* Security hooks for filesystem operations.
|
|
*
|
|
* @sb_alloc_security:
|
|
* Allocate and attach a security structure to the sb->s_security field.
|
|
* The s_security field is initialized to NULL when the structure is
|
|
* allocated.
|
|
* @sb contains the super_block structure to be modified.
|
|
* Return 0 if operation was successful.
|
|
* @sb_free_security:
|
|
* Deallocate and clear the sb->s_security field.
|
|
* @sb contains the super_block structure to be modified.
|
|
* @sb_statfs:
|
|
* Check permission before obtaining filesystem statistics for the @sb
|
|
* filesystem.
|
|
* @sb contains the super_block structure for the filesystem.
|
|
* Return 0 if permission is granted.
|
|
* @sb_mount:
|
|
* Check permission before an object specified by @dev_name is mounted on
|
|
* the mount point named by @nd. For an ordinary mount, @dev_name
|
|
* identifies a device if the file system type requires a device. For a
|
|
* remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
|
|
* loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
|
|
* pathname of the object being mounted.
|
|
* @dev_name contains the name for object being mounted.
|
|
* @nd contains the nameidata structure for mount point object.
|
|
* @type contains the filesystem type.
|
|
* @flags contains the mount flags.
|
|
* @data contains the filesystem-specific data.
|
|
* Return 0 if permission is granted.
|
|
* @sb_copy_data:
|
|
* Allow mount option data to be copied prior to parsing by the filesystem,
|
|
* so that the security module can extract security-specific mount
|
|
* options cleanly (a filesystem may modify the data e.g. with strsep()).
|
|
* This also allows the original mount data to be stripped of security-
|
|
* specific options to avoid having to make filesystems aware of them.
|
|
* @type the type of filesystem being mounted.
|
|
* @orig the original mount data copied from userspace.
|
|
* @copy copied data which will be passed to the security module.
|
|
* Returns 0 if the copy was successful.
|
|
* @sb_check_sb:
|
|
* Check permission before the device with superblock @mnt->sb is mounted
|
|
* on the mount point named by @nd.
|
|
* @mnt contains the vfsmount for device being mounted.
|
|
* @nd contains the nameidata object for the mount point.
|
|
* Return 0 if permission is granted.
|
|
* @sb_umount:
|
|
* Check permission before the @mnt file system is unmounted.
|
|
* @mnt contains the mounted file system.
|
|
* @flags contains the unmount flags, e.g. MNT_FORCE.
|
|
* Return 0 if permission is granted.
|
|
* @sb_umount_close:
|
|
* Close any files in the @mnt mounted filesystem that are held open by
|
|
* the security module. This hook is called during an umount operation
|
|
* prior to checking whether the filesystem is still busy.
|
|
* @mnt contains the mounted filesystem.
|
|
* @sb_umount_busy:
|
|
* Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening
|
|
* any files that were closed by umount_close. This hook is called during
|
|
* an umount operation if the umount fails after a call to the
|
|
* umount_close hook.
|
|
* @mnt contains the mounted filesystem.
|
|
* @sb_post_remount:
|
|
* Update the security module's state when a filesystem is remounted.
|
|
* This hook is only called if the remount was successful.
|
|
* @mnt contains the mounted file system.
|
|
* @flags contains the new filesystem flags.
|
|
* @data contains the filesystem-specific data.
|
|
* @sb_post_mountroot:
|
|
* Update the security module's state when the root filesystem is mounted.
|
|
* This hook is only called if the mount was successful.
|
|
* @sb_post_addmount:
|
|
* Update the security module's state when a filesystem is mounted.
|
|
* This hook is called any time a mount is successfully grafetd to
|
|
* the tree.
|
|
* @mnt contains the mounted filesystem.
|
|
* @mountpoint_nd contains the nameidata structure for the mount point.
|
|
* @sb_pivotroot:
|
|
* Check permission before pivoting the root filesystem.
|
|
* @old_nd contains the nameidata structure for the new location of the current root (put_old).
|
|
* @new_nd contains the nameidata structure for the new root (new_root).
|
|
* Return 0 if permission is granted.
|
|
* @sb_post_pivotroot:
|
|
* Update module state after a successful pivot.
|
|
* @old_nd contains the nameidata structure for the old root.
|
|
* @new_nd contains the nameidata structure for the new root.
|
|
*
|
|
* Security hooks for inode operations.
|
|
*
|
|
* @inode_alloc_security:
|
|
* Allocate and attach a security structure to @inode->i_security. The
|
|
* i_security field is initialized to NULL when the inode structure is
|
|
* allocated.
|
|
* @inode contains the inode structure.
|
|
* Return 0 if operation was successful.
|
|
* @inode_free_security:
|
|
* @inode contains the inode structure.
|
|
* Deallocate the inode security structure and set @inode->i_security to
|
|
* NULL.
|
|
* @inode_init_security:
|
|
* Obtain the security attribute name suffix and value to set on a newly
|
|
* created inode and set up the incore security field for the new inode.
|
|
* This hook is called by the fs code as part of the inode creation
|
|
* transaction and provides for atomic labeling of the inode, unlike
|
|
* the post_create/mkdir/... hooks called by the VFS. The hook function
|
|
* is expected to allocate the name and value via kmalloc, with the caller
|
|
* being responsible for calling kfree after using them.
|
|
* If the security module does not use security attributes or does
|
|
* not wish to put a security attribute on this particular inode,
|
|
* then it should return -EOPNOTSUPP to skip this processing.
|
|
* @inode contains the inode structure of the newly created inode.
|
|
* @dir contains the inode structure of the parent directory.
|
|
* @name will be set to the allocated name suffix (e.g. selinux).
|
|
* @value will be set to the allocated attribute value.
|
|
* @len will be set to the length of the value.
|
|
* Returns 0 if @name and @value have been successfully set,
|
|
* -EOPNOTSUPP if no security attribute is needed, or
|
|
* -ENOMEM on memory allocation failure.
|
|
* @inode_create:
|
|
* Check permission to create a regular file.
|
|
* @dir contains inode structure of the parent of the new file.
|
|
* @dentry contains the dentry structure for the file to be created.
|
|
* @mode contains the file mode of the file to be created.
|
|
* Return 0 if permission is granted.
|
|
* @inode_link:
|
|
* Check permission before creating a new hard link to a file.
|
|
* @old_dentry contains the dentry structure for an existing link to the file.
|
|
* @dir contains the inode structure of the parent directory of the new link.
|
|
* @new_dentry contains the dentry structure for the new link.
|
|
* Return 0 if permission is granted.
|
|
* @inode_unlink:
|
|
* Check the permission to remove a hard link to a file.
|
|
* @dir contains the inode structure of parent directory of the file.
|
|
* @dentry contains the dentry structure for file to be unlinked.
|
|
* Return 0 if permission is granted.
|
|
* @inode_symlink:
|
|
* Check the permission to create a symbolic link to a file.
|
|
* @dir contains the inode structure of parent directory of the symbolic link.
|
|
* @dentry contains the dentry structure of the symbolic link.
|
|
* @old_name contains the pathname of file.
|
|
* Return 0 if permission is granted.
|
|
* @inode_mkdir:
|
|
* Check permissions to create a new directory in the existing directory
|
|
* associated with inode strcture @dir.
|
|
* @dir containst the inode structure of parent of the directory to be created.
|
|
* @dentry contains the dentry structure of new directory.
|
|
* @mode contains the mode of new directory.
|
|
* Return 0 if permission is granted.
|
|
* @inode_rmdir:
|
|
* Check the permission to remove a directory.
|
|
* @dir contains the inode structure of parent of the directory to be removed.
|
|
* @dentry contains the dentry structure of directory to be removed.
|
|
* Return 0 if permission is granted.
|
|
* @inode_mknod:
|
|
* Check permissions when creating a special file (or a socket or a fifo
|
|
* file created via the mknod system call). Note that if mknod operation
|
|
* is being done for a regular file, then the create hook will be called
|
|
* and not this hook.
|
|
* @dir contains the inode structure of parent of the new file.
|
|
* @dentry contains the dentry structure of the new file.
|
|
* @mode contains the mode of the new file.
|
|
* @dev contains the the device number.
|
|
* Return 0 if permission is granted.
|
|
* @inode_rename:
|
|
* Check for permission to rename a file or directory.
|
|
* @old_dir contains the inode structure for parent of the old link.
|
|
* @old_dentry contains the dentry structure of the old link.
|
|
* @new_dir contains the inode structure for parent of the new link.
|
|
* @new_dentry contains the dentry structure of the new link.
|
|
* Return 0 if permission is granted.
|
|
* @inode_readlink:
|
|
* Check the permission to read the symbolic link.
|
|
* @dentry contains the dentry structure for the file link.
|
|
* Return 0 if permission is granted.
|
|
* @inode_follow_link:
|
|
* Check permission to follow a symbolic link when looking up a pathname.
|
|
* @dentry contains the dentry structure for the link.
|
|
* @nd contains the nameidata structure for the parent directory.
|
|
* Return 0 if permission is granted.
|
|
* @inode_permission:
|
|
* Check permission before accessing an inode. This hook is called by the
|
|
* existing Linux permission function, so a security module can use it to
|
|
* provide additional checking for existing Linux permission checks.
|
|
* Notice that this hook is called when a file is opened (as well as many
|
|
* other operations), whereas the file_security_ops permission hook is
|
|
* called when the actual read/write operations are performed.
|
|
* @inode contains the inode structure to check.
|
|
* @mask contains the permission mask.
|
|
* @nd contains the nameidata (may be NULL).
|
|
* Return 0 if permission is granted.
|
|
* @inode_setattr:
|
|
* Check permission before setting file attributes. Note that the kernel
|
|
* call to notify_change is performed from several locations, whenever
|
|
* file attributes change (such as when a file is truncated, chown/chmod
|
|
* operations, transferring disk quotas, etc).
|
|
* @dentry contains the dentry structure for the file.
|
|
* @attr is the iattr structure containing the new file attributes.
|
|
* Return 0 if permission is granted.
|
|
* @inode_getattr:
|
|
* Check permission before obtaining file attributes.
|
|
* @mnt is the vfsmount where the dentry was looked up
|
|
* @dentry contains the dentry structure for the file.
|
|
* Return 0 if permission is granted.
|
|
* @inode_delete:
|
|
* @inode contains the inode structure for deleted inode.
|
|
* This hook is called when a deleted inode is released (i.e. an inode
|
|
* with no hard links has its use count drop to zero). A security module
|
|
* can use this hook to release any persistent label associated with the
|
|
* inode.
|
|
* @inode_setxattr:
|
|
* Check permission before setting the extended attributes
|
|
* @value identified by @name for @dentry.
|
|
* Return 0 if permission is granted.
|
|
* @inode_post_setxattr:
|
|
* Update inode security field after successful setxattr operation.
|
|
* @value identified by @name for @dentry.
|
|
* @inode_getxattr:
|
|
* Check permission before obtaining the extended attributes
|
|
* identified by @name for @dentry.
|
|
* Return 0 if permission is granted.
|
|
* @inode_listxattr:
|
|
* Check permission before obtaining the list of extended attribute
|
|
* names for @dentry.
|
|
* Return 0 if permission is granted.
|
|
* @inode_removexattr:
|
|
* Check permission before removing the extended attribute
|
|
* identified by @name for @dentry.
|
|
* Return 0 if permission is granted.
|
|
* @inode_getsecurity:
|
|
* Copy the extended attribute representation of the security label
|
|
* associated with @name for @inode into @buffer. @buffer may be
|
|
* NULL to request the size of the buffer required. @size indicates
|
|
* the size of @buffer in bytes. Note that @name is the remainder
|
|
* of the attribute name after the security. prefix has been removed.
|
|
* Return number of bytes used/required on success.
|
|
* @inode_setsecurity:
|
|
* Set the security label associated with @name for @inode from the
|
|
* extended attribute value @value. @size indicates the size of the
|
|
* @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
|
|
* Note that @name is the remainder of the attribute name after the
|
|
* security. prefix has been removed.
|
|
* Return 0 on success.
|
|
* @inode_listsecurity:
|
|
* Copy the extended attribute names for the security labels
|
|
* associated with @inode into @buffer. The maximum size of @buffer
|
|
* is specified by @buffer_size. @buffer may be NULL to request
|
|
* the size of the buffer required.
|
|
* Returns number of bytes used/required on success.
|
|
*
|
|
* Security hooks for file operations
|
|
*
|
|
* @file_permission:
|
|
* Check file permissions before accessing an open file. This hook is
|
|
* called by various operations that read or write files. A security
|
|
* module can use this hook to perform additional checking on these
|
|
* operations, e.g. to revalidate permissions on use to support privilege
|
|
* bracketing or policy changes. Notice that this hook is used when the
|
|
* actual read/write operations are performed, whereas the
|
|
* inode_security_ops hook is called when a file is opened (as well as
|
|
* many other operations).
|
|
* Caveat: Although this hook can be used to revalidate permissions for
|
|
* various system call operations that read or write files, it does not
|
|
* address the revalidation of permissions for memory-mapped files.
|
|
* Security modules must handle this separately if they need such
|
|
* revalidation.
|
|
* @file contains the file structure being accessed.
|
|
* @mask contains the requested permissions.
|
|
* Return 0 if permission is granted.
|
|
* @file_alloc_security:
|
|
* Allocate and attach a security structure to the file->f_security field.
|
|
* The security field is initialized to NULL when the structure is first
|
|
* created.
|
|
* @file contains the file structure to secure.
|
|
* Return 0 if the hook is successful and permission is granted.
|
|
* @file_free_security:
|
|
* Deallocate and free any security structures stored in file->f_security.
|
|
* @file contains the file structure being modified.
|
|
* @file_ioctl:
|
|
* @file contains the file structure.
|
|
* @cmd contains the operation to perform.
|
|
* @arg contains the operational arguments.
|
|
* Check permission for an ioctl operation on @file. Note that @arg can
|
|
* sometimes represents a user space pointer; in other cases, it may be a
|
|
* simple integer value. When @arg represents a user space pointer, it
|
|
* should never be used by the security module.
|
|
* Return 0 if permission is granted.
|
|
* @file_mmap :
|
|
* Check permissions for a mmap operation. The @file may be NULL, e.g.
|
|
* if mapping anonymous memory.
|
|
* @file contains the file structure for file to map (may be NULL).
|
|
* @reqprot contains the protection requested by the application.
|
|
* @prot contains the protection that will be applied by the kernel.
|
|
* @flags contains the operational flags.
|
|
* Return 0 if permission is granted.
|
|
* @file_mprotect:
|
|
* Check permissions before changing memory access permissions.
|
|
* @vma contains the memory region to modify.
|
|
* @reqprot contains the protection requested by the application.
|
|
* @prot contains the protection that will be applied by the kernel.
|
|
* Return 0 if permission is granted.
|
|
* @file_lock:
|
|
* Check permission before performing file locking operations.
|
|
* Note: this hook mediates both flock and fcntl style locks.
|
|
* @file contains the file structure.
|
|
* @cmd contains the posix-translated lock operation to perform
|
|
* (e.g. F_RDLCK, F_WRLCK).
|
|
* Return 0 if permission is granted.
|
|
* @file_fcntl:
|
|
* Check permission before allowing the file operation specified by @cmd
|
|
* from being performed on the file @file. Note that @arg can sometimes
|
|
* represents a user space pointer; in other cases, it may be a simple
|
|
* integer value. When @arg represents a user space pointer, it should
|
|
* never be used by the security module.
|
|
* @file contains the file structure.
|
|
* @cmd contains the operation to be performed.
|
|
* @arg contains the operational arguments.
|
|
* Return 0 if permission is granted.
|
|
* @file_set_fowner:
|
|
* Save owner security information (typically from current->security) in
|
|
* file->f_security for later use by the send_sigiotask hook.
|
|
* @file contains the file structure to update.
|
|
* Return 0 on success.
|
|
* @file_send_sigiotask:
|
|
* Check permission for the file owner @fown to send SIGIO or SIGURG to the
|
|
* process @tsk. Note that this hook is sometimes called from interrupt.
|
|
* Note that the fown_struct, @fown, is never outside the context of a
|
|
* struct file, so the file structure (and associated security information)
|
|
* can always be obtained:
|
|
* (struct file *)((long)fown - offsetof(struct file,f_owner));
|
|
* @tsk contains the structure of task receiving signal.
|
|
* @fown contains the file owner information.
|
|
* @sig is the signal that will be sent. When 0, kernel sends SIGIO.
|
|
* Return 0 if permission is granted.
|
|
* @file_receive:
|
|
* This hook allows security modules to control the ability of a process
|
|
* to receive an open file descriptor via socket IPC.
|
|
* @file contains the file structure being received.
|
|
* Return 0 if permission is granted.
|
|
*
|
|
* Security hooks for task operations.
|
|
*
|
|
* @task_create:
|
|
* Check permission before creating a child process. See the clone(2)
|
|
* manual page for definitions of the @clone_flags.
|
|
* @clone_flags contains the flags indicating what should be shared.
|
|
* Return 0 if permission is granted.
|
|
* @task_alloc_security:
|
|
* @p contains the task_struct for child process.
|
|
* Allocate and attach a security structure to the p->security field. The
|
|
* security field is initialized to NULL when the task structure is
|
|
* allocated.
|
|
* Return 0 if operation was successful.
|
|
* @task_free_security:
|
|
* @p contains the task_struct for process.
|
|
* Deallocate and clear the p->security field.
|
|
* @task_setuid:
|
|
* Check permission before setting one or more of the user identity
|
|
* attributes of the current process. The @flags parameter indicates
|
|
* which of the set*uid system calls invoked this hook and how to
|
|
* interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
|
|
* definitions at the beginning of this file for the @flags values and
|
|
* their meanings.
|
|
* @id0 contains a uid.
|
|
* @id1 contains a uid.
|
|
* @id2 contains a uid.
|
|
* @flags contains one of the LSM_SETID_* values.
|
|
* Return 0 if permission is granted.
|
|
* @task_post_setuid:
|
|
* Update the module's state after setting one or more of the user
|
|
* identity attributes of the current process. The @flags parameter
|
|
* indicates which of the set*uid system calls invoked this hook. If
|
|
* @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
|
|
* parameters are not used.
|
|
* @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
|
|
* @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
|
|
* @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
|
|
* @flags contains one of the LSM_SETID_* values.
|
|
* Return 0 on success.
|
|
* @task_setgid:
|
|
* Check permission before setting one or more of the group identity
|
|
* attributes of the current process. The @flags parameter indicates
|
|
* which of the set*gid system calls invoked this hook and how to
|
|
* interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
|
|
* definitions at the beginning of this file for the @flags values and
|
|
* their meanings.
|
|
* @id0 contains a gid.
|
|
* @id1 contains a gid.
|
|
* @id2 contains a gid.
|
|
* @flags contains one of the LSM_SETID_* values.
|
|
* Return 0 if permission is granted.
|
|
* @task_setpgid:
|
|
* Check permission before setting the process group identifier of the
|
|
* process @p to @pgid.
|
|
* @p contains the task_struct for process being modified.
|
|
* @pgid contains the new pgid.
|
|
* Return 0 if permission is granted.
|
|
* @task_getpgid:
|
|
* Check permission before getting the process group identifier of the
|
|
* process @p.
|
|
* @p contains the task_struct for the process.
|
|
* Return 0 if permission is granted.
|
|
* @task_getsid:
|
|
* Check permission before getting the session identifier of the process
|
|
* @p.
|
|
* @p contains the task_struct for the process.
|
|
* Return 0 if permission is granted.
|
|
* @task_setgroups:
|
|
* Check permission before setting the supplementary group set of the
|
|
* current process.
|
|
* @group_info contains the new group information.
|
|
* Return 0 if permission is granted.
|
|
* @task_setnice:
|
|
* Check permission before setting the nice value of @p to @nice.
|
|
* @p contains the task_struct of process.
|
|
* @nice contains the new nice value.
|
|
* Return 0 if permission is granted.
|
|
* @task_setrlimit:
|
|
* Check permission before setting the resource limits of the current
|
|
* process for @resource to @new_rlim. The old resource limit values can
|
|
* be examined by dereferencing (current->signal->rlim + resource).
|
|
* @resource contains the resource whose limit is being set.
|
|
* @new_rlim contains the new limits for @resource.
|
|
* Return 0 if permission is granted.
|
|
* @task_setscheduler:
|
|
* Check permission before setting scheduling policy and/or parameters of
|
|
* process @p based on @policy and @lp.
|
|
* @p contains the task_struct for process.
|
|
* @policy contains the scheduling policy.
|
|
* @lp contains the scheduling parameters.
|
|
* Return 0 if permission is granted.
|
|
* @task_getscheduler:
|
|
* Check permission before obtaining scheduling information for process
|
|
* @p.
|
|
* @p contains the task_struct for process.
|
|
* Return 0 if permission is granted.
|
|
* @task_kill:
|
|
* Check permission before sending signal @sig to @p. @info can be NULL,
|
|
* the constant 1, or a pointer to a siginfo structure. If @info is 1 or
|
|
* SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
|
|
* from the kernel and should typically be permitted.
|
|
* SIGIO signals are handled separately by the send_sigiotask hook in
|
|
* file_security_ops.
|
|
* @p contains the task_struct for process.
|
|
* @info contains the signal information.
|
|
* @sig contains the signal value.
|
|
* Return 0 if permission is granted.
|
|
* @task_wait:
|
|
* Check permission before allowing a process to reap a child process @p
|
|
* and collect its status information.
|
|
* @p contains the task_struct for process.
|
|
* Return 0 if permission is granted.
|
|
* @task_prctl:
|
|
* Check permission before performing a process control operation on the
|
|
* current process.
|
|
* @option contains the operation.
|
|
* @arg2 contains a argument.
|
|
* @arg3 contains a argument.
|
|
* @arg4 contains a argument.
|
|
* @arg5 contains a argument.
|
|
* Return 0 if permission is granted.
|
|
* @task_reparent_to_init:
|
|
* Set the security attributes in @p->security for a kernel thread that
|
|
* is being reparented to the init task.
|
|
* @p contains the task_struct for the kernel thread.
|
|
* @task_to_inode:
|
|
* Set the security attributes for an inode based on an associated task's
|
|
* security attributes, e.g. for /proc/pid inodes.
|
|
* @p contains the task_struct for the task.
|
|
* @inode contains the inode structure for the inode.
|
|
*
|
|
* Security hooks for Netlink messaging.
|
|
*
|
|
* @netlink_send:
|
|
* Save security information for a netlink message so that permission
|
|
* checking can be performed when the message is processed. The security
|
|
* information can be saved using the eff_cap field of the
|
|
* netlink_skb_parms structure. Also may be used to provide fine
|
|
* grained control over message transmission.
|
|
* @sk associated sock of task sending the message.,
|
|
* @skb contains the sk_buff structure for the netlink message.
|
|
* Return 0 if the information was successfully saved and message
|
|
* is allowed to be transmitted.
|
|
* @netlink_recv:
|
|
* Check permission before processing the received netlink message in
|
|
* @skb.
|
|
* @skb contains the sk_buff structure for the netlink message.
|
|
* Return 0 if permission is granted.
|
|
*
|
|
* Security hooks for Unix domain networking.
|
|
*
|
|
* @unix_stream_connect:
|
|
* Check permissions before establishing a Unix domain stream connection
|
|
* between @sock and @other.
|
|
* @sock contains the socket structure.
|
|
* @other contains the peer socket structure.
|
|
* Return 0 if permission is granted.
|
|
* @unix_may_send:
|
|
* Check permissions before connecting or sending datagrams from @sock to
|
|
* @other.
|
|
* @sock contains the socket structure.
|
|
* @sock contains the peer socket structure.
|
|
* Return 0 if permission is granted.
|
|
*
|
|
* The @unix_stream_connect and @unix_may_send hooks were necessary because
|
|
* Linux provides an alternative to the conventional file name space for Unix
|
|
* domain sockets. Whereas binding and connecting to sockets in the file name
|
|
* space is mediated by the typical file permissions (and caught by the mknod
|
|
* and permission hooks in inode_security_ops), binding and connecting to
|
|
* sockets in the abstract name space is completely unmediated. Sufficient
|
|
* control of Unix domain sockets in the abstract name space isn't possible
|
|
* using only the socket layer hooks, since we need to know the actual target
|
|
* socket, which is not looked up until we are inside the af_unix code.
|
|
*
|
|
* Security hooks for socket operations.
|
|
*
|
|
* @socket_create:
|
|
* Check permissions prior to creating a new socket.
|
|
* @family contains the requested protocol family.
|
|
* @type contains the requested communications type.
|
|
* @protocol contains the requested protocol.
|
|
* @kern set to 1 if a kernel socket.
|
|
* Return 0 if permission is granted.
|
|
* @socket_post_create:
|
|
* This hook allows a module to update or allocate a per-socket security
|
|
* structure. Note that the security field was not added directly to the
|
|
* socket structure, but rather, the socket security information is stored
|
|
* in the associated inode. Typically, the inode alloc_security hook will
|
|
* allocate and and attach security information to
|
|
* sock->inode->i_security. This hook may be used to update the
|
|
* sock->inode->i_security field with additional information that wasn't
|
|
* available when the inode was allocated.
|
|
* @sock contains the newly created socket structure.
|
|
* @family contains the requested protocol family.
|
|
* @type contains the requested communications type.
|
|
* @protocol contains the requested protocol.
|
|
* @kern set to 1 if a kernel socket.
|
|
* @socket_bind:
|
|
* Check permission before socket protocol layer bind operation is
|
|
* performed and the socket @sock is bound to the address specified in the
|
|
* @address parameter.
|
|
* @sock contains the socket structure.
|
|
* @address contains the address to bind to.
|
|
* @addrlen contains the length of address.
|
|
* Return 0 if permission is granted.
|
|
* @socket_connect:
|
|
* Check permission before socket protocol layer connect operation
|
|
* attempts to connect socket @sock to a remote address, @address.
|
|
* @sock contains the socket structure.
|
|
* @address contains the address of remote endpoint.
|
|
* @addrlen contains the length of address.
|
|
* Return 0 if permission is granted.
|
|
* @socket_listen:
|
|
* Check permission before socket protocol layer listen operation.
|
|
* @sock contains the socket structure.
|
|
* @backlog contains the maximum length for the pending connection queue.
|
|
* Return 0 if permission is granted.
|
|
* @socket_accept:
|
|
* Check permission before accepting a new connection. Note that the new
|
|
* socket, @newsock, has been created and some information copied to it,
|
|
* but the accept operation has not actually been performed.
|
|
* @sock contains the listening socket structure.
|
|
* @newsock contains the newly created server socket for connection.
|
|
* Return 0 if permission is granted.
|
|
* @socket_post_accept:
|
|
* This hook allows a security module to copy security
|
|
* information into the newly created socket's inode.
|
|
* @sock contains the listening socket structure.
|
|
* @newsock contains the newly created server socket for connection.
|
|
* @socket_sendmsg:
|
|
* Check permission before transmitting a message to another socket.
|
|
* @sock contains the socket structure.
|
|
* @msg contains the message to be transmitted.
|
|
* @size contains the size of message.
|
|
* Return 0 if permission is granted.
|
|
* @socket_recvmsg:
|
|
* Check permission before receiving a message from a socket.
|
|
* @sock contains the socket structure.
|
|
* @msg contains the message structure.
|
|
* @size contains the size of message structure.
|
|
* @flags contains the operational flags.
|
|
* Return 0 if permission is granted.
|
|
* @socket_getsockname:
|
|
* Check permission before the local address (name) of the socket object
|
|
* @sock is retrieved.
|
|
* @sock contains the socket structure.
|
|
* Return 0 if permission is granted.
|
|
* @socket_getpeername:
|
|
* Check permission before the remote address (name) of a socket object
|
|
* @sock is retrieved.
|
|
* @sock contains the socket structure.
|
|
* Return 0 if permission is granted.
|
|
* @socket_getsockopt:
|
|
* Check permissions before retrieving the options associated with socket
|
|
* @sock.
|
|
* @sock contains the socket structure.
|
|
* @level contains the protocol level to retrieve option from.
|
|
* @optname contains the name of option to retrieve.
|
|
* Return 0 if permission is granted.
|
|
* @socket_setsockopt:
|
|
* Check permissions before setting the options associated with socket
|
|
* @sock.
|
|
* @sock contains the socket structure.
|
|
* @level contains the protocol level to set options for.
|
|
* @optname contains the name of the option to set.
|
|
* Return 0 if permission is granted.
|
|
* @socket_shutdown:
|
|
* Checks permission before all or part of a connection on the socket
|
|
* @sock is shut down.
|
|
* @sock contains the socket structure.
|
|
* @how contains the flag indicating how future sends and receives are handled.
|
|
* Return 0 if permission is granted.
|
|
* @socket_sock_rcv_skb:
|
|
* Check permissions on incoming network packets. This hook is distinct
|
|
* from Netfilter's IP input hooks since it is the first time that the
|
|
* incoming sk_buff @skb has been associated with a particular socket, @sk.
|
|
* @sk contains the sock (not socket) associated with the incoming sk_buff.
|
|
* @skb contains the incoming network data.
|
|
* @socket_getpeersec:
|
|
* This hook allows the security module to provide peer socket security
|
|
* state to userspace via getsockopt SO_GETPEERSEC.
|
|
* @sock is the local socket.
|
|
* @optval userspace memory where the security state is to be copied.
|
|
* @optlen userspace int where the module should copy the actual length
|
|
* of the security state.
|
|
* @len as input is the maximum length to copy to userspace provided
|
|
* by the caller.
|
|
* Return 0 if all is well, otherwise, typical getsockopt return
|
|
* values.
|
|
* @sk_alloc_security:
|
|
* Allocate and attach a security structure to the sk->sk_security field,
|
|
* which is used to copy security attributes between local stream sockets.
|
|
* @sk_free_security:
|
|
* Deallocate security structure.
|
|
*
|
|
* Security hooks affecting all System V IPC operations.
|
|
*
|
|
* @ipc_permission:
|
|
* Check permissions for access to IPC
|
|
* @ipcp contains the kernel IPC permission structure
|
|
* @flag contains the desired (requested) permission set
|
|
* Return 0 if permission is granted.
|
|
*
|
|
* Security hooks for individual messages held in System V IPC message queues
|
|
* @msg_msg_alloc_security:
|
|
* Allocate and attach a security structure to the msg->security field.
|
|
* The security field is initialized to NULL when the structure is first
|
|
* created.
|
|
* @msg contains the message structure to be modified.
|
|
* Return 0 if operation was successful and permission is granted.
|
|
* @msg_msg_free_security:
|
|
* Deallocate the security structure for this message.
|
|
* @msg contains the message structure to be modified.
|
|
*
|
|
* Security hooks for System V IPC Message Queues
|
|
*
|
|
* @msg_queue_alloc_security:
|
|
* Allocate and attach a security structure to the
|
|
* msq->q_perm.security field. The security field is initialized to
|
|
* NULL when the structure is first created.
|
|
* @msq contains the message queue structure to be modified.
|
|
* Return 0 if operation was successful and permission is granted.
|
|
* @msg_queue_free_security:
|
|
* Deallocate security structure for this message queue.
|
|
* @msq contains the message queue structure to be modified.
|
|
* @msg_queue_associate:
|
|
* Check permission when a message queue is requested through the
|
|
* msgget system call. This hook is only called when returning the
|
|
* message queue identifier for an existing message queue, not when a
|
|
* new message queue is created.
|
|
* @msq contains the message queue to act upon.
|
|
* @msqflg contains the operation control flags.
|
|
* Return 0 if permission is granted.
|
|
* @msg_queue_msgctl:
|
|
* Check permission when a message control operation specified by @cmd
|
|
* is to be performed on the message queue @msq.
|
|
* The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
|
|
* @msq contains the message queue to act upon. May be NULL.
|
|
* @cmd contains the operation to be performed.
|
|
* Return 0 if permission is granted.
|
|
* @msg_queue_msgsnd:
|
|
* Check permission before a message, @msg, is enqueued on the message
|
|
* queue, @msq.
|
|
* @msq contains the message queue to send message to.
|
|
* @msg contains the message to be enqueued.
|
|
* @msqflg contains operational flags.
|
|
* Return 0 if permission is granted.
|
|
* @msg_queue_msgrcv:
|
|
* Check permission before a message, @msg, is removed from the message
|
|
* queue, @msq. The @target task structure contains a pointer to the
|
|
* process that will be receiving the message (not equal to the current
|
|
* process when inline receives are being performed).
|
|
* @msq contains the message queue to retrieve message from.
|
|
* @msg contains the message destination.
|
|
* @target contains the task structure for recipient process.
|
|
* @type contains the type of message requested.
|
|
* @mode contains the operational flags.
|
|
* Return 0 if permission is granted.
|
|
*
|
|
* Security hooks for System V Shared Memory Segments
|
|
*
|
|
* @shm_alloc_security:
|
|
* Allocate and attach a security structure to the shp->shm_perm.security
|
|
* field. The security field is initialized to NULL when the structure is
|
|
* first created.
|
|
* @shp contains the shared memory structure to be modified.
|
|
* Return 0 if operation was successful and permission is granted.
|
|
* @shm_free_security:
|
|
* Deallocate the security struct for this memory segment.
|
|
* @shp contains the shared memory structure to be modified.
|
|
* @shm_associate:
|
|
* Check permission when a shared memory region is requested through the
|
|
* shmget system call. This hook is only called when returning the shared
|
|
* memory region identifier for an existing region, not when a new shared
|
|
* memory region is created.
|
|
* @shp contains the shared memory structure to be modified.
|
|
* @shmflg contains the operation control flags.
|
|
* Return 0 if permission is granted.
|
|
* @shm_shmctl:
|
|
* Check permission when a shared memory control operation specified by
|
|
* @cmd is to be performed on the shared memory region @shp.
|
|
* The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
|
|
* @shp contains shared memory structure to be modified.
|
|
* @cmd contains the operation to be performed.
|
|
* Return 0 if permission is granted.
|
|
* @shm_shmat:
|
|
* Check permissions prior to allowing the shmat system call to attach the
|
|
* shared memory segment @shp to the data segment of the calling process.
|
|
* The attaching address is specified by @shmaddr.
|
|
* @shp contains the shared memory structure to be modified.
|
|
* @shmaddr contains the address to attach memory region to.
|
|
* @shmflg contains the operational flags.
|
|
* Return 0 if permission is granted.
|
|
*
|
|
* Security hooks for System V Semaphores
|
|
*
|
|
* @sem_alloc_security:
|
|
* Allocate and attach a security structure to the sma->sem_perm.security
|
|
* field. The security field is initialized to NULL when the structure is
|
|
* first created.
|
|
* @sma contains the semaphore structure
|
|
* Return 0 if operation was successful and permission is granted.
|
|
* @sem_free_security:
|
|
* deallocate security struct for this semaphore
|
|
* @sma contains the semaphore structure.
|
|
* @sem_associate:
|
|
* Check permission when a semaphore is requested through the semget
|
|
* system call. This hook is only called when returning the semaphore
|
|
* identifier for an existing semaphore, not when a new one must be
|
|
* created.
|
|
* @sma contains the semaphore structure.
|
|
* @semflg contains the operation control flags.
|
|
* Return 0 if permission is granted.
|
|
* @sem_semctl:
|
|
* Check permission when a semaphore operation specified by @cmd is to be
|
|
* performed on the semaphore @sma. The @sma may be NULL, e.g. for
|
|
* IPC_INFO or SEM_INFO.
|
|
* @sma contains the semaphore structure. May be NULL.
|
|
* @cmd contains the operation to be performed.
|
|
* Return 0 if permission is granted.
|
|
* @sem_semop
|
|
* Check permissions before performing operations on members of the
|
|
* semaphore set @sma. If the @alter flag is nonzero, the semaphore set
|
|
* may be modified.
|
|
* @sma contains the semaphore structure.
|
|
* @sops contains the operations to perform.
|
|
* @nsops contains the number of operations to perform.
|
|
* @alter contains the flag indicating whether changes are to be made.
|
|
* Return 0 if permission is granted.
|
|
*
|
|
* @ptrace:
|
|
* Check permission before allowing the @parent process to trace the
|
|
* @child process.
|
|
* Security modules may also want to perform a process tracing check
|
|
* during an execve in the set_security or apply_creds hooks of
|
|
* binprm_security_ops if the process is being traced and its security
|
|
* attributes would be changed by the execve.
|
|
* @parent contains the task_struct structure for parent process.
|
|
* @child contains the task_struct structure for child process.
|
|
* Return 0 if permission is granted.
|
|
* @capget:
|
|
* Get the @effective, @inheritable, and @permitted capability sets for
|
|
* the @target process. The hook may also perform permission checking to
|
|
* determine if the current process is allowed to see the capability sets
|
|
* of the @target process.
|
|
* @target contains the task_struct structure for target process.
|
|
* @effective contains the effective capability set.
|
|
* @inheritable contains the inheritable capability set.
|
|
* @permitted contains the permitted capability set.
|
|
* Return 0 if the capability sets were successfully obtained.
|
|
* @capset_check:
|
|
* Check permission before setting the @effective, @inheritable, and
|
|
* @permitted capability sets for the @target process.
|
|
* Caveat: @target is also set to current if a set of processes is
|
|
* specified (i.e. all processes other than current and init or a
|
|
* particular process group). Hence, the capset_set hook may need to
|
|
* revalidate permission to the actual target process.
|
|
* @target contains the task_struct structure for target process.
|
|
* @effective contains the effective capability set.
|
|
* @inheritable contains the inheritable capability set.
|
|
* @permitted contains the permitted capability set.
|
|
* Return 0 if permission is granted.
|
|
* @capset_set:
|
|
* Set the @effective, @inheritable, and @permitted capability sets for
|
|
* the @target process. Since capset_check cannot always check permission
|
|
* to the real @target process, this hook may also perform permission
|
|
* checking to determine if the current process is allowed to set the
|
|
* capability sets of the @target process. However, this hook has no way
|
|
* of returning an error due to the structure of the sys_capset code.
|
|
* @target contains the task_struct structure for target process.
|
|
* @effective contains the effective capability set.
|
|
* @inheritable contains the inheritable capability set.
|
|
* @permitted contains the permitted capability set.
|
|
* @acct:
|
|
* Check permission before enabling or disabling process accounting. If
|
|
* accounting is being enabled, then @file refers to the open file used to
|
|
* store accounting records. If accounting is being disabled, then @file
|
|
* is NULL.
|
|
* @file contains the file structure for the accounting file (may be NULL).
|
|
* Return 0 if permission is granted.
|
|
* @sysctl:
|
|
* Check permission before accessing the @table sysctl variable in the
|
|
* manner specified by @op.
|
|
* @table contains the ctl_table structure for the sysctl variable.
|
|
* @op contains the operation (001 = search, 002 = write, 004 = read).
|
|
* Return 0 if permission is granted.
|
|
* @capable:
|
|
* Check whether the @tsk process has the @cap capability.
|
|
* @tsk contains the task_struct for the process.
|
|
* @cap contains the capability <include/linux/capability.h>.
|
|
* Return 0 if the capability is granted for @tsk.
|
|
* @syslog:
|
|
* Check permission before accessing the kernel message ring or changing
|
|
* logging to the console.
|
|
* See the syslog(2) manual page for an explanation of the @type values.
|
|
* @type contains the type of action.
|
|
* Return 0 if permission is granted.
|
|
* @settime:
|
|
* Check permission to change the system time.
|
|
* struct timespec and timezone are defined in include/linux/time.h
|
|
* @ts contains new time
|
|
* @tz contains new timezone
|
|
* Return 0 if permission is granted.
|
|
* @vm_enough_memory:
|
|
* Check permissions for allocating a new virtual mapping.
|
|
* @pages contains the number of pages.
|
|
* Return 0 if permission is granted.
|
|
*
|
|
* @register_security:
|
|
* allow module stacking.
|
|
* @name contains the name of the security module being stacked.
|
|
* @ops contains a pointer to the struct security_operations of the module to stack.
|
|
* @unregister_security:
|
|
* remove a stacked module.
|
|
* @name contains the name of the security module being unstacked.
|
|
* @ops contains a pointer to the struct security_operations of the module to unstack.
|
|
*
|
|
* This is the main security structure.
|
|
*/
|
|
struct security_operations {
|
|
int (*ptrace) (struct task_struct * parent, struct task_struct * child);
|
|
int (*capget) (struct task_struct * target,
|
|
kernel_cap_t * effective,
|
|
kernel_cap_t * inheritable, kernel_cap_t * permitted);
|
|
int (*capset_check) (struct task_struct * target,
|
|
kernel_cap_t * effective,
|
|
kernel_cap_t * inheritable,
|
|
kernel_cap_t * permitted);
|
|
void (*capset_set) (struct task_struct * target,
|
|
kernel_cap_t * effective,
|
|
kernel_cap_t * inheritable,
|
|
kernel_cap_t * permitted);
|
|
int (*acct) (struct file * file);
|
|
int (*sysctl) (struct ctl_table * table, int op);
|
|
int (*capable) (struct task_struct * tsk, int cap);
|
|
int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
|
|
int (*quota_on) (struct dentry * dentry);
|
|
int (*syslog) (int type);
|
|
int (*settime) (struct timespec *ts, struct timezone *tz);
|
|
int (*vm_enough_memory) (long pages);
|
|
|
|
int (*bprm_alloc_security) (struct linux_binprm * bprm);
|
|
void (*bprm_free_security) (struct linux_binprm * bprm);
|
|
void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
|
|
void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
|
|
int (*bprm_set_security) (struct linux_binprm * bprm);
|
|
int (*bprm_check_security) (struct linux_binprm * bprm);
|
|
int (*bprm_secureexec) (struct linux_binprm * bprm);
|
|
|
|
int (*sb_alloc_security) (struct super_block * sb);
|
|
void (*sb_free_security) (struct super_block * sb);
|
|
int (*sb_copy_data)(struct file_system_type *type,
|
|
void *orig, void *copy);
|
|
int (*sb_kern_mount) (struct super_block *sb, void *data);
|
|
int (*sb_statfs) (struct super_block * sb);
|
|
int (*sb_mount) (char *dev_name, struct nameidata * nd,
|
|
char *type, unsigned long flags, void *data);
|
|
int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
|
|
int (*sb_umount) (struct vfsmount * mnt, int flags);
|
|
void (*sb_umount_close) (struct vfsmount * mnt);
|
|
void (*sb_umount_busy) (struct vfsmount * mnt);
|
|
void (*sb_post_remount) (struct vfsmount * mnt,
|
|
unsigned long flags, void *data);
|
|
void (*sb_post_mountroot) (void);
|
|
void (*sb_post_addmount) (struct vfsmount * mnt,
|
|
struct nameidata * mountpoint_nd);
|
|
int (*sb_pivotroot) (struct nameidata * old_nd,
|
|
struct nameidata * new_nd);
|
|
void (*sb_post_pivotroot) (struct nameidata * old_nd,
|
|
struct nameidata * new_nd);
|
|
|
|
int (*inode_alloc_security) (struct inode *inode);
|
|
void (*inode_free_security) (struct inode *inode);
|
|
int (*inode_init_security) (struct inode *inode, struct inode *dir,
|
|
char **name, void **value, size_t *len);
|
|
int (*inode_create) (struct inode *dir,
|
|
struct dentry *dentry, int mode);
|
|
int (*inode_link) (struct dentry *old_dentry,
|
|
struct inode *dir, struct dentry *new_dentry);
|
|
int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
|
|
int (*inode_symlink) (struct inode *dir,
|
|
struct dentry *dentry, const char *old_name);
|
|
int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
|
|
int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
|
|
int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
|
|
int mode, dev_t dev);
|
|
int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry);
|
|
int (*inode_readlink) (struct dentry *dentry);
|
|
int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
|
|
int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
|
|
int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
|
|
int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
|
|
void (*inode_delete) (struct inode *inode);
|
|
int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
|
|
size_t size, int flags);
|
|
void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
|
|
size_t size, int flags);
|
|
int (*inode_getxattr) (struct dentry *dentry, char *name);
|
|
int (*inode_listxattr) (struct dentry *dentry);
|
|
int (*inode_removexattr) (struct dentry *dentry, char *name);
|
|
int (*inode_getsecurity)(struct inode *inode, const char *name, void *buffer, size_t size);
|
|
int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
|
|
int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
|
|
|
|
int (*file_permission) (struct file * file, int mask);
|
|
int (*file_alloc_security) (struct file * file);
|
|
void (*file_free_security) (struct file * file);
|
|
int (*file_ioctl) (struct file * file, unsigned int cmd,
|
|
unsigned long arg);
|
|
int (*file_mmap) (struct file * file,
|
|
unsigned long reqprot,
|
|
unsigned long prot, unsigned long flags);
|
|
int (*file_mprotect) (struct vm_area_struct * vma,
|
|
unsigned long reqprot,
|
|
unsigned long prot);
|
|
int (*file_lock) (struct file * file, unsigned int cmd);
|
|
int (*file_fcntl) (struct file * file, unsigned int cmd,
|
|
unsigned long arg);
|
|
int (*file_set_fowner) (struct file * file);
|
|
int (*file_send_sigiotask) (struct task_struct * tsk,
|
|
struct fown_struct * fown, int sig);
|
|
int (*file_receive) (struct file * file);
|
|
|
|
int (*task_create) (unsigned long clone_flags);
|
|
int (*task_alloc_security) (struct task_struct * p);
|
|
void (*task_free_security) (struct task_struct * p);
|
|
int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
|
|
int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
|
|
uid_t old_euid, uid_t old_suid, int flags);
|
|
int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
|
|
int (*task_setpgid) (struct task_struct * p, pid_t pgid);
|
|
int (*task_getpgid) (struct task_struct * p);
|
|
int (*task_getsid) (struct task_struct * p);
|
|
int (*task_setgroups) (struct group_info *group_info);
|
|
int (*task_setnice) (struct task_struct * p, int nice);
|
|
int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
|
|
int (*task_setscheduler) (struct task_struct * p, int policy,
|
|
struct sched_param * lp);
|
|
int (*task_getscheduler) (struct task_struct * p);
|
|
int (*task_kill) (struct task_struct * p,
|
|
struct siginfo * info, int sig);
|
|
int (*task_wait) (struct task_struct * p);
|
|
int (*task_prctl) (int option, unsigned long arg2,
|
|
unsigned long arg3, unsigned long arg4,
|
|
unsigned long arg5);
|
|
void (*task_reparent_to_init) (struct task_struct * p);
|
|
void (*task_to_inode)(struct task_struct *p, struct inode *inode);
|
|
|
|
int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
|
|
|
|
int (*msg_msg_alloc_security) (struct msg_msg * msg);
|
|
void (*msg_msg_free_security) (struct msg_msg * msg);
|
|
|
|
int (*msg_queue_alloc_security) (struct msg_queue * msq);
|
|
void (*msg_queue_free_security) (struct msg_queue * msq);
|
|
int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
|
|
int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
|
|
int (*msg_queue_msgsnd) (struct msg_queue * msq,
|
|
struct msg_msg * msg, int msqflg);
|
|
int (*msg_queue_msgrcv) (struct msg_queue * msq,
|
|
struct msg_msg * msg,
|
|
struct task_struct * target,
|
|
long type, int mode);
|
|
|
|
int (*shm_alloc_security) (struct shmid_kernel * shp);
|
|
void (*shm_free_security) (struct shmid_kernel * shp);
|
|
int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
|
|
int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
|
|
int (*shm_shmat) (struct shmid_kernel * shp,
|
|
char __user *shmaddr, int shmflg);
|
|
|
|
int (*sem_alloc_security) (struct sem_array * sma);
|
|
void (*sem_free_security) (struct sem_array * sma);
|
|
int (*sem_associate) (struct sem_array * sma, int semflg);
|
|
int (*sem_semctl) (struct sem_array * sma, int cmd);
|
|
int (*sem_semop) (struct sem_array * sma,
|
|
struct sembuf * sops, unsigned nsops, int alter);
|
|
|
|
int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
|
|
int (*netlink_recv) (struct sk_buff * skb);
|
|
|
|
/* allow module stacking */
|
|
int (*register_security) (const char *name,
|
|
struct security_operations *ops);
|
|
int (*unregister_security) (const char *name,
|
|
struct security_operations *ops);
|
|
|
|
void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
|
|
|
|
int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size);
|
|
int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
|
|
|
|
#ifdef CONFIG_SECURITY_NETWORK
|
|
int (*unix_stream_connect) (struct socket * sock,
|
|
struct socket * other, struct sock * newsk);
|
|
int (*unix_may_send) (struct socket * sock, struct socket * other);
|
|
|
|
int (*socket_create) (int family, int type, int protocol, int kern);
|
|
void (*socket_post_create) (struct socket * sock, int family,
|
|
int type, int protocol, int kern);
|
|
int (*socket_bind) (struct socket * sock,
|
|
struct sockaddr * address, int addrlen);
|
|
int (*socket_connect) (struct socket * sock,
|
|
struct sockaddr * address, int addrlen);
|
|
int (*socket_listen) (struct socket * sock, int backlog);
|
|
int (*socket_accept) (struct socket * sock, struct socket * newsock);
|
|
void (*socket_post_accept) (struct socket * sock,
|
|
struct socket * newsock);
|
|
int (*socket_sendmsg) (struct socket * sock,
|
|
struct msghdr * msg, int size);
|
|
int (*socket_recvmsg) (struct socket * sock,
|
|
struct msghdr * msg, int size, int flags);
|
|
int (*socket_getsockname) (struct socket * sock);
|
|
int (*socket_getpeername) (struct socket * sock);
|
|
int (*socket_getsockopt) (struct socket * sock, int level, int optname);
|
|
int (*socket_setsockopt) (struct socket * sock, int level, int optname);
|
|
int (*socket_shutdown) (struct socket * sock, int how);
|
|
int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
|
|
int (*socket_getpeersec) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
|
|
int (*sk_alloc_security) (struct sock *sk, int family, int priority);
|
|
void (*sk_free_security) (struct sock *sk);
|
|
#endif /* CONFIG_SECURITY_NETWORK */
|
|
};
|
|
|
|
/* global variables */
|
|
extern struct security_operations *security_ops;
|
|
|
|
/* inline stuff */
|
|
static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
|
|
{
|
|
return security_ops->ptrace (parent, child);
|
|
}
|
|
|
|
static inline int security_capget (struct task_struct *target,
|
|
kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable,
|
|
kernel_cap_t *permitted)
|
|
{
|
|
return security_ops->capget (target, effective, inheritable, permitted);
|
|
}
|
|
|
|
static inline int security_capset_check (struct task_struct *target,
|
|
kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable,
|
|
kernel_cap_t *permitted)
|
|
{
|
|
return security_ops->capset_check (target, effective, inheritable, permitted);
|
|
}
|
|
|
|
static inline void security_capset_set (struct task_struct *target,
|
|
kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable,
|
|
kernel_cap_t *permitted)
|
|
{
|
|
security_ops->capset_set (target, effective, inheritable, permitted);
|
|
}
|
|
|
|
static inline int security_acct (struct file *file)
|
|
{
|
|
return security_ops->acct (file);
|
|
}
|
|
|
|
static inline int security_sysctl(struct ctl_table *table, int op)
|
|
{
|
|
return security_ops->sysctl(table, op);
|
|
}
|
|
|
|
static inline int security_quotactl (int cmds, int type, int id,
|
|
struct super_block *sb)
|
|
{
|
|
return security_ops->quotactl (cmds, type, id, sb);
|
|
}
|
|
|
|
static inline int security_quota_on (struct dentry * dentry)
|
|
{
|
|
return security_ops->quota_on (dentry);
|
|
}
|
|
|
|
static inline int security_syslog(int type)
|
|
{
|
|
return security_ops->syslog(type);
|
|
}
|
|
|
|
static inline int security_settime(struct timespec *ts, struct timezone *tz)
|
|
{
|
|
return security_ops->settime(ts, tz);
|
|
}
|
|
|
|
|
|
static inline int security_vm_enough_memory(long pages)
|
|
{
|
|
return security_ops->vm_enough_memory(pages);
|
|
}
|
|
|
|
static inline int security_bprm_alloc (struct linux_binprm *bprm)
|
|
{
|
|
return security_ops->bprm_alloc_security (bprm);
|
|
}
|
|
static inline void security_bprm_free (struct linux_binprm *bprm)
|
|
{
|
|
security_ops->bprm_free_security (bprm);
|
|
}
|
|
static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
|
|
{
|
|
security_ops->bprm_apply_creds (bprm, unsafe);
|
|
}
|
|
static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
|
|
{
|
|
security_ops->bprm_post_apply_creds (bprm);
|
|
}
|
|
static inline int security_bprm_set (struct linux_binprm *bprm)
|
|
{
|
|
return security_ops->bprm_set_security (bprm);
|
|
}
|
|
|
|
static inline int security_bprm_check (struct linux_binprm *bprm)
|
|
{
|
|
return security_ops->bprm_check_security (bprm);
|
|
}
|
|
|
|
static inline int security_bprm_secureexec (struct linux_binprm *bprm)
|
|
{
|
|
return security_ops->bprm_secureexec (bprm);
|
|
}
|
|
|
|
static inline int security_sb_alloc (struct super_block *sb)
|
|
{
|
|
return security_ops->sb_alloc_security (sb);
|
|
}
|
|
|
|
static inline void security_sb_free (struct super_block *sb)
|
|
{
|
|
security_ops->sb_free_security (sb);
|
|
}
|
|
|
|
static inline int security_sb_copy_data (struct file_system_type *type,
|
|
void *orig, void *copy)
|
|
{
|
|
return security_ops->sb_copy_data (type, orig, copy);
|
|
}
|
|
|
|
static inline int security_sb_kern_mount (struct super_block *sb, void *data)
|
|
{
|
|
return security_ops->sb_kern_mount (sb, data);
|
|
}
|
|
|
|
static inline int security_sb_statfs (struct super_block *sb)
|
|
{
|
|
return security_ops->sb_statfs (sb);
|
|
}
|
|
|
|
static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
|
|
char *type, unsigned long flags,
|
|
void *data)
|
|
{
|
|
return security_ops->sb_mount (dev_name, nd, type, flags, data);
|
|
}
|
|
|
|
static inline int security_sb_check_sb (struct vfsmount *mnt,
|
|
struct nameidata *nd)
|
|
{
|
|
return security_ops->sb_check_sb (mnt, nd);
|
|
}
|
|
|
|
static inline int security_sb_umount (struct vfsmount *mnt, int flags)
|
|
{
|
|
return security_ops->sb_umount (mnt, flags);
|
|
}
|
|
|
|
static inline void security_sb_umount_close (struct vfsmount *mnt)
|
|
{
|
|
security_ops->sb_umount_close (mnt);
|
|
}
|
|
|
|
static inline void security_sb_umount_busy (struct vfsmount *mnt)
|
|
{
|
|
security_ops->sb_umount_busy (mnt);
|
|
}
|
|
|
|
static inline void security_sb_post_remount (struct vfsmount *mnt,
|
|
unsigned long flags, void *data)
|
|
{
|
|
security_ops->sb_post_remount (mnt, flags, data);
|
|
}
|
|
|
|
static inline void security_sb_post_mountroot (void)
|
|
{
|
|
security_ops->sb_post_mountroot ();
|
|
}
|
|
|
|
static inline void security_sb_post_addmount (struct vfsmount *mnt,
|
|
struct nameidata *mountpoint_nd)
|
|
{
|
|
security_ops->sb_post_addmount (mnt, mountpoint_nd);
|
|
}
|
|
|
|
static inline int security_sb_pivotroot (struct nameidata *old_nd,
|
|
struct nameidata *new_nd)
|
|
{
|
|
return security_ops->sb_pivotroot (old_nd, new_nd);
|
|
}
|
|
|
|
static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
|
|
struct nameidata *new_nd)
|
|
{
|
|
security_ops->sb_post_pivotroot (old_nd, new_nd);
|
|
}
|
|
|
|
static inline int security_inode_alloc (struct inode *inode)
|
|
{
|
|
if (unlikely (IS_PRIVATE (inode)))
|
|
return 0;
|
|
return security_ops->inode_alloc_security (inode);
|
|
}
|
|
|
|
static inline void security_inode_free (struct inode *inode)
|
|
{
|
|
if (unlikely (IS_PRIVATE (inode)))
|
|
return;
|
|
security_ops->inode_free_security (inode);
|
|
}
|
|
|
|
static inline int security_inode_init_security (struct inode *inode,
|
|
struct inode *dir,
|
|
char **name,
|
|
void **value,
|
|
size_t *len)
|
|
{
|
|
if (unlikely (IS_PRIVATE (inode)))
|
|
return -EOPNOTSUPP;
|
|
return security_ops->inode_init_security (inode, dir, name, value, len);
|
|
}
|
|
|
|
static inline int security_inode_create (struct inode *dir,
|
|
struct dentry *dentry,
|
|
int mode)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dir)))
|
|
return 0;
|
|
return security_ops->inode_create (dir, dentry, mode);
|
|
}
|
|
|
|
static inline int security_inode_link (struct dentry *old_dentry,
|
|
struct inode *dir,
|
|
struct dentry *new_dentry)
|
|
{
|
|
if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_link (old_dentry, dir, new_dentry);
|
|
}
|
|
|
|
static inline int security_inode_unlink (struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_unlink (dir, dentry);
|
|
}
|
|
|
|
static inline int security_inode_symlink (struct inode *dir,
|
|
struct dentry *dentry,
|
|
const char *old_name)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dir)))
|
|
return 0;
|
|
return security_ops->inode_symlink (dir, dentry, old_name);
|
|
}
|
|
|
|
static inline int security_inode_mkdir (struct inode *dir,
|
|
struct dentry *dentry,
|
|
int mode)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dir)))
|
|
return 0;
|
|
return security_ops->inode_mkdir (dir, dentry, mode);
|
|
}
|
|
|
|
static inline int security_inode_rmdir (struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_rmdir (dir, dentry);
|
|
}
|
|
|
|
static inline int security_inode_mknod (struct inode *dir,
|
|
struct dentry *dentry,
|
|
int mode, dev_t dev)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dir)))
|
|
return 0;
|
|
return security_ops->inode_mknod (dir, dentry, mode, dev);
|
|
}
|
|
|
|
static inline int security_inode_rename (struct inode *old_dir,
|
|
struct dentry *old_dentry,
|
|
struct inode *new_dir,
|
|
struct dentry *new_dentry)
|
|
{
|
|
if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
|
|
(new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
|
|
return 0;
|
|
return security_ops->inode_rename (old_dir, old_dentry,
|
|
new_dir, new_dentry);
|
|
}
|
|
|
|
static inline int security_inode_readlink (struct dentry *dentry)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_readlink (dentry);
|
|
}
|
|
|
|
static inline int security_inode_follow_link (struct dentry *dentry,
|
|
struct nameidata *nd)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_follow_link (dentry, nd);
|
|
}
|
|
|
|
static inline int security_inode_permission (struct inode *inode, int mask,
|
|
struct nameidata *nd)
|
|
{
|
|
if (unlikely (IS_PRIVATE (inode)))
|
|
return 0;
|
|
return security_ops->inode_permission (inode, mask, nd);
|
|
}
|
|
|
|
static inline int security_inode_setattr (struct dentry *dentry,
|
|
struct iattr *attr)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_setattr (dentry, attr);
|
|
}
|
|
|
|
static inline int security_inode_getattr (struct vfsmount *mnt,
|
|
struct dentry *dentry)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_getattr (mnt, dentry);
|
|
}
|
|
|
|
static inline void security_inode_delete (struct inode *inode)
|
|
{
|
|
if (unlikely (IS_PRIVATE (inode)))
|
|
return;
|
|
security_ops->inode_delete (inode);
|
|
}
|
|
|
|
static inline int security_inode_setxattr (struct dentry *dentry, char *name,
|
|
void *value, size_t size, int flags)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_setxattr (dentry, name, value, size, flags);
|
|
}
|
|
|
|
static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
|
|
void *value, size_t size, int flags)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return;
|
|
security_ops->inode_post_setxattr (dentry, name, value, size, flags);
|
|
}
|
|
|
|
static inline int security_inode_getxattr (struct dentry *dentry, char *name)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_getxattr (dentry, name);
|
|
}
|
|
|
|
static inline int security_inode_listxattr (struct dentry *dentry)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_listxattr (dentry);
|
|
}
|
|
|
|
static inline int security_inode_removexattr (struct dentry *dentry, char *name)
|
|
{
|
|
if (unlikely (IS_PRIVATE (dentry->d_inode)))
|
|
return 0;
|
|
return security_ops->inode_removexattr (dentry, name);
|
|
}
|
|
|
|
static inline int security_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size)
|
|
{
|
|
if (unlikely (IS_PRIVATE (inode)))
|
|
return 0;
|
|
return security_ops->inode_getsecurity(inode, name, buffer, size);
|
|
}
|
|
|
|
static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
|
|
{
|
|
if (unlikely (IS_PRIVATE (inode)))
|
|
return 0;
|
|
return security_ops->inode_setsecurity(inode, name, value, size, flags);
|
|
}
|
|
|
|
static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
|
|
{
|
|
if (unlikely (IS_PRIVATE (inode)))
|
|
return 0;
|
|
return security_ops->inode_listsecurity(inode, buffer, buffer_size);
|
|
}
|
|
|
|
static inline int security_file_permission (struct file *file, int mask)
|
|
{
|
|
return security_ops->file_permission (file, mask);
|
|
}
|
|
|
|
static inline int security_file_alloc (struct file *file)
|
|
{
|
|
return security_ops->file_alloc_security (file);
|
|
}
|
|
|
|
static inline void security_file_free (struct file *file)
|
|
{
|
|
security_ops->file_free_security (file);
|
|
}
|
|
|
|
static inline int security_file_ioctl (struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
return security_ops->file_ioctl (file, cmd, arg);
|
|
}
|
|
|
|
static inline int security_file_mmap (struct file *file, unsigned long reqprot,
|
|
unsigned long prot,
|
|
unsigned long flags)
|
|
{
|
|
return security_ops->file_mmap (file, reqprot, prot, flags);
|
|
}
|
|
|
|
static inline int security_file_mprotect (struct vm_area_struct *vma,
|
|
unsigned long reqprot,
|
|
unsigned long prot)
|
|
{
|
|
return security_ops->file_mprotect (vma, reqprot, prot);
|
|
}
|
|
|
|
static inline int security_file_lock (struct file *file, unsigned int cmd)
|
|
{
|
|
return security_ops->file_lock (file, cmd);
|
|
}
|
|
|
|
static inline int security_file_fcntl (struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
return security_ops->file_fcntl (file, cmd, arg);
|
|
}
|
|
|
|
static inline int security_file_set_fowner (struct file *file)
|
|
{
|
|
return security_ops->file_set_fowner (file);
|
|
}
|
|
|
|
static inline int security_file_send_sigiotask (struct task_struct *tsk,
|
|
struct fown_struct *fown,
|
|
int sig)
|
|
{
|
|
return security_ops->file_send_sigiotask (tsk, fown, sig);
|
|
}
|
|
|
|
static inline int security_file_receive (struct file *file)
|
|
{
|
|
return security_ops->file_receive (file);
|
|
}
|
|
|
|
static inline int security_task_create (unsigned long clone_flags)
|
|
{
|
|
return security_ops->task_create (clone_flags);
|
|
}
|
|
|
|
static inline int security_task_alloc (struct task_struct *p)
|
|
{
|
|
return security_ops->task_alloc_security (p);
|
|
}
|
|
|
|
static inline void security_task_free (struct task_struct *p)
|
|
{
|
|
security_ops->task_free_security (p);
|
|
}
|
|
|
|
static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
|
|
int flags)
|
|
{
|
|
return security_ops->task_setuid (id0, id1, id2, flags);
|
|
}
|
|
|
|
static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
|
|
uid_t old_suid, int flags)
|
|
{
|
|
return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
|
|
}
|
|
|
|
static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
|
|
int flags)
|
|
{
|
|
return security_ops->task_setgid (id0, id1, id2, flags);
|
|
}
|
|
|
|
static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
|
|
{
|
|
return security_ops->task_setpgid (p, pgid);
|
|
}
|
|
|
|
static inline int security_task_getpgid (struct task_struct *p)
|
|
{
|
|
return security_ops->task_getpgid (p);
|
|
}
|
|
|
|
static inline int security_task_getsid (struct task_struct *p)
|
|
{
|
|
return security_ops->task_getsid (p);
|
|
}
|
|
|
|
static inline int security_task_setgroups (struct group_info *group_info)
|
|
{
|
|
return security_ops->task_setgroups (group_info);
|
|
}
|
|
|
|
static inline int security_task_setnice (struct task_struct *p, int nice)
|
|
{
|
|
return security_ops->task_setnice (p, nice);
|
|
}
|
|
|
|
static inline int security_task_setrlimit (unsigned int resource,
|
|
struct rlimit *new_rlim)
|
|
{
|
|
return security_ops->task_setrlimit (resource, new_rlim);
|
|
}
|
|
|
|
static inline int security_task_setscheduler (struct task_struct *p,
|
|
int policy,
|
|
struct sched_param *lp)
|
|
{
|
|
return security_ops->task_setscheduler (p, policy, lp);
|
|
}
|
|
|
|
static inline int security_task_getscheduler (struct task_struct *p)
|
|
{
|
|
return security_ops->task_getscheduler (p);
|
|
}
|
|
|
|
static inline int security_task_kill (struct task_struct *p,
|
|
struct siginfo *info, int sig)
|
|
{
|
|
return security_ops->task_kill (p, info, sig);
|
|
}
|
|
|
|
static inline int security_task_wait (struct task_struct *p)
|
|
{
|
|
return security_ops->task_wait (p);
|
|
}
|
|
|
|
static inline int security_task_prctl (int option, unsigned long arg2,
|
|
unsigned long arg3,
|
|
unsigned long arg4,
|
|
unsigned long arg5)
|
|
{
|
|
return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
|
|
}
|
|
|
|
static inline void security_task_reparent_to_init (struct task_struct *p)
|
|
{
|
|
security_ops->task_reparent_to_init (p);
|
|
}
|
|
|
|
static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
|
|
{
|
|
security_ops->task_to_inode(p, inode);
|
|
}
|
|
|
|
static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
|
|
short flag)
|
|
{
|
|
return security_ops->ipc_permission (ipcp, flag);
|
|
}
|
|
|
|
static inline int security_msg_msg_alloc (struct msg_msg * msg)
|
|
{
|
|
return security_ops->msg_msg_alloc_security (msg);
|
|
}
|
|
|
|
static inline void security_msg_msg_free (struct msg_msg * msg)
|
|
{
|
|
security_ops->msg_msg_free_security(msg);
|
|
}
|
|
|
|
static inline int security_msg_queue_alloc (struct msg_queue *msq)
|
|
{
|
|
return security_ops->msg_queue_alloc_security (msq);
|
|
}
|
|
|
|
static inline void security_msg_queue_free (struct msg_queue *msq)
|
|
{
|
|
security_ops->msg_queue_free_security (msq);
|
|
}
|
|
|
|
static inline int security_msg_queue_associate (struct msg_queue * msq,
|
|
int msqflg)
|
|
{
|
|
return security_ops->msg_queue_associate (msq, msqflg);
|
|
}
|
|
|
|
static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
|
|
{
|
|
return security_ops->msg_queue_msgctl (msq, cmd);
|
|
}
|
|
|
|
static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
|
|
struct msg_msg * msg, int msqflg)
|
|
{
|
|
return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
|
|
}
|
|
|
|
static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
|
|
struct msg_msg * msg,
|
|
struct task_struct * target,
|
|
long type, int mode)
|
|
{
|
|
return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
|
|
}
|
|
|
|
static inline int security_shm_alloc (struct shmid_kernel *shp)
|
|
{
|
|
return security_ops->shm_alloc_security (shp);
|
|
}
|
|
|
|
static inline void security_shm_free (struct shmid_kernel *shp)
|
|
{
|
|
security_ops->shm_free_security (shp);
|
|
}
|
|
|
|
static inline int security_shm_associate (struct shmid_kernel * shp,
|
|
int shmflg)
|
|
{
|
|
return security_ops->shm_associate(shp, shmflg);
|
|
}
|
|
|
|
static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
|
|
{
|
|
return security_ops->shm_shmctl (shp, cmd);
|
|
}
|
|
|
|
static inline int security_shm_shmat (struct shmid_kernel * shp,
|
|
char __user *shmaddr, int shmflg)
|
|
{
|
|
return security_ops->shm_shmat(shp, shmaddr, shmflg);
|
|
}
|
|
|
|
static inline int security_sem_alloc (struct sem_array *sma)
|
|
{
|
|
return security_ops->sem_alloc_security (sma);
|
|
}
|
|
|
|
static inline void security_sem_free (struct sem_array *sma)
|
|
{
|
|
security_ops->sem_free_security (sma);
|
|
}
|
|
|
|
static inline int security_sem_associate (struct sem_array * sma, int semflg)
|
|
{
|
|
return security_ops->sem_associate (sma, semflg);
|
|
}
|
|
|
|
static inline int security_sem_semctl (struct sem_array * sma, int cmd)
|
|
{
|
|
return security_ops->sem_semctl(sma, cmd);
|
|
}
|
|
|
|
static inline int security_sem_semop (struct sem_array * sma,
|
|
struct sembuf * sops, unsigned nsops,
|
|
int alter)
|
|
{
|
|
return security_ops->sem_semop(sma, sops, nsops, alter);
|
|
}
|
|
|
|
static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
|
|
{
|
|
if (unlikely (inode && IS_PRIVATE (inode)))
|
|
return;
|
|
security_ops->d_instantiate (dentry, inode);
|
|
}
|
|
|
|
static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
|
|
{
|
|
return security_ops->getprocattr(p, name, value, size);
|
|
}
|
|
|
|
static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
|
|
{
|
|
return security_ops->setprocattr(p, name, value, size);
|
|
}
|
|
|
|
static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
|
|
{
|
|
return security_ops->netlink_send(sk, skb);
|
|
}
|
|
|
|
static inline int security_netlink_recv(struct sk_buff * skb)
|
|
{
|
|
return security_ops->netlink_recv(skb);
|
|
}
|
|
|
|
/* prototypes */
|
|
extern int security_init (void);
|
|
extern int register_security (struct security_operations *ops);
|
|
extern int unregister_security (struct security_operations *ops);
|
|
extern int mod_reg_security (const char *name, struct security_operations *ops);
|
|
extern int mod_unreg_security (const char *name, struct security_operations *ops);
|
|
extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
|
|
struct dentry *parent, void *data,
|
|
struct file_operations *fops);
|
|
extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
|
|
extern void securityfs_remove(struct dentry *dentry);
|
|
|
|
|
|
#else /* CONFIG_SECURITY */
|
|
|
|
/*
|
|
* This is the default capabilities functionality. Most of these functions
|
|
* are just stubbed out, but a few must call the proper capable code.
|
|
*/
|
|
|
|
static inline int security_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
|
|
{
|
|
return cap_ptrace (parent, child);
|
|
}
|
|
|
|
static inline int security_capget (struct task_struct *target,
|
|
kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable,
|
|
kernel_cap_t *permitted)
|
|
{
|
|
return cap_capget (target, effective, inheritable, permitted);
|
|
}
|
|
|
|
static inline int security_capset_check (struct task_struct *target,
|
|
kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable,
|
|
kernel_cap_t *permitted)
|
|
{
|
|
return cap_capset_check (target, effective, inheritable, permitted);
|
|
}
|
|
|
|
static inline void security_capset_set (struct task_struct *target,
|
|
kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable,
|
|
kernel_cap_t *permitted)
|
|
{
|
|
cap_capset_set (target, effective, inheritable, permitted);
|
|
}
|
|
|
|
static inline int security_acct (struct file *file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_sysctl(struct ctl_table *table, int op)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_quotactl (int cmds, int type, int id,
|
|
struct super_block * sb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_quota_on (struct dentry * dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_syslog(int type)
|
|
{
|
|
return cap_syslog(type);
|
|
}
|
|
|
|
static inline int security_settime(struct timespec *ts, struct timezone *tz)
|
|
{
|
|
return cap_settime(ts, tz);
|
|
}
|
|
|
|
static inline int security_vm_enough_memory(long pages)
|
|
{
|
|
return cap_vm_enough_memory(pages);
|
|
}
|
|
|
|
static inline int security_bprm_alloc (struct linux_binprm *bprm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_bprm_free (struct linux_binprm *bprm)
|
|
{ }
|
|
|
|
static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
|
|
{
|
|
cap_bprm_apply_creds (bprm, unsafe);
|
|
}
|
|
|
|
static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static inline int security_bprm_set (struct linux_binprm *bprm)
|
|
{
|
|
return cap_bprm_set_security (bprm);
|
|
}
|
|
|
|
static inline int security_bprm_check (struct linux_binprm *bprm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_bprm_secureexec (struct linux_binprm *bprm)
|
|
{
|
|
return cap_bprm_secureexec(bprm);
|
|
}
|
|
|
|
static inline int security_sb_alloc (struct super_block *sb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_sb_free (struct super_block *sb)
|
|
{ }
|
|
|
|
static inline int security_sb_copy_data (struct file_system_type *type,
|
|
void *orig, void *copy)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_sb_kern_mount (struct super_block *sb, void *data)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_sb_statfs (struct super_block *sb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
|
|
char *type, unsigned long flags,
|
|
void *data)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_sb_check_sb (struct vfsmount *mnt,
|
|
struct nameidata *nd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_sb_umount (struct vfsmount *mnt, int flags)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_sb_umount_close (struct vfsmount *mnt)
|
|
{ }
|
|
|
|
static inline void security_sb_umount_busy (struct vfsmount *mnt)
|
|
{ }
|
|
|
|
static inline void security_sb_post_remount (struct vfsmount *mnt,
|
|
unsigned long flags, void *data)
|
|
{ }
|
|
|
|
static inline void security_sb_post_mountroot (void)
|
|
{ }
|
|
|
|
static inline void security_sb_post_addmount (struct vfsmount *mnt,
|
|
struct nameidata *mountpoint_nd)
|
|
{ }
|
|
|
|
static inline int security_sb_pivotroot (struct nameidata *old_nd,
|
|
struct nameidata *new_nd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
|
|
struct nameidata *new_nd)
|
|
{ }
|
|
|
|
static inline int security_inode_alloc (struct inode *inode)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_inode_free (struct inode *inode)
|
|
{ }
|
|
|
|
static inline int security_inode_init_security (struct inode *inode,
|
|
struct inode *dir,
|
|
char **name,
|
|
void **value,
|
|
size_t *len)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static inline int security_inode_create (struct inode *dir,
|
|
struct dentry *dentry,
|
|
int mode)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_link (struct dentry *old_dentry,
|
|
struct inode *dir,
|
|
struct dentry *new_dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_unlink (struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_symlink (struct inode *dir,
|
|
struct dentry *dentry,
|
|
const char *old_name)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_mkdir (struct inode *dir,
|
|
struct dentry *dentry,
|
|
int mode)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_rmdir (struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_mknod (struct inode *dir,
|
|
struct dentry *dentry,
|
|
int mode, dev_t dev)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_rename (struct inode *old_dir,
|
|
struct dentry *old_dentry,
|
|
struct inode *new_dir,
|
|
struct dentry *new_dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_readlink (struct dentry *dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_follow_link (struct dentry *dentry,
|
|
struct nameidata *nd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_permission (struct inode *inode, int mask,
|
|
struct nameidata *nd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_setattr (struct dentry *dentry,
|
|
struct iattr *attr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_getattr (struct vfsmount *mnt,
|
|
struct dentry *dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_inode_delete (struct inode *inode)
|
|
{ }
|
|
|
|
static inline int security_inode_setxattr (struct dentry *dentry, char *name,
|
|
void *value, size_t size, int flags)
|
|
{
|
|
return cap_inode_setxattr(dentry, name, value, size, flags);
|
|
}
|
|
|
|
static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
|
|
void *value, size_t size, int flags)
|
|
{ }
|
|
|
|
static inline int security_inode_getxattr (struct dentry *dentry, char *name)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_listxattr (struct dentry *dentry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_inode_removexattr (struct dentry *dentry, char *name)
|
|
{
|
|
return cap_inode_removexattr(dentry, name);
|
|
}
|
|
|
|
static inline int security_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_file_permission (struct file *file, int mask)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_file_alloc (struct file *file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_file_free (struct file *file)
|
|
{ }
|
|
|
|
static inline int security_file_ioctl (struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_file_mmap (struct file *file, unsigned long reqprot,
|
|
unsigned long prot,
|
|
unsigned long flags)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_file_mprotect (struct vm_area_struct *vma,
|
|
unsigned long reqprot,
|
|
unsigned long prot)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_file_lock (struct file *file, unsigned int cmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_file_fcntl (struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_file_set_fowner (struct file *file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_file_send_sigiotask (struct task_struct *tsk,
|
|
struct fown_struct *fown,
|
|
int sig)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_file_receive (struct file *file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_create (unsigned long clone_flags)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_alloc (struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_task_free (struct task_struct *p)
|
|
{ }
|
|
|
|
static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
|
|
int flags)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
|
|
uid_t old_suid, int flags)
|
|
{
|
|
return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
|
|
}
|
|
|
|
static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
|
|
int flags)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_getpgid (struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_getsid (struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_setgroups (struct group_info *group_info)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_setnice (struct task_struct *p, int nice)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_setrlimit (unsigned int resource,
|
|
struct rlimit *new_rlim)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_setscheduler (struct task_struct *p,
|
|
int policy,
|
|
struct sched_param *lp)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_getscheduler (struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_kill (struct task_struct *p,
|
|
struct siginfo *info, int sig)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_wait (struct task_struct *p)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_task_prctl (int option, unsigned long arg2,
|
|
unsigned long arg3,
|
|
unsigned long arg4,
|
|
unsigned long arg5)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_task_reparent_to_init (struct task_struct *p)
|
|
{
|
|
cap_task_reparent_to_init (p);
|
|
}
|
|
|
|
static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
|
|
{ }
|
|
|
|
static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
|
|
short flag)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_msg_msg_alloc (struct msg_msg * msg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_msg_msg_free (struct msg_msg * msg)
|
|
{ }
|
|
|
|
static inline int security_msg_queue_alloc (struct msg_queue *msq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_msg_queue_free (struct msg_queue *msq)
|
|
{ }
|
|
|
|
static inline int security_msg_queue_associate (struct msg_queue * msq,
|
|
int msqflg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
|
|
struct msg_msg * msg, int msqflg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
|
|
struct msg_msg * msg,
|
|
struct task_struct * target,
|
|
long type, int mode)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_shm_alloc (struct shmid_kernel *shp)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_shm_free (struct shmid_kernel *shp)
|
|
{ }
|
|
|
|
static inline int security_shm_associate (struct shmid_kernel * shp,
|
|
int shmflg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_shm_shmat (struct shmid_kernel * shp,
|
|
char __user *shmaddr, int shmflg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_sem_alloc (struct sem_array *sma)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_sem_free (struct sem_array *sma)
|
|
{ }
|
|
|
|
static inline int security_sem_associate (struct sem_array * sma, int semflg)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_sem_semctl (struct sem_array * sma, int cmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_sem_semop (struct sem_array * sma,
|
|
struct sembuf * sops, unsigned nsops,
|
|
int alter)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
|
|
{ }
|
|
|
|
static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
return cap_netlink_send (sk, skb);
|
|
}
|
|
|
|
static inline int security_netlink_recv (struct sk_buff *skb)
|
|
{
|
|
return cap_netlink_recv (skb);
|
|
}
|
|
|
|
#endif /* CONFIG_SECURITY */
|
|
|
|
#ifdef CONFIG_SECURITY_NETWORK
|
|
static inline int security_unix_stream_connect(struct socket * sock,
|
|
struct socket * other,
|
|
struct sock * newsk)
|
|
{
|
|
return security_ops->unix_stream_connect(sock, other, newsk);
|
|
}
|
|
|
|
|
|
static inline int security_unix_may_send(struct socket * sock,
|
|
struct socket * other)
|
|
{
|
|
return security_ops->unix_may_send(sock, other);
|
|
}
|
|
|
|
static inline int security_socket_create (int family, int type,
|
|
int protocol, int kern)
|
|
{
|
|
return security_ops->socket_create(family, type, protocol, kern);
|
|
}
|
|
|
|
static inline void security_socket_post_create(struct socket * sock,
|
|
int family,
|
|
int type,
|
|
int protocol, int kern)
|
|
{
|
|
security_ops->socket_post_create(sock, family, type,
|
|
protocol, kern);
|
|
}
|
|
|
|
static inline int security_socket_bind(struct socket * sock,
|
|
struct sockaddr * address,
|
|
int addrlen)
|
|
{
|
|
return security_ops->socket_bind(sock, address, addrlen);
|
|
}
|
|
|
|
static inline int security_socket_connect(struct socket * sock,
|
|
struct sockaddr * address,
|
|
int addrlen)
|
|
{
|
|
return security_ops->socket_connect(sock, address, addrlen);
|
|
}
|
|
|
|
static inline int security_socket_listen(struct socket * sock, int backlog)
|
|
{
|
|
return security_ops->socket_listen(sock, backlog);
|
|
}
|
|
|
|
static inline int security_socket_accept(struct socket * sock,
|
|
struct socket * newsock)
|
|
{
|
|
return security_ops->socket_accept(sock, newsock);
|
|
}
|
|
|
|
static inline void security_socket_post_accept(struct socket * sock,
|
|
struct socket * newsock)
|
|
{
|
|
security_ops->socket_post_accept(sock, newsock);
|
|
}
|
|
|
|
static inline int security_socket_sendmsg(struct socket * sock,
|
|
struct msghdr * msg, int size)
|
|
{
|
|
return security_ops->socket_sendmsg(sock, msg, size);
|
|
}
|
|
|
|
static inline int security_socket_recvmsg(struct socket * sock,
|
|
struct msghdr * msg, int size,
|
|
int flags)
|
|
{
|
|
return security_ops->socket_recvmsg(sock, msg, size, flags);
|
|
}
|
|
|
|
static inline int security_socket_getsockname(struct socket * sock)
|
|
{
|
|
return security_ops->socket_getsockname(sock);
|
|
}
|
|
|
|
static inline int security_socket_getpeername(struct socket * sock)
|
|
{
|
|
return security_ops->socket_getpeername(sock);
|
|
}
|
|
|
|
static inline int security_socket_getsockopt(struct socket * sock,
|
|
int level, int optname)
|
|
{
|
|
return security_ops->socket_getsockopt(sock, level, optname);
|
|
}
|
|
|
|
static inline int security_socket_setsockopt(struct socket * sock,
|
|
int level, int optname)
|
|
{
|
|
return security_ops->socket_setsockopt(sock, level, optname);
|
|
}
|
|
|
|
static inline int security_socket_shutdown(struct socket * sock, int how)
|
|
{
|
|
return security_ops->socket_shutdown(sock, how);
|
|
}
|
|
|
|
static inline int security_sock_rcv_skb (struct sock * sk,
|
|
struct sk_buff * skb)
|
|
{
|
|
return security_ops->socket_sock_rcv_skb (sk, skb);
|
|
}
|
|
|
|
static inline int security_socket_getpeersec(struct socket *sock, char __user *optval,
|
|
int __user *optlen, unsigned len)
|
|
{
|
|
return security_ops->socket_getpeersec(sock, optval, optlen, len);
|
|
}
|
|
|
|
static inline int security_sk_alloc(struct sock *sk, int family,
|
|
unsigned int __nocast priority)
|
|
{
|
|
return security_ops->sk_alloc_security(sk, family, priority);
|
|
}
|
|
|
|
static inline void security_sk_free(struct sock *sk)
|
|
{
|
|
return security_ops->sk_free_security(sk);
|
|
}
|
|
#else /* CONFIG_SECURITY_NETWORK */
|
|
static inline int security_unix_stream_connect(struct socket * sock,
|
|
struct socket * other,
|
|
struct sock * newsk)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_unix_may_send(struct socket * sock,
|
|
struct socket * other)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_create (int family, int type,
|
|
int protocol, int kern)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_socket_post_create(struct socket * sock,
|
|
int family,
|
|
int type,
|
|
int protocol, int kern)
|
|
{
|
|
}
|
|
|
|
static inline int security_socket_bind(struct socket * sock,
|
|
struct sockaddr * address,
|
|
int addrlen)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_connect(struct socket * sock,
|
|
struct sockaddr * address,
|
|
int addrlen)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_listen(struct socket * sock, int backlog)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_accept(struct socket * sock,
|
|
struct socket * newsock)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_socket_post_accept(struct socket * sock,
|
|
struct socket * newsock)
|
|
{
|
|
}
|
|
|
|
static inline int security_socket_sendmsg(struct socket * sock,
|
|
struct msghdr * msg, int size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_recvmsg(struct socket * sock,
|
|
struct msghdr * msg, int size,
|
|
int flags)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_getsockname(struct socket * sock)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_getpeername(struct socket * sock)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_getsockopt(struct socket * sock,
|
|
int level, int optname)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_setsockopt(struct socket * sock,
|
|
int level, int optname)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_shutdown(struct socket * sock, int how)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int security_sock_rcv_skb (struct sock * sk,
|
|
struct sk_buff * skb)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int security_socket_getpeersec(struct socket *sock, char __user *optval,
|
|
int __user *optlen, unsigned len)
|
|
{
|
|
return -ENOPROTOOPT;
|
|
}
|
|
|
|
static inline int security_sk_alloc(struct sock *sk, int family,
|
|
unsigned int __nocast priority)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void security_sk_free(struct sock *sk)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SECURITY_NETWORK */
|
|
|
|
#endif /* ! __LINUX_SECURITY_H */
|
|
|